
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Kian Fan Chung,
Imperial College London, United Kingdom

REVIEWED BY

Hsiao-Chi Chuang,
Taipei Medical University, Taiwan
Charles Pilette,
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Air pollution plays an important role in the mortality and morbidity of chronic

airway diseases, such as asthma and chronic obstructive pulmonary disease

(COPD). Particulate matter (PM) is a significant fraction of air pollutants, and

studies have demonstrated that it can cause airway inflammation and injury. The

airway epithelium forms the first barrier of defense against inhaled toxicants, such

as PM. Airway epithelial cells clear airways from inhaled irritants and orchestrate

the inflammatory response of airways to these irritants by secreting various lipid

mediators, growth factors, chemokines, and cytokines. Studies suggest that PM

plays an important role in the pathogenesis of chronic airway diseases by

impairing mucociliary function, deteriorating epithelial barrier integrity, and

inducing the production of inflammatory mediators while modulating the

proliferation and death of airway epithelial cells. Furthermore, PM can modulate

epithelial plasticity and airway remodeling, which play central roles in asthma and

COPD. This review focuses on the effects of PM on airway injury and epithelial

plasticity, and the underlying mechanisms involving mucociliary activity, epithelial

barrier function, airway inflammation, epithelial-mesenchymal transition,

mesenchymal-epithelial transition, and airway remodeling.
KEYWORDS
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1 Introduction

Epidemiological evidence suggests a close association between

air pollution, resulting from the increased use of liquid petroleum,

coal, and gas in transportation, industry, and domestic settings, and

pulmonary mortality and morbidity. According to the World

Health Organization (WHO), 99% of the global population

breathes polluted air, and low- and middle-income countries are

at a greater risk of suffering from the highest exposure (1). Air

pollution is estimated to cause more than seven million deaths

globally every year (2).

Studies have demonstrated that particulate matter (PM)

pollution leads to increased prevalence, emergency room visits,

hospitalization, and mortality due to asthma, chronic obstructive

pulmonary disease (COPD), lower respiratory tract infections, and

lung cancer (3–5). PM is a complex mixture of solid and liquid

airborne particles that includes an inert carbonaceous core covered

by multiple layers of chemicals, such as sulfates, nitrates, ammonia,

sodium chloride, mineral dust, metals, and water (2, 6, 7). Diesel

exhaust particles (DEP), which are combusted from liquid

petroleum and gas in transport and manufacturing industries,

constitute an important fraction of PM pollution (8). PM larger

than 10µm are mostly filtered in the nose or throat, while those

≤10µm can be deposited in larger airways. PM ≤2.5µm (PM2.5) and

ultrafine particles (UFP) (diameter ≤0.1µm) can penetrate deeper

into the lung to terminal bronchioles even into the alveoli (9).

The airway epithelium is the first barrier against inhaled toxins

and particles. They are formed by polarized epithelial cells that

adhere to specialized intercellular connections such as tight

junctions and intercellular adhesion molecules (10). The major

cell types in the lung epithelium include ciliated, undifferentiated

columnar, secretory, and basal cells in the large airways and a

similar composition in the small airways, with secretory cells

changed to club cells. Bronchiolar and alveolar epithelia consist of

type I and II epithelial cells (11). In addition to their barrier

functions, airway epithelial cells play an important role in

mucociliary clearance of the airways and secrete lipid mediators,

growth factors, chemokines, and cytokines as requisites for their

metabolic functions (12).

Mechanistic studies have demonstrated that PM, including

DEP, can impair ciliary function, induce epithelial permeability,

and lead to inflammatory changes, while modulating the

proliferation and death of airway epithelial cells (11, 13–16). PM

can also affect airway epithelial plasticity and the ability of epithelial

cells to reversibly change their phenotype, which has been the focus

of extensive research. Epithelial plasticity usually denotes to

epithelial-mesenchymal transition (EMT) and mesenchymal-

epithelial transition (MET), which reflect the conversion between

epithelial and mesenchymal phenotypes. The EMT and MET are

affected by injury, inflammation, and repair (17, 18). Urban-like PM

can cause EMT- related changes, such as epithelial cell morphology

changes, deteriorated intercellular connections, and increased a-
smooth muscle actin (a-SMA) and collagen I production in airway

epithelial cells (19, 20). Furthermore, DEP were shown to

downregulate WNT/b-catenin signaling that is important for
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epithelial repair in lung organoids (21). Studies of the upper

airways have also reported that DEP can cause nasal epithelial

disruption (22).

Airway and lung remodeling include the main structural

changes observed in chronic respiratory diseases, such as COPD,

asthma (23). PM leads to airway remodeling through airway

inflammation and injury, and abnormal repair of the airway

epithelium (24).

In this review, we focus on the direct and indirect effects of PM

on mucociliary activity, airway epithelial barrier function, airway

inflammation, epithelial plasticity, and airway remodeling, and

discuss the underlying mechanisms.
2 Impact of PM on
mucociliary function

Air pollutants, including PM, cause mucociliary dysfunction,

deteriorate epithelial barrier integrity, and lead to cellular

inflammation in the airways. Ciliated epithelial cells and secretory

cells, club cells, and goblet cells of the airway epithelium are

important for the mucociliary clearance of airways; disorders,

defects, and the dysfunction of airway secretion and ciliary

activity are associated with severe mortal diseases such as primary

ciliary dyskinesia and cystic fibrosis (25). Mucociliary clearance

plays an important role in maintaining airway homeostasis, and

dysfunction of the airway epithelium occurs in chronic airway

diseases such as asthma and COPD (24). Furthermore, studies

have reported an increase in mucus production and number of

goblet cells in COPD airways (26).

Airway secretory cells secrete serous and mucus containing

water, ions, various macromolecules, antimicrobials including

defensin and lysosomes, and antiproteases (27, 28), which cover

the surface of the airways (28). Mucin glycoproteins (MUC5B and

MUC5AC) are the predominant mucus products in human airways;

MUC5AC is produced by superficial goblet cells, whereas MUC5B

is predominantly secreted by submucosal glands (29). These

secretions protect the airways from inhaled environmental insults

such as PM, bacteria, viruses, fungi, and other pathogens (27, 30).

Upon inhalation, PM have detrimental effects on the epithelial

function and integrity, leading to airway injury and inflammation.

Most of the water-soluble portion of PM, which include greater

amounts of monosaccharide anhydrides, methoxyphenols,

inorganic particles (potassium sulphates and chlorides), and

inorganic ions (K+, Na+, Ca2+, NH4
+, Mg2+, Cl-, NO3, SO4

2-),

polycyclic aromatic hydrocarbons (PAHs), and various

concentrations of inorganic elements (Ca, Fe, Mg, Zn, Mn, Pb

and Cu) would be promptly released into the airway surface

following inhalation (7, 31). The insoluble portion of PM

including higher concentrations of silica/silicates and titanium

oxides, and heavy metals such as Fe, Au, vanadium (V), Cu, and

Pb may then start an intracellular signal transduction (31, 32).

Studies have reported that DEP induces the secretion of

MUC5AC and MUC5B in lung NCI-H292 cells, which is

inhibited by TLR4 knockdown (33). Furthermore, PM2.5 induces
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MUC5AC mRNA expression in BEAS-2B human bronchial

epithelial cells (HBECs) (34). Studies on urban PM have found

that these particles induce the expression of amphiregulin, a ligand

for the epidermal growth factor receptor, leading to mucus

hypersecretion in HBECs. This was regulated PI3Ka activation

and its downstream AKT and extracellular signal-regulated kinase

(ERK) pathways (35). More recently, it was demonstrated that

PM2.5 induced MUC5AC upregulation in human nasal epithelial

cells, which forms the initial step of the defense against inhaled

irritants and particles in the upper airways. This effect is also

blocked by inhibitors of epidermal growth factor receptor (EGFR)

and PI3K inhibitors, suggesting that the EGFR-PI3K pathway

modulates PM2.5-induced MUC5AC expression (36).

Coordinated ciliary motion is important for the clearance of

inhaled particles and irritants trapped in the mucus from the

airways (11), and substances in the mucus are expelled with the

help of ciliary transport or coughing (13). Studies have

demonstrated that PM (i.e., DEP) can decrease the ciliary beat

frequency (CBF) of primary HBECs (14, 15). Although the

underlying mechanisms are not clear, it has been suggested that

this could occur through changes in the levels of cyclic adenosine

monophosphate (cAMP) and intracellular Ca++, which are known

to modulate ciliary movement (37). PM2.5 exposure significantly

aggravated ciliary deterioration and increased goblet cell

hyperplasia in rabbits with chronic rhinosinusitis (38). Taken

together, these studies suggest that PM plays a role in the

pathogenesis of chronic airway diseases by causing mucociliary

dysfunction in the airway epithelium (Figure 1).
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3 Epithelial barrier integrity and
effects of PM

The epithelial integrity and barrier function of the airway

epithelium are important in the defense of the airways against

inhaled insults (Figure 1). The airway epithelium forms a selective

permeable barrier between the external environment and the

underlying tissue. Intercellular connections including tight

junction proteins such as zonula occludens (ZO)-1, occludin,

claudin-1, and E-cadherin, desmosomes, and intercellular

adhesion molecules enable the epithelial barrier to fulfil its

protecting role against environmental toxicants (24, 39). The

intact epithelium is crucial for the maintenance of tissue

homeostasis in protecting the airways and lungs from inhaled

irritants, air pollutants, and allergens, and it has been

demonstrated that the epithelial barrier deteriorates in chronic

airway diseases, such as COPD, asthma, allergic rhinitis, and

chronic rhinosinusitis (24, 40–42). Akdis proposed an “epithelial

barrier hypothesis”, suggesting that increased environmental

toxicants and pollutants associated with industrialization,

urbanization, and modern life lead to an increase in allergic,

autoimmune, and chronic airway diseases by damaging epithelial

barrier integrity (41).

Indeed, studies have demonstrated that exposure to PM can

lead to increased epithelial permeability of human nasal epithelial

cells, as indicated by increased paracellular permeability and

decreased transepithelial electrical resistance (43). This was

associated with the downregulation of the tight junction proteins
FIGURE 1

Effects of particulate matter (PM) on mucociliary function, epithelial barrier integrity, and inflammatory changes in airways: PM leads to increased
production of reactive oxygen species (ROS) leading to higher oxidative stress in the cell, as well as lipid peroxidation and diminished antioxidant
capacity. This imbalance causes augmented expression of inflammatory mediators such as interleukin (IL)-1b, -6, -8, tumor necrosis factor (TNF)-a,
granulocyte macrophage-colony stimulating factor (GM-CSF), and soluble intercellular adhesion molecule (sICAM)-1 by epithelial cells and
inflammatory cells such as macrophages, neutrophils, and lymphocytes at the site of the inflammation. Increased inflammation may attract more
inflammatory cells and lead to increased cytokine production that may cause activation of mitogen-activated protein kinase (MAPK), and nuclear
factor-kappa B (NF-kB) pathways, and nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome response.
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ZO-1, occludin, and claudin‐1. Interestingly, pretreatment of cells

with N-acetyl-L-cysteine (NAC) decreased PM2.5‐mediated reactive

oxygen species (ROS) generation in nasal epithelial cells, preventing

barrier dysfunction. Similarly, ambient PM2.5 decreased

transepithelial electrical resistance and increased paracellular

permeability of primary human nasal epithelial cell cultures,

which was accompanied by decreased expression of claudin-1,

occludin, and ZO-1 proteins and increased inflammatory

cytokines (44). Furthermore, urban PM increases ROS production

and decreases the expression of tight junction proteins ZO-1,

occludin, claudin-1, and E-cadherin, which are associated with an

increase in p-Akt, p-p38, and p65 expression in primary human

nasal epithelial cells. These effects were reversed by pretreatment

with NAC and an Akt inhibitor (39). A DEP study also found that

these particles increased the permeability of primary human nasal

epithelial cells in a time- and dose-dependent manner, which was

associated with a decrease in the expression of occludin, ZO-1,

claudin-1, and E-cadherin (45). DEP also decreases transepithelial

electrical resistance and increases permeability to dextran in

HBECs, which is associated with a reduction in the tight junction

membrane protein tricellulin (46). Studies on a human alveolar

epithelial cell line (A549) and primary rat alveolar epithelial cells

demonstrated that both PM10 and DEP led to increased epithelial

permeability and disrupted tight junctions while inducing occludin

internalization from the plasma membrane into the endosomal

compartments and dissociation of occludin from ZO-1. This is

prevented by increased expression of the antioxidant enzymes

superoxide dismutase (SOD) and catalase (47).

Although evidence from model epithelial monolayers in vitro is

considerable, there is relatively little evidence regarding the effects

of inhaled PM on airway epithelial barrier integrity in vivo. Several

studies have suggested that the epithelial barrier is compromised in

rodents exposed to various forms of PM (48–50). For example,

intratracheal instillation of PM10 led to increased epithelial

permeability in rat lungs, as indicated by enhanced total protein

levels in bronchoalveolar lavage (BAL) fluid, which was associated

with cell toxicity and inflammation (48). Similarly, ambient PM

elevated the BAL protein content in the lungs of mice, which was

more prominent in asthmatic mice (49). In a mouse study of

ambient PM2.5, these particles reduced the expression of E-

cadherin in the lung tissue, which was linked to an increase in

inflammatory cytokines in the BAL fluid (50). Furthermore,

aerosolized DEP causes a significant reduction in the mRNA and

protein levels of lung tricellulin 2 (46).
4 Inflammatory effects of PM
on airways

The vast majority of the literature suggests increases in

inflammatory changes in the airways and lungs following PM

exposure (51) (Figure 1). Studies on primary HBECs have

demonstrated DEP-induced release of inflammatory mediators

such as interleukin (IL)-8, granulocyte-macrophage colony

stimulating factor (GM-CSF), normal T-cell expressed and secreted
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(RANTES), and soluble intercellular adhesion molecule-1 (sICAM-1)

(14, 15). The release from HBECs of allergic asthma patients was

greater than that from healthy subjects, suggesting that asthmatic

airway epithelial cells are more susceptible to the inflammatory effects

of DEP (14). Studies of HBECs of COPD patients reported that

repeated exposure to PM with an aerodynamic diameter of 4µM

(PM4) led to increased release of IL-1, IL-8, tumor necrosis factor

(TNF)-a and GM-CSF, and that these cells had a decreased capacity

of metabolizing organic chemicals from particles comparing to those

cells of healthy subjects (52, 53).

Innate lymphoid cells (ILCs) in the lungs play a role in air

pollution-induced inflammatory changes. Indeed, exposure to PM

and DEP caused reductions in interferon gamma (IFN-g)
production and type 1 ILC toxicity. These particles also induce

the release of IL-5 and IL-13, which play an important role in

allergic airway diseases such as asthma, while stimulating type 2

ILCs to produce excess IL-5 and IL-13, leading to airway

hyperresponsiveness (54). Previous studies have reported that

DEP induces the production of IgE antibodies from B cells, an

important marker of allergic diseases (55, 56). Studies on PM have

shown that urban fine (PM2.5–0.2) and coarse (PM10–2.5) particulates

could induce the production of nitric oxide (NO), IL-6, and tumor

necrosis factor (TNF)-a from mouse macrophages, and that the

insoluble fractions of PM were more potent than the soluble PM

fractions, suggesting that components adsorbed on PM play a role

in their toxicity (57).

Studies of asthmatic murine models demonstrated that PM

exposure exacerbated the allergic response by unbalancing T cell

response causing airway hyperreactivity together with increased

levels of immune cells such as eosinophils, macrophages, and of

inflammatory mediators including IgE, IL-4, IL-5, IL-13 and

decreases in IFN-g (58, 59). However, the Th17 response can be

enhanced by air pollution. For instance, it has been shown that IL-

17 secretion was increased in epithelial cells of severe asthmatics

following DEP exposure (60), and that pre-treatment with NAC, a

scavenger of ROS and an inhibitor of nuclear factor (NF)-ĸB
significantly decreased DEP-induced IL-17A mRNA expression

(60). Furthermore, UFPs increase the expression of IL-8, IL-33,

and thymic stromal lymphopoietin (TSLP) in airway epithelial cells

of patients with severe asthma (61).

In a rat model of COPD, PM2.5 exposure led to a decline in lung

function and histopathological changes. PM2.5 also induced lung

inflammation as indicated by increased neutrophils and eosinophils,

and inflammatory cytokines such as IL-1b, GM-CSF, and IL-4 in

BAL fluid of rats. These changes are accompanied by decreased

antioxidant activity and increased lipid peroxidation, suggesting the

involvement of inflammatory mechanisms in oxidative stress (62).

Similarly, PM2.5 led to pulmonary inflammation, decreased lung

function, the development of emphysema, increased expression of

IL-6 and IL-8, matrix metalloproteinase (MMP)9, MMP12, and

transforming growth factor (TGF)-b1 protein in the lungs of

COPD mice. Concomitantly, PM2.5 increased releases of IL-6 and

IL-8, and the expression of MMP9, MMP12, and TGF-b in HBECs.

Interestingly, PM2.5, further induces inflammatory changes caused by

cigarette smoke, suggesting that PM can interact with cigarette smoke
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during the development and progression of COPD (63). Rui et al.

(64) exposed COPD rats to motor vehicle exhaust containing PM1-10,

finding that the levels of total cell numbers, neutrophils,

macrophages, lymphocytes, IL-6, and TNF-a increased in BALF

(64). Recently, it was shown that repeated exposure to DEP for eight

weeks leads to COPD-like inflammatory changes, including fibrosis,

increased total wall area, goblet cell hyperplasia, and increased levels

of macrophages in the small airways of rats (65).

It has been demonstrated that both soluble and insoluble

fractions of PM2.5 cause the production of ROS in water and

methanol in vitro, and that the insoluble fractions of these PMs

are more potent (57, 66). Similarly, DEP, organic extracts of DEP,

and polyaromatic hydrocarbons lead to increased levels of ROS in

both bronchial and nasal epithelial cells (67), and PM2.5 induced

ROS in macrophages (68). Increased levels of ROS intracellularly

cause oxidative stress, which leads to the activation of mitogen-

activated protein kinase (MAPK) pathway activation resulting in

the induction of the transcription factors such as nuclear factor

kappa B (NF-ĸB) and activator protein (AP)-1 (16, 53). Oxidative

stress can also cause DNA and protein damage in cells by activating

the nucleotide-binding domain (NOD)-like receptor protein 3

(NLRP3) inflammasome. In an alternative pathway, PM can bind

to EGFR on the membrane that may also activate the MAPK

pathway together with PI3K/AKT signaling that results in NF-ĸB
activation (69). The stimulation of these pathways induces the

production of proinflammatory cytokines such as IL-1b, IL-6, IL-
8, GM-CSF, and TNF-a. These cytokines can activate innate

immune cells such as macrophages, neutrophils, and dendritic

cells, which can lead to an inflammatory response (70).

In the innate system, toll-like receptors (TLRs) act as immune

sensors and recognize pathogen-associated molecular patterns

(PAMPs) of microorganisms and other toxicant stimuli. It has

been reported that PM can stimulate airway epithelial cells through

TLR2 and TLR4 pathways (70). PM constituents such as PAH can

also stimulate cells through aryl hydrocarbon receptors (AhR),

which in turn activate proinflammatory intracellular signaling

pathways including NF-kB and MAPK pathways (70). PM2.5 have

also been shown to reduce levels of miRNA331 through ROS/PI3K/

AKT pathway, which leads to NF-kB stimulation in human airway

epithelial cells resulting in sustained inflammation (71).

Under physiological conditions, immune cells, such as

macrophages and neutrophils, engulf exogenous PM and degrade

it by phagocytosis through a respiratory burst, which leads to the

production of ROS. The mitochondria, which are controlled by

cellular and mitochondrial antioxidants, are the main sources of

cellular ROS. This organelle is also a target for oxidative damage.

Studies have shown that mitochondrial dysfunction due to PM

exposure leads to increased oxidative stress and cytotoxic responses,

such as apoptosis and necrosis. More recently, we demonstrated

that DEP induces the expression of oxidative stress-related genes

such as GCLC and cytochrome P4501B1 (CYP1B1) in HBECs (72).

Increased mitochondrial ROS production due to PM may cause

inflammasome activation (73). Furthermore, some studies have

suggested that PM causes epigenetic changes by inducing DNA

methylation (74).
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5 Epithelial plasticity and impact
of PM

5.1 Principles of epithelial plasticity

The airway epithelium provides a luminal barrier surrounding

the airways that carries gases to the alveoli. They are responsible for

sensing the environment, secreting, regenerating, and repelling

infections, processing toxins, and removing debris from the body

(28, 75). The main cell types in the large airways include ciliated,

undifferentiated columnar, secretory, and basal cells, whereas in the

small airways, secretory cells are replaced by club cells. In the

alveolar area, type 1 cells are responsible for gas exchange, and

alveolar type 2 cells, which produce surfactants that prevent alveolar

collapse and exhibit stem/progenitor cell characteristics, form the

bronchiolar and alveolar epithelia (11, 75). Nevertheless, in addition

to earlier histological findings, single-cell RNA sequencing (scRNA-

seq) data have recently shown a great deal of cellular heterogeneity

in the airway epithelium and suggested the existence of unique and/

or uncommon cell (sub)types. Some cell types such as ionocytes,

neuroendocrine cells, tuft cells, deuterosomal cells, brush cells, M

cells, and variant club cells have also been characterized in various

studies (76–83). The distribution and proportion of these cell types

vary along the proximal-distal axis of the airways to meet local

requirements for optimal respiratory function, and it has been

reported that this can change in respiratory diseases such as

asthma and COPD (84, 85).

Epithelial plasticity is defined as the ability of epithelial cells to

reversibly change phenotype and undergo lineage transformations

that are not characteristic of steady-state tissue maintenance; it

usually indicates EMT and MET, which reflect the conversion

between epithelial and mesenchymal phenotypes (17, 86). A

terminally differentiated epithelial cell can turn into a progenitor/

stem cell, which can produce a new lineage of cells to replace the

missing cells in the airway epithelium under normal homeostatic

conditions and can maintain its numerical stability in the airway

epithelium by self-renewal, which can lead to wound healing and

tissue regeneration (17). Depending on the type and severity of the

damaging factor, these cells may cause an increase in the population

of different cell types, such as mucus-producing cells, secretory cells,

or ciliated cells of the same lineage in the airway epithelial cells (75).

When the severity of damage increases, differentiated mature cells

can transdifferentiate from a distinct lineage to a differentiated cell

type (75). Airway epithelial progenitor cells perpetually survey airway

homeostasis to sustain a fully differentiated airway epithelium. Basal

cells are the primary sources of proximal airway progenitors. These

cells are characterized by the expression of transformation-related

protein 63 (TP63), cytokeratin (CKs) 5, 6, 8, 13, and 14, and the nerve

growth factor receptor (NGFR). Based on these markers, five distinct

subtypes of basal cells were identified. Basal cells expressing TP63

+CK5+ were identified as quiescent progenitor cells, whereas TP63

+CK5+CK14+ and TP63-CK8+ basal cells were identified as

proliferative parabasal cells. TP63+CK5-CK14+ cells are classified

as hillock basal cells or club cells. Finally, TP63-CK6+CK13+CK14

+vimentin+ cells have been reported to function as motile basal cells
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and play a role in the formation of provisional barriers (75, 87).

Recent studies have suggested that basal progenitor cell exhaustion,

which is associated with lung function decline, may occur in chronic

airway diseases such as COPD (88). More recently, we demonstrated

that the levels of progenitor/stem cells expressing CK5, CK14, and

p63 markers were decreased in primary bronchial cells cultured from

patients with COPD, which correlated with decreased lung function

and increased cigarette smoke exposure (89).

Basal cells are the primary source of ciliated cells in large

airways (90). In contrast, variant club cells, previously known

solely for their ability to secrete and detoxify environmental

toxins functions (91), possess the capacity for self-renewal and

differentiation into ciliated cells in small airways, particularly in

regions devoid of basal cells. In the distal airways and alveoli, type 2

pneumocytes maintain their homeostatic state such that the airways

can sustain their structural integrity and function continuously and

dynamically (11, 12, 92, 93). These cells renew themselves in

response to intercellular signal changes and undergo advanced

differentiation into cells or cells responsible for regeneration

(93–95).

The differentiation of basal cells into ciliated or secretory cells is

believed to be contingent on the balance between Notch 1, Notch 2,

and Notch 3 (96). During epithelial homeostasis, these progenitor/

stem cells are relatively quiescent owing to the slow turnover of the

intact airway epithelium. However, they are also activated in cases

of injury (97). Acute injury induces EMT in cells adjacent to the

injured area, which then migrate and cover the injured area,

providing a temporary patch. In the second step of repair,

progenitor/stem cells migrate to and proliferate in the injured

areas. In the third step of repair, proliferating cells polarize and

undergo redifferentiation to form an intact airway epithelium with

normal structure and function. This is a functional endogenous

regeneration and repair process (97). However, in the event of

severe damage, they acquire danger-associated phenotypes (i.e.,

increased motility, cytoskeletal rearrangements, and accumulation

of extracellular matrix components) to enable a rapid response and

subsequent remodeling of a fully differentiated epithelium (98, 99).

This leads to reversible (unjamming epithelial transition/immediate

EMT) or irreversible EMT and airways (100–102).

During embryogenesis, both EMT and MET are critical for the

migration and organization of various cell types into tissues and

organs. Under normal homeostatic conditions, these mechanisms

participate in complex functional regeneration of the epithelium.

However, when dysregulated, both EMT and MET play roles in the

migration, invasion, and secondary tumor formation processes

under conditions of severe damage to the epithelium, cancer, and

fibrosis (103, 104). In particular, following EMT activation in

primary tumors, cells increase their capacity to migrate and

invade their original tissue, thereby facil itating their

dissemination to secondary tissues or organs via the bloodstream.

Here, the activation of MET allows mesenchymal-like cells to

acquire epithelial characteristics, proliferate, and stimulate

angiogenesis, contributing to the formation of secondary tumor

tissue (105–107). During EMT, airway epithelial cells lose their

characteristic apical-basal polarity, migrate away from the epithelial

sheet, and gain mesenchymal characteristics such as front-to-rear
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polarity, increased motility, and the ability to invade surrounding

tissues (100, 105). The inappropriate activation of these processes

may contribute to the progression of malignant diseases. Several

transcription factors, including the Snail family, zinc-finger E-box-

binding (ZEB) family, and basic helix-loop-helix family, are

involved in the EMT process (105). TGF-b Wnt/B-catenin,

Notch, and connective tissue growth factor (CTGF) pathways

induce the expression of transcription factors Snail, Slug, Twist,

and ZEB1 (108–110). These factors inhibit E-cadherin expression,

decrease epithelial cell-cell adhesion and apicobasal polarity,

increase the migration capacity of the resulting mesenchymal

cells, upregulate mesenchymal markers such as N-cadherin and

vimentin, and promote the secretion of matrix metalloproteases

(111). Furthermore, in the downstream of the TGF-b pathway, the

IKB/NF-kB pathway regulates Bromodomain Containing Protein 4

(BRD4) to direct the activation of the Snail family transcriptional

repressor (SNAI1-ZEB1) mesenchymal transcription factor module

(112). Additionally, BRD4 enhances fibroblast growth factors,

extracellular matrix (ECM), and MMPs transcription. TGF-b,
through the IKK-NF-kB pathway, triggers a transformation in

epithelial cells, prompting them to express functional

mesenchymal characteristics that includes the upregulation of a-
SMA to support cell division, the induction of intermediate filament

vimentin for increased cellular motility, and the promotion of ECM

formation and deposition through the expression of collagen type

1A, fibronectin 1, and MMP9 (12, 113).

Epithelial plasticity has been observed in various chronic lung

diseases including COPD and asthma (86, 112). Disruption of the

airway epithelial barrier is a major factor in the initiation and

progression of chronic pulmonary disease. This leads to EMT and

airway remodeling. Because of epithelial plasticity, epithelial barrier

function is disrupted, fibroblastic growth factors are released, and

ECM is remodeled (100, 101).
5.2 Effect of PM on epithelial plasticity

PM can affect the function and integrity of the epithelium, and

it has been suggested that under stress conditions, epithelial cells

can modify their form and function within tissues (114).

Responding to genotoxic stress from environmental exposures

such as PM, epithelial cells proliferate and differentiate to replace

lost cells with new and functional ones, indicating that normal

repair and regeneration processes are operating (17). However,

external stimuli, such as air pollutants, may also drive columnar

cells into metaplastic squamous cells, and squamous epithelial cells

may undergo metaplastic transformation into columnar and goblet

cells (114). Unfortunately, the number of studies investigating the

impact of PM on epithelial plasticity is limited, and there is

currently no research on the impact of PM on MET in airway

diseases (Figure 2). As discussed above, most studies on MET are

associated with its role in the development of malignant diseases

(100, 103, 105–107).

A limited number of studies have suggested that inflammatory

cytokines, such as IL-6, which can be induced by PM (115, 116),

might impact epithelial plasticity. Indeed, in a study utilizing mouse
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tracheospheres derived from NGFR-positive basal cells, it was

demonstrated that IL-6, through the STAT3 signaling pathway,

inhibited Notch1 expression. This inhibition leads to an increase in

the differentiation of basal cells into ciliated cells, and a decrease in

the number of secretory cells (117).

However, PM may also directly affect airway epithelial plasticity

through AhR activation (70). This receptor is a unique cellular

chemical sensor and ligand-activated transcription factor (118).

Upon ligand binding, AhR translocates to the nucleus and

heterodimerizes with the AhR translocator (Arnt), which then

enables the transcription of many target genes such as the

detoxifying enzymes cytochrome P4501A1 (CYP1A1) and

CYP1B1 (70, 119). A recent study used club cell-specific AhR-

null mice showed that AhR is required for club cell homeostasis via,

in part, targeting Notch1 signaling (119). Notch signaling in the

respiratory system is essential for lung development. Furthermore,

for the pluripotent epithelial progenitors in the developing lung to

differentiate into lineage-restricted progenitors of the conducting

airways, Notch signaling is necessary (119).

Modulation of Notch signaling creates populations of ciliated

pulmonary neuroendocrine (NE), and epithelial club cells (120). It

has been documented that Notch signaling regulates stem cell

maintenance and differentiation, cell proliferation, and apoptosis,

which is necessary for maintaining the homeostasis of the adult lung

following lung injury (120). In a study utilizing three-dimensional

airway organoids, exposure to tire wire particles, which are traffic-

derived PM10, led to a reduction in the expression of SCGB1A1, a

club cell marker, and CK5, a basal cell marker (121).

In an in vivo study, exposure to PM2.5 for one month resulted in

increased alveolar type (AT) 2 cell proliferation in mice (122). This
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resolved six months after the cessation of PM2.5 exposure.

Additionally, experiments on club cell organoids in mice revealed

disruptions in progenitor cell capabilities due to PM2.5 exposure. In

another study using a COPD mouse model and 3D mouse alveolar

organoids, PM2.5 disrupted AT2-to-AT1 differentiation by altering

signaling pathways, including MAPK signaling, Wnt signaling, and

pathways regulating the pluripotency of stem cells (123). Wu et al.

(21) investigated the effects of DEP on lung organoids derived from

co-cultures of alveolar epithelial progenitors (AT2) and fibroblasts.

RNA-sequencing analysis revealed that DEP led to downregulation

of WNT/b-catenin signaling that led to decreased alveolar organoid

growth by reduced AT2 cell numbers. A recent study using human

embryonic stem cells investigated the effects of PM2.5 on early fetal

lung development and found alterations in lung progenitor cell

markers such as NKX2.1, SOX2, and SOX9. These changes

negatively affect organoid formation (124). More recently, it was

reported that SOX2 preserves airway epithelial cell identity and

prevents fate changes in functional alveolar tissue or pathological

keratinization following lung injury in mouse lungs (125).

Additionally, PM2.5 exposure reduced the expression of WNT/b-
catenin target genes in differentiating cells, potentially influencing

proximal-distal airway specification (124).

In addition to their effects on the modulation of epithelial

plasticity, PM exposure and severe damage impair repair

mechanisms. For example, DEP were shown to downregulate

WNT/b-catenin signaling that was important for epithelial repair

in lung organoids (21). Antioxidants like NAC and mitoquinone

mesylate (MitoQ) reversed the effects of DEP, while a WNT/b-
catenin activator (CHIR99021) restored signaling and promoted

organoid growth suggesting that oxidative stress might be involved
FIGURE 2

Epithelial plasticity and impact of particulate matter (PM): Exposure to PM in short term, leads to inhibition of Notch1 by stimulating STAT3 and aryl
hydrocarbon receptor (AhR) activation in basal epithelial cells. Decreased Notch1 activation leads to differentiation of progenitor/stem cells into
ciliated cells. Conversely, longer PM exposure results in increased expression and activation of Notch1/2/3, which induce basal progenitor cells to
differentiate into secretory and mucus-producing cells. In areas where there are fewer basal cells, Notch activation stimulates SCG1A1+ club cells to
differentiate to goblet cells. Smaller PM ( ≤2.5µM) reaching the alveoli stimulates the proliferation of alveolar type (AT) 2 cells, and induces the
differentiation of these cells to myofibroblasts, while preventing their differentiation into AT1 cells. In case of chronic exposure, PM activates the
TGF-b-NFkB and Wnt/B-catenin pathways. These pathways activate the Twist, Snail, and Zeb transcription factor module, initiating a process called
dysregulated epithelial-mesenchymal transition (EMT). During EMT, there are noticeable changes in apical-basal polarity, migration of epithelial cells
from the epithelial sheet, increases in the expression of MMP-2, 8, and 9. E-cadherin, occludin, claudin and zonula ocludens-1 show a decreasing
pattern of change, while mesenchymal cell markers such as N-cadherin, Vimentin, and a-SMA increase.
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in DEP-induced cellular effects (21). Previous studies have reported

that DEP induces ROS production in both human nasal and HBECs

(67). Furthermore, we demonstrated that NAC, a catalytic

antioxidant, and the superoxide mimetic AEOL10113 prevented

DEP-induced lung epithelial cell cycle progression (16). A study on

nasal epithelial cells also showed that upon DEP exposure, these

cells displayed EMT characteristics regulated by ZEB2, a member of

the ZEB family. Interestingly, co-exposure to DEP and house dust

mite allergens synergistically induces epithelial disruption and

ZEB2 expression, and inhibition of ZEB2 prevents EMT caused

by DEP in mice (22).

PM induces EMT by activating the pathways involved in ROS

production and mitochondrial dysfunction (126, 127). Additionally,

fine PM exposure disturbs cellular processes, such as autophagy,

redox balance, and mitochondrial homeostasis, primarily via

activation of the c-Jun N-terminal kinase (JNK) pathway. These

disruptions inhibit proliferation and promote EMT in alveolar

epithelial cells (128). Furthermore, PM2.5 dust has been shown to

induce autophagy and EMT in human bronchial epithelial 16HBE

cells, suggesting a link between PM exposure and EMT (129).

Studies have also highlighted the role of PM in activating TGF-b
and PI3K/Akt pathways and promoting cell invasion through EMT

in A549 cells (130, 131).
6 Airway remodeling in chronic airway
diseases and effects of PM

Tissue remodeling is defined as changes in the quantity,

composition, and organization of the tissue structure and is

described as a common feature of the repair of tissue damage
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(132). The remodeling of airways and lungs includes changes in the

composition, content, and organization of the cellular and

molecular structures of the airway wall in both the small and

large airways, and in the lung parenchyma that occurs in chronic

respiratory diseases such as COPD, and asthma (23, 133–135). Most

tissue remodeling occurs in the ECM components of the airway

tissue. The lung ECM is a mixture of various proteins such as

collagen, elastin, and glycoproteins, including fibronectin and

laminin, which are directly involved in normal lung development

(23). Each component plays an important role in the airway and

lung parenchyma under both normal and pathological conditions.

The ECM in the respiratory system can be modified under

pathological conditions such as prolonged exposure to allergens,

cigarette smoke, and air pollutants, and a continuous cycle of injury

and abnormal repair of the epithelium leads to chronic airway

inflammation and remodeling in asthma and COPD (24) (Figure 3).
6.1 Airway remodeling in asthma and
impact of PM

Airway remodeling in asthma is characterized by structural

changes in the airway, including loss of epithelial barrier function,

goblet cell hyperplasia, deposition of ECM components in the sub-

epithelial reticular basement membrane, lamina propria, and

submucosa of the airway epithelium, and increased airway

smooth muscle (ASM) mass. These changes lead to thickening of

the airway wall and narrowing of the airway lumen, causing airflow

obstruction (24, 133). Studies have shown that activated fibroblasts

in asthma can produce increased levels of collagens, fibronectin, and

the profibrotic mediator, TGF-b (136). Furthermore, asthmatic
FIGURE 3

Impact of particulate matter (PM) on airway remodelling. Exposure to PM leads to airspace enlargement and thickening of the airway walls via
upregulation of matrix metalloproteinase (MMP) 9,12 and transforming growth factor (TGF)-b1 followed by elastin dysfunction, and activation of the
Wnt5a/b-catenin pathway, respectively. On the other hand, the increase and recruitment of immune cells like neutrophils and eosinophils through
activation of CCL5, CXCL1, and CXCL6 can occur in the presence of air pollutants, followed by the expression of neutrophil elastase and various
MMPs (2, 8, 9 and 12), and inflammatory mediators including interleukin (IL)-6, IL-8, tumour necrosis factor (TNF)-a and TGF-b1. PM exposure also
triggers extracellular matrix (ECM) components deposition (collagen I, III and fibronectin) and fibrosis by activation of the TGF-b signalling pathway,
and the impairment of oxidant/antioxidant balance.
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fibroblasts are defective in collagen fiber organization and express

less decorin, which is necessary for normal collagen formation

(137). In addition to fibroblasts, airway smooth muscle cells have a

noticeable impact on the increase in ECM components, such as

collagen and fibronectin (135, 138).

Studies have suggested that ambient PM induces airway

remodeling in asthma. For example, exposure to PM2.5 led to

airway inflammation, collagen deposition, and airway remodeling,

which were accompanied by a Treg/Th17 imbalance and a decrease

in miR-224 in an asthmatic mouse. This was also involved in tissue

remodeling factors such as MMPs and TGF-b (62). Similarly,

intratracheal instillation of ambient PM2.5 caused lung

parenchyma inflammation and airway fibrosis in asthmatic rats,

which were associated with increased expression of collagen 1,

CTGF, IL-6, TGF-b1, Smad3, and p-Smad3. Interestingly,

pretreatment of rats with an inhibitor of TGF-b1, and an

antagonist of Smad3 reversed the activation of airway fibrosis

suggesting that TGF-b1/Smad3 signaling pathway may be

responsible for the pathological process of airway fibrosis in

asthmatic rats following exposure to PM2.5 (139). Multiple

intranasal exposures of mice to PM2.5 for nine weeks, also led to

lung inflammation and type I collagen and hydroxyproline

deposition accompanied by increased mitochondrial ROS levels

and NADPH oxidase (NOX) activity and decreased total SOD and

glutathione (GSH) levels. There was also an increase in the

expression of TGFb1, N-cadherin, and Vimentin, and a decrease

in E-cadherin expression suggesting an association with activation

of TGFb1-PI3K/Akt, TGFb1- NOX and TGFb1-NLRP3 pathways

(140) (Figure 3).
6.2 COPD, airway remodeling and
impact of PM

COPD is characterized by chronic airway inflammation and

remodeling, including goblet cell hyperplasia, squamous cell

metaplasia, reticular basement fragmentation, changes in the

ECM, EMT, altered vascularity, and lamina propria cellularity.

Furthermore, small airway fibrosis and thickening and

emphysema are observed in patients with COPD (23, 132, 134,

141). One of the main reasons for ECM remodeling in COPD is the

inflammatory response, chronic inflammation in COPD is

associated with elevated levels of fibroblasts in the airways and an

increased number of inflammatory cells, including macrophages,

neutrophils, eosinophils, CD4+, and CD8+ T-lymphocytes.

Together, these cells secrete MMPs, such as MMP-1, MMP-8,

MMP-13, and MMP-12, which degrade ECM molecules and

cause destruction and remodeling of the ECM in the small

airways and lung parenchyma, leading to airway obstruction

(142). Moreover, after analyzing serum samples taken from 20

patients with stable COPD, Zeng et al. found that the levels of IL-6

and procollagen 1 C-terminal peptide (PICP) were elevated in

patients with COPDs compared to healthy controls. Interestingly,

there was a positive correlation between inflammatory cytokines,
Frontiers in Immunology 09
such as IL-6 and IL-8, and PICP concentration (142). The authors

suggested that increased PICP levels may indicate airway

remodeling and that these cytokines may play a role in collagen

synthesis (143).

Chronic exposure to tobacco smoke is the main risk factor for

pathophysiological changes and remodeling in COPD through

MMP2, MMP8, MMP9, and prolyl endopeptidase expression,

which can cleave collagen and induce collagen deposition in the

terminal bronchioles (24, 132, 133). Other inhaled irritants,

including air pollutants such as atmospheric PM, also play a role

in the development of the disease. However, studies investigating

the impact of air pollution on COPD development and the

underlying mechanisms are limited because animal models of

COPD present few features of the disease, and the best animal

models display limited pathological characteristics of COPD. These

models are expensive and time-consuming (4, 144). To compensate

for these limitations, various culture models have been established,

including 3D organoid cultures, microfluidic cell culture systems,

and organ-on-a-chip models, for COPD studies (26, 145). These

living cell-organ systems aim to establish complex 3D structures to

provide an organ-like in vivo system representing the anatomical

region from which they originate. These models have been

successfully applied in recent years (26, 53, 145).

Studies using animal models of COPD have suggested that PM

exposure induces tissue remodeling (62, 63, 146). For example,

PM2.5 led to increases in expression of Collagen 1, Collagen 3, and

the profibrotic cytokine a-SMA, and TGF-b1 in lungs of rats with

COPD via disrupting oxidant/antioxidant balance (34).

Furthermore, Zou et al. (146) reported that PM2.5 caused

emphysema, airway wall thickening, and increased smooth

muscle layer thickness, and overexpression of the Wnt5a/b-
catenin pathway in mice. PM2.5 also increased the mRNA

expression of the Wnt5a, b-Catenin, TGF-b1, cyclin D1, and c-

myc mRNAs in human bronchial smooth muscle cells (HBSMCs).

Protein expression of proliferating cell nuclear antigen (PCNA), a-
SMA, Wnt5a, b-Catenin, platelet-derived growth factor receptor

(PDGFR) b, and tenascin C was induced by PM2.5 in these cells that

were inhibited by BOX5, an antagonist of Wnt5a. Together, the

authors suggested that PM2.5 could lead to airway remodeling by

inducing HBSMC proliferation via the Wnt5a/b-Catenin signaling

pathway both in vivo and in vitro. Similarly, chronic prolonged

exposure to ambient PM2.5 led to pulmonary inflammation,

impaired lung function, development of emphysematous lesions,

and airway wall remodeling that was indicated by airspace

enlargement, increased expression of IL-6 and IL-8, MMP9,

MMP12, and TGF-b1 proteins in lungs of COPD mice model.

Similarly, PM2.5 increased releases of IL-6 and IL-8, and the

expression of MMP9, MMP12 and TGF-b, fibronectin, collagen I

and III in HBECs (63). In a recent study, the authors established a

rat model of COPD by exposure to motor vehicle exhaust and found

that rats developed lung function decline, lung inflammation,

emphysema-like alveolar enlargement, and airway remodeling

(64) (Figure 3). Nevertheless, their findings may not solely reflect

the effects of PM, as motor vehicle exhaust also contains pollutant
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gases, such as CO, NO, and SO2 together with PM of different

diameters (147).
7 Discussion

Air pollution is the major cause of respiratory morbidity and

morbidity worldwide (2). PM, a complex mixture of solid and liquid

airborne particles, plays an important role in the pathogenesis of

chronic airway diseases, such as asthma and COPD (4). PM size is

an important determinant of toxicity; the smaller the particle

diameter, the more toxic it is (7). Airway epithelial cells form the

first barrier of defense against inhaled toxicants such as PM (10),

play an important role in mucociliary clearance of the airways, and

orchestrate the inflammatory response of airways to inhaled

toxicants by secreting lipid mediators, growth factors,

chemokines, and cytokines (11). Studies suggest that PM leads to

airway pathologies by impairing mucociliary function, deteriorating

epithelial barrier integrity, and inducing inflammatory changes

while impacting epithelial plasticity and airway remodeling (53).

Most PM studies on epithelial cell models have been performed

using in vitro human and animal cell lines, which may not

adequately represent the physiological and biochemical properties

of primary cells or in vivo conditions. Many studies have reported

challenges in determining the common effects of PM owing to the

use of different cell lines and varying passage numbers. The number

of studies utilizing primary cells obtained from healthy individuals

or patients with chronic airway diseases such as asthma and COPD

is limited. Additionally, heterogeneity in PM extraction methods

and the loss of true positive controls are problematic (53, 148).

Animal models may have limitations such as high cost and

inadequate representation of disease models (4, 144). Recent

studies have used organoid (3D) cell culture systems that are

embedded in a matrix and present tissue-like structures

containing tissue-specific cells. These models also provide longer

exposure times, which are usually not possible in 2D cell culture

systems (26, 53, 92, 145).

Mucociliary clearance plays an important role in maintaining

airway homeostasis and clearing the airways from inhaled irritants

and toxicants. Mucociliary dysfunction of the airway epithelium

occurs in chronic airway diseases, such as asthma and COPD (24).

Studies have demonstrated that PM induces mucus secretion through

mechanisms involving the expression of MUC5AC, MUC5B,

amphiregulin, and the activation of the AKT, ERK, EGFR, and

PI3K pathways in airway epithelial cell systems (33–36) (Figure 1).

However, it is unclear whether airway epithelial cells of patients with

asthma or COPD are more susceptible to the effects of PM on mucus

production. On the other hand, a limited number of studies have

found that DEP decreases CBF in primary HBECs cultured from

healthy and asthmatic patients (14, 15). To the best of our knowledge,

no study has investigated the impact of PM on ciliary activity in

airway epithelial cells in COPDs. Furthermore, it would be useful to

study the roles of intracellular cAMP and Ca++, which modulate

ciliary activity, in PM-induced CBF inhibition (37).
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Epithelial integrity is crucial to prevent inhaled irritants from

penetrating the subepithelium and passing deeper into the lung

parenchyma to exert deleterious effects. Various studies from

epithelial monolayers reported that PM led to increases in

permeability of nasal (43), bronchial (46), and alveolar epithelial

cell cultures (47) that was associated with disrupted tight junctions,

downregulation of tight junction proteins such as ZO-1, occludin,

claudin‐1, and E-cadherin (Figure 1). However, studies

investigating the effects of PM on airway epithelial barrier

integrity in in vivo models are lacking. Several animal studies

have suggested increased permeability in the lungs, as indicated

by increases in total protein levels in BALF (49) and decreased

expression of E-cadherin (50) and tricellulin 2 (46) in lung tissue.

However, studies using airway microfluidic and 3D organoid

models may overcome this problem and provide better insights

into the in vivo effects of air pollutants on epithelial integrity (53).

There is relatively more evidence of the inflammatory effects of

PM on the airway epithelium. It has been shown that PM induces

the gene and protein expression of various inflammatory mediators

from airway epithelial cells that play an important role in the

pathogenesis of chronic airway diseases, including asthma and

COPD (14, 52). Mechanistic studies suggest that PMs exert their

effects through the production of ROS at cellular levels (67, 68), and

that the cellular pathways involving oxidative stress are activated,

since antioxidants such as NAC and inhibitors of NF-kB and

MAPK pathway could inhibit these effects (16, 60) (Figure 1).

Most primary human airway cell studies have been conducted in

patients with asthma (14) and allergic rhinitis (55), whereas COPD

studies have mostly been conducted in animal models (65).

Therefore, further studies on primary cell systems such as

organoids are needed to investigate the role of PMs in

COPD pathogenesis.

Epithelial plasticity (EMT and MET), plays an important role in

embryonic development and tissue responses to damage, including

inflammation and repair. Epithelial plasticity plays a key role in

homeostatic processes such as wound healing and tissue

regeneration. Studies suggest that epithelial plasticity can also be

effective in the pathogenesis of chronic lung diseases, such as COPD

and asthma (86, 112). A few studies have suggested that PM affects

airway epithelial plasticity by modulating airway injury,

inflammation, and repair (148). Although the impact of PM on

EMT has been investigated to some extent in recent studies, to the

best of our knowledge, no study has investigated the effects of PM

on MET, which is critical for wound healing, tissue repair, and

regeneration (17).

It has been suggested that acute exposure to PMs, through

increased production of cytokines such as IL-6 (115), STAT3

activation (117) and AhR activation (70), causes Notch1

inhibition (70) which leads to the differentiation of progenitor/

stem cells into ciliated cells (117). Activation of Notch signaling has

also been reported to regulate cell proliferation and apoptosis (120).

More recently, exposure to PM10 led to a reduction in the gene

expression of club and basal cell markers in airway organoids (121).

Furthermore, PM2.5 led to AT2 cell proliferation in mice, is
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associated with disruptions in the progenitor cell capabilities of

organoids from mouse club cells (122). In a COPD mouse model

and 3D mouse alveolar organoids, PM2.5 disrupted AT2-to-AT1

differentiation via mechanisms involving the MAPK and Wnt

signaling pathways (123). It was also found that downregulation

of WNT/b-catenin signaling by DEP led to decreased AT2 cell

numbers in alveolar organoids of mice (21). PMs have also been

shown to deteriorate mitochondrial function (126, 127, 129) and

disturb autophagy, redox balance, and mitochondrial homeostasis,

primarily via the activation of the JNK pathway (131). Together,

these findings suggest that PM can induce EMT in the airway

epithelium while impairing repair mechanisms involving epithelial

regeneration (Figure 2).

If the EMT induced by PM cannot be stopped, MET cannot be

started, and the epithelium is not successfully repaired; this process

may lead to airway and lung remodeling, which are typically seen in

chronic respiratory diseases such as COPD and asthma. Indeed,

studies demonstrated that PM led to collagen deposition, airway

remodeling and fibrosis, which were associated with the activation

of MMPs and TGF-b pathway, and increased expression of

inflammatory and profibrotic mediators in both asthma (62) and

COPD (63) models. Intratracheal instillation of PM2.5 caused

airway fibrosis in asthmatic rats associated with increased

expression of collagen 1, CTGF, IL-6, TGF-b1, Smad3, and p-

Smad3 that was reversed by inhibiting of TGF-b1, and Smad3

suggesting the role of TGF-b1/Smad3 signaling pathway in

asthmatic mice (139). Other studies additionally suggest the role

of TGFb1-PI3K/Akt, TGFb1- NOX, and TGFb1-NLRP3 pathways,
were associated with increased oxidative stress and decreased

antioxidant activity (140). These mechanisms were also reported

to be effective in COPD animal models (62). Additionally, chronic

exposure to PM2.5 caused emphysematous lesions such as airspace

enlargement together with increased expression of inflammatory

cytokines, MMP9, MMP12, and TGF-b1 in lungs of COPD mice

(63, 64).

In conclusion, although various aspects of the detrimental

effects of PM on the airways have been investigated, further

research is needed to fully understand the effects of PM on the

airway epithelium and the underlying mechanisms of epithelial

plasticity and remodeling. In particular, the use of 3D culture

models and omics techniques (bulk or single cells) may provide a

more comprehensive approach for elucidating the role of these

particles in chronic airway diseases. Furthermore, the role of agents

that target specific pathways and factors involved in PM-induced

modulation of epithelial plasticity and remodeling should be

investigated to understand their potential role in the prevention

and mitigation of the deleterious effects of PM.
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