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Tumor-immune metaphenotypes
orchestrate an evolutionary
bottleneck that promotes
metabolic transformation
Jeffrey West1*, Frederika Rentzeperis2, Casey Adam3,
Rafael Bravo1, Kimberly A. Luddy4, Mark Robertson-Tessi 1
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Institute, Tampa, FL, United States, 2Department of Mathematics, Dartmouth College,
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Introduction: Metabolism plays a complex role in the evolution of cancerous

tumors, including inducing a multifaceted effect on the immune system to aid

immune escape. Immune escape is, by definition, a collective phenomenon by

requiring the presence of two cell types interacting in close proximity: tumor and

immune. The microenvironmental context of these interactions is influenced by

the dynamic process of blood vessel growth and remodelling, creating

heterogeneous patches of well-vascularized tumor or acidic niches.

Methods: Here, we present a multiscale mathematical model that captures the

phenotypic, vascular, microenvironmental, and spatial heterogeneity which

shapes acid-mediated invasion and immune escape over a biologically-realistic

time scale. The model explores several immune escape mechanisms such as i)

acid inactivation of immune cells, ii) competition for glucose, and iii) inhibitory

immune checkpoint receptor expression (PD-L1). We also explore the efficacy of

anti-PD-L1 and sodium bicarbonate buffer agents for treatment. To aid in

understanding immune escape as a collective cellular phenomenon, we define

immune escape in the context of six collective phenotypes (termed “meta-

phenotypes”): Self-Acidify, Mooch Acid, PD-L1 Attack, Mooch PD-L1, Proliferate

Fast, and Starve Glucose.

Results: Fomenting a stronger immune response leads to initial benefits

(additional cytotoxicity), but this advantage is offset by increased cell turnover

that leads to accelerated evolution and the emergence of aggressive

phenotypes. This creates a bimodal therapy landscape: either the immune

system should be maximized for complete cure, or kept in check to avoid

rapid evolution of invasive cells. These constraints are dependent on

heterogeneity in vascular context, microenvironmental acidification, and the

strength of immune response.
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Discussion: This model helps to untangle the key constraints on evolutionary

costs and benefits of three key phenotypic axes on tumor invasion and

treatment: acid-resistance, glycolysis, and PD-L1 expression. The benefits of

concomitant anti-PD-L1 and buffer treatments is a promising treatment strategy

to limit the adverse effects of immune escape.
KEYWORDS

tumor-immune cell interaction, agent-based modeling (ABM), metaphenotype,
metabolism, evolution
1 Introduction

Metabolism plays a complex but key role in the evolution of

cancerous tumors. Localized hypoxia due to vascular instability and

dysfunction leads to acidification of the tumor microenvironment.

Decreased pH selects for acid-resistant tumor-cell phenotypes,

followed by the emergence of aerobic glycolysis [i.e., the Warburg

effect (1)]. Further microenvironmental acidification by these

metabolically aggressive cells foments acid-mediated invasion (2–

4). This nonlinear evolutionary trajectory through a range of

metabolic phenotypes has been studied clinically, experimentally,

and theoretically (5–8).

The effect of metabolic processes on the immune system is a

multifaceted interaction between intracellular metabolism of many

varied cell types with the surrounding microenvironment.

Immunometabolism is a growing area of study (9) where systems

biology and mathematical approaches are highly suited to studying

tumorimmune dynamics (10–16), whether using non-spatial

continuum approaches (17) or spatial agent-based models (18).

However, very few tumor-immune models to date have incorporated

the effects of cancer metabolism on immune function (19).
1.1 Metabolism and the tumor-
immune response

Cytotoxic T lymphocytes (CTL, also known as a/b CD8+ effector

T-cells) are key players in adaptive immune response which are

activated via antigen presentation during the body’s initial

inflammatory response and subsequently rapidly proliferate.

Programmed cell death-1 (PD-1) is an inhibitory immune

checkpoint receptor expressed on activated CTLs, and programmed

cell death ligand-1 (PD-L1) is a cell surface marker that activates PD-1

signaling (20). Some cancers constitutively express PD-L1, leading to

the development of anti-PD-1/PD-L1 therapy to counter this immune

escape mechanism. Immune escape or evasion mechanisms may select

for subclonal populations capable of withstanding immune predation

(21), often well before tumor invasion into normal tissue (22).
02
We investigate two key connections between tumor metabolism

and immune function: acid-inactivation and glucose competition.

Acidic microenvironments have been shown to inactivate otherwise

viable CTLs (23), as cells rescued from low pH environments had the

ability to regain effector function (24). Tumor acidity also promotes

regulatory T-cell (Treg) activity as well as an increase of PD-1

expression on Tregs, indicating that PD-1 blockade may increase

suppressive capacity (25). Tumor-infiltrating CD8+ T-cells require

glucose to support their killing function, hence competing for glucose

with cancer cells dampens their anti-cancer response (26). In

contrast, Tregs avoid competition for glucose through rewired

metabolism away from aerobic glycolysis, which enhances their

immune-suppression function within the tumor (27).

Acid-inactivation and glucose competition may diminish

immunotherapy efficacy, suggesting a potential synergy between

targeting intratumoral pH and immune checkpoint blockade. For

example, combining oral bicarbonate buffering with immunotherapy

(adoptive T-cell transfer, anti-CTLA4, or anti PD-1) increased

responses in murine cancer models, presumably due to increased

immune activity in a less acidic microenvironment (24). Another

study showed that targeting bicarbonate transporters (e.g. SLC4A4)

known to contribute to extracellular pH during progression of

pancreatic adenocarcinomas (PDAC) (28) reduces tumor acidity,

increases activation, cytotoxic activity, and perfusion of CD8+ T-cells,

and sensitizes PDAC-bearing mice to immune checkpoint inhibition

(28). Mechanistic modeling has been used to investigate the

treatment effects of systemic pH buffers (sodium bicarbonate) to

limit microenvironmental selection for acid-adapted phenotypes,

resulting in significantly delayed carcinogenesis in TRAMP mice (7,

29). Buffers reduce intratumoral and peritumoral acidosis, inhibiting

tumor growth (5) and reducing spontaneous and experimental

metastases (30, 31).
1.2 The tumor-immune gambit

The back and forth of cancer treatment and a tumor’s

evolutionary response has been compared to a chess match (32).
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Similarly, we show that immune predation of tumors can be likened

to an “immune gambit”, where a temporary sacrifice of (normal

glycolytic) cells on the periphery leads to long-term acceleration of

the invasion of aggressive (highly glycolytic) phenotypes into

surrounding tissue. Vascular dynamics are often abnormal in

tumors whereby areas of poor vascularization are prone to

develop acidic niches. We show that poor vascularization selects

for aggressive phenotypes while high vascularization undergoes low

levels of evolution. This phenomena has a Goldilocks effect, which

occurs only under moderate levels of immune response. The

immune gambit is described as a collective phenotype, which

critically depends on the interplay between local vascularization,

immune infiltration, and immune evasive phenotypes (PD-L1).
1.3 Collective cellular phenotypes:
the “Metaphenotype”

In order to describe the collective nature of phenotypes operating

within the context of surrounding cells and environmental

conditions, we propose the concept of a “metaphenotype”. Each of

these metaphenotypes account for phenotypic traits (e.g. PD-L1

expression or glycolytic rate) as well as surrounding environmental

context (e.g. local glucose or pH concentration), and competition

with neighboring cell types (immune, cancer, normal). A

mathematical model is the ideal testing ground for defining

collective phenotypes because it enables precise characterization of

local context. A simple, contrived example in Figure 1 illustrates the

need to quantify context-dependent selection in this model. This

figure shows the time-evolution of identical phenotypic compositions

that have varied initial spatial configurations (mixed or shell). The

mixed configuration of low glycolysis (blue) and high glycolysis

(purple) phenotypes leads to no evolution. The volumetric

concentration of acid produced by aggressive cells is not enough to

cause invasion when highly glycolytic cells are seeded far apart but

artificially placing the aggressive high glycolysis phenotypes on the

rim leads to invasion from increased volumetric acid via a group-
Frontiers in Immunology 03
effect. Clearly, both tumor phenotypic composition and neighboring

context are important.
1.4 Mathematical modeling of
immune metaphenotypes

Below, we propose and define six metaphenotypes in the

context of immune escape and immunotherapy (see Figure 2).

Then, we present a hybrid multiscale agent-based mathematical

model that incorporates phenotypic, vascular, microenvironmental,

and spatial heterogeneity to investigate the evolution of aerobic

glycolysis in response to immune predation, over a biologically-

realistic temporal scale (Figure 3). Next, we model immune

predation by T-cells in the metabolically altered tumor

microenvironment, including immune escape mechanisms such

as acid-mediated inactivation of T-cells, T-cell inhibition by

checkpoint ligand expression on tumor cells, and T-cell glucose

deprivation (Figure 4). Finally, we quantify the evolution of

metaphenotypes over time, illustrating the explanatory power of

collective phenotypes in describing the response to buffer therapy

and anti-PD-L1 in mono- and combination therapy (Figure 5).
2 Methods

2.1 Defining collective cellular phenotypes:
immune metaphenotypes

First, we define six collective phenotypes (metaphenotypes)

through the lens of immune escape (see Venn diagram in

Figure 2A). Each metaphenotype is contingent on a recent tumor-

immune interaction and defined in the context of local

microenvironment, with the exception of a “null” metaphenotype:

Immune Desert. The “null” metaphenotype is the lack of collective

behavior: Immune Desert are cells that do not interact with T-cells.

Next, we quantify two PD-L1 metaphenotypes: a counter-attack
FIGURE 1

Collective phenotypes drive acid-mediated invasion. Spatial and temporal evolution of two distinct initial spatial configurations of identical numbers of cellular
phenotypes leads to differential outcomes due to context-dependent selection. A low glycolysis phenotype (blue) and a high glycolysis phenotype (purple)
compete for resources according to the rules outlined in section S1. Top row: a mixed configuration leads to no evolution. Acid-mediated invasion does not
occur because the volumetric concentration of acid produced by aggressive cells is not enough to cause invasion when highly glycolytic cells are seeded far
apart. Bottom row: In contrast, artificially placing the aggressive high glycolysis phenotypes on the rim leads to invasion from increased volumetric acid via a
group-effect. Note: this figure has shorter timescales than subsequent figures, as it is seeded with pre-existing heterogeneity.
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(tumor cell with high PD-L1 expression that has recently interacted

with a T-cell; PD-L1 Attack, yellow), and a mooching PD-L1 (Mooch

PD-L1, blue). As seen in Figure 2B, PD-L1 Attack is high in cells with

high PD-L1 expression while Mooch PD-L1 is high in cells with low

PD-L1 expression, but with neighbors that are high in PD-L1 Attack.

See Box 1, Equations 3, 4. Two metaphenotypes rely on acid-

inactivation: self-acidifying (highly glycolytic cells which secrete

acid; Self-Acidify, pink) and non-producers (reside in acidic niche

but do not produce acid; Mooch Acid, green). As seen in Figure 2C,

Self-Acidify is high in cells with a high glycolytic phenotype, hence

high acid production (see 5). In contrast, Mooch Acid cells have low

glycolytic phenotype (not producing acid) but reside in highly a

acidic niche that inactivates T-cells (Figure 2D). See Box 1, Equations

5–7. We also consider a proliferative phenotype that has recently

divided into empty space (Proliferate Fast; red). See Box 1, Equation

8. Tumor cells also compete with immune cells for glucose (Starve

Glucose; light blue). Figure 2E illustrates that Starve Glucose reside in

areas with a high probability that T-cells die due to low glucose

concentration. See Box 1, Equation 9. Importantly, each of these

metaphenotypes (excluding Immune Dessert; see Equation 2) is

contingent on a recent tumor-immune interaction, allowing us to

track effective collective phenotypes: only metaphenotypes which

survive an immune interaction.
2.2 Hybrid discrete-continuum
multiscale model

We utilize this metaphenotype framework to better understand

and predict tumor-immune interactions using a hybrid discrete-
Frontiers in Immunology 04
continuum multiscale model built using the Hybrid Automata

Library framework (36). The mathematical model here is an

extension of an experimentally validated multiscale model of cancer

metabolism that incorporates the production of acid and acquired

resistance to extracellular pH (6–8, 37) Figure 3A visualizes the model,

which simulates a two-dimensional slice (panel A) through a tumor via

a coupled cellular automata and partial differential equation model. A

snapshot of multi-scale hybrid cellular automata model is shown (left-

to-right) of the tumor spatial map, phenotypes, T-cells, diffusible

molecules (oxygen, glucose, acid), PD-L1 and immune susceptibility.

Values for parameterization are shown in Table 1. Values for

parameters are typically identical to previous publications using the

non-immune metabolism model (6, 7), except where parameter values

are shown in brackets. In these cases, a parameter sweep is performed

across the full range in order to determine the effect of the parameter

on outcomes and test hypotheses. For convenience, we re-write the full

model description, rules, and cell behaviors in Section S1.
3 Results

3.1 The effect of vasculature renewal and
stability on tumor size and phenotype

In Figure 3, simulations are shown with the absence of immune

predation to establish the model’s baseline dynamics, before

quantifying immune predation in the next figure. The model

tracks two tumor phenotypes: acid resistance and glycolysis

(Figure 3B), which vary according to vascularization settings. The

model contains two vascularization parameters: the rate of new
B C

D E

A

FIGURE 2

Defining metaphenotypes in the context of immune escape. (A) Six collective cellular metaphenotypes are defined as cancer cells with a given
phenotype (e.g. PD-L1), microenvironmental condition (e.g. high acid or low glucose), or neighboring cell. Immune desert is the absence of recent
immune interaction. (B) PD-L1 metaphenotypes depend on the likelihood of T-cell kill as a function of PD-L1 expression of self (PD-L1 Attack) or
neighbor (Mooch PD-L1). (C) Acidification metaphenotypes depend on the rate of acidification contributed by self (Self-Acidify) or neighbors (Mooch
acid). (D) The rate of acid-inactivation of T-cells. (E) Data from ref. 33 (blue dots) was used to parameterize T-cell death rate in low glucose, shown
in Equation 20. The Starve Glucose metaphenotype expression corresponds to low glucose concentrations.
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vessel formation (vascular renewal) in hypoxic conditions and the

average number of days before vessel collapse (vascular stability).

We compare two classifications of vasculature: weak vasculature

(associated with low vessel stability and low rates of vessel renewal)

and intermittent hypoxia (associated with low stability, but high

renewal). Intermittent hypoxia has been shown to be an evolutionary

driver of selection in tumors via environmental changes in glucose,

oxygen, and acidity (see ref. 4 for a recent review).

Figures 3C–E show the average tumor area (C), and tumor

phenotypes (D,E) for simulations across a range of vascular settings

(no immune). Weak vasculature (low stability and renewal) typically
Frontiers in Immunology 05
results in larger tumors, more acid resistant phenotypes, and highly

glycolytic phenotypes. Weak vasculature induces an acidic niche in

the tumor core, selecting for acid-resistant phenotypes (blue).

Increased turnover enables increased evolution and selection for

aggressive Warburg phenotypes (pink), leading to acid-mediated

invasion into surrounding normal tissue. Intermittent hypoxia (low

vascular stability with high rates of renewal) generally leads to lower

rates of selection and subsequently less invasion (Figure 3B).

Spatial maps of phenotypes are shown over time in Figures 3F, G

alongwith a visualization called “phenotypic barcoding”, which visualizes

the clone size, phenotype and lineage information over time (8) using the
B C D E

F

G

A

FIGURE 3

The effect of vasculature renewal and stability on tumor size and phenotype. (A) Hybrid discrete-continuum model grids. (B) Schematic of
phenotypic trajectory of weak versus intermittent hypoxia vascular conditions. (C–E) N = 10 stochastic realizations are simulated, and the average
tumor area (C), acid resistance phenotype (D), and glycolytic phenotype (E) across 10 values of stability (nmean∈ [0,100] days), and 10 values of
renewal (pang∈ [0,1]). (F) An example of “weak vasculature” (nmean= 20; pang= 0.1). Acidic conditions in tumor core select for acid resistant and
glycolytic Warburg phenotype. (G) An example realization of “intermittent hypoxia” (nmean= 20; pang= 0.9), where selection is limited because of
adequate vascularization within the tumor core. See associated Supplementary Video S2.
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EvoFreq R package (38) (for more information on interpreting

phenotypic barcoding plots, see Supplementary Figure S6). Figure 3F

depicts the process by which weak vasculature selects for aggressive

tumor growth. Acidic conditions in the tumor core (low glucose, low

oxygen, and high pH) cause rapid death of glycolytically normal tumor

cells with low levels of acid resistance. Selection for acid resistance occurs

first (blue phenotypes), followed by selection for highly glycolytic tumor

cells (pink phenotypes) which eventually invade into surrounding tissue.

Conversely, in Figure 3G, intermittent hypoxia conditions result in little

selection. The well-vascularized tumor core limits selection for aggressive

phenotypes. This result underscores the importance of understanding the

baseline vascular conditions beforemodeling the complex dynamics with

the additional immune predation. A snapshot of the intratumoral

oxygen, immune susceptibility (see Equation 21), phenotypes, and pH

is shown at the end of each simulation.
3.2 Immune predation induces an
evolutionary bottleneck

Figure 4 shows the response of two vascular conditions (weak

and intermittent hypoxia) under no immune response (green; aT=
Frontiers in Immunology 06
0), medium (blue-gray; aT= 10−3) and high (purple; aT= 10−2)

immune response rates. Immune cells are recruited in proportion to

tumor size and response rate, aT.

Immune response tends to suppress tumor growth in weak

vasculature conditions (Figure 4A, left). Compared to baseline

tumor growth, all levels of immune response result in greater

tumor suppression. In contrast, immune predation in intermittent

hypoxia conditions often leads to an initial response but fast

regrowth (Figure 4B, left). This is confirmed by visual inspection

of the phenotypic barcoding visualizations in Figures 4C–J. Weak

vascular conditions select for aggressive phenotypes with little-to-

no immune presence (Figure 4C). The addition of immune cells

only serves to slow an already aggressive tumor (Figures 4E, G, I). In

stark contrast, intermittent hypoxia conditions rarely select for

strong growth in the absence of immune predation (Figure 4D).

Immune predation serves as a selection pressure, in conditions

where there would otherwise be very little selection.

Immune predation under intermittent hypoxia conditions

induces an evolutionary bottleneck for medium immune response

rates (e.g. see F, H), causing fast selection for aggressive growth

compared to the baseline of no immune response. Interestingly, this

effect occurs on a “Goldilocks” scale. The long neck of the bottleneck
FIGURE 4

Immune predation induces an evolutionary bottleneck. (A, B) Tumor area over time (left) and the number of T-cells for weak vasculature (A) and
intermittent hypoxia vasculature (B) conditions), shown for no T-cells (green; aT= 0), medium (blue-gray; aT= 10−3) and high (purple; aT= 10−2)
immune response rates. (C–J) Example simulation stochastic realizations are shown across a range of immune response from low (top) to high
(bottom). Immune predation tends to suppress tumor growth in weak vasculature conditions. In contrast, immune predation induces an evolutionary
bottleneck for medium immune response rates (e.g. see F, H), causing aggressive tumor growth compared to the baseline of no immune response.
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is associated with higher rates of tumor turnover (due to immune

attack), selecting for phenotypes which are 1) inside an immune-

evasive niche or 2) rapidly divide to outgrow immune kill.

Note: Figure 4 does not include immune escape mechanisms,

which will be included in subsequent figures. The temporary bottleneck

may be relevant to treatment with immune checkpoint inhibitors,

enabling immune infiltration and predation of established tumors but

leading to only a partial response (24, 39, 40).
Frontiers in Immunology 07
3.3 Metaphenotypes explain immune
escape under treatment

After establishing the baseline dynamics without (Figure 3) and

with (Figure 4) immune predation, we next consider two treatments

to mitigate immune escape and to reduce tumor growth: anti-PD-L1

and a pH buffer given in isolation or combination. A short window of

treatment is simulated and results are compared to the untreated
B C DA

E F

G H

I

FIGURE 5

Evolution of metaphenotypes under treatment. Outcomes of tumor response and immune escape can be explained by observing the evolution of
metaphenotypes under treatment with anti-PD-L1 (red) and buffer (blue), given in isolation or combination (purple). (A) Tumor area over time (weak
vasculature) (B) growth rate over time (weak vasculature). (C) Tumor area over time (intermittent hypoxia vasculature) (D) growth rate over time
(intermittent hypoxia vasculature). (E, F) Final distribution of metaphenotypes (exlcuding Immune Desert, see Supplementary Figure S7) at t = 300,
repeated for weak vasculature (E) and intermittent hypoxia (F). (G, H) Muller plots showing the frequency of metaphenotypes over time in untreated and
mono- or combination therapy, with snapshots of spatial configurations during and after treatment, with moderate immune predation (aT = 10−2). See
associated Supplementary Videos S3, S4 and Supplementary Figure S7. (I) Summary schematic. Each metaphenotype is ordered from most aggressive to
least aggressive in facilitating acid-mediated invasion and tumor growth under immune predation. This interaction diagram describes the role of two
treatments (anti-PD-L1, buffer) in promoting (green) or inhibiting (red) each metaphenotype. Metaphenotypes names are shown on the left, and defined
mathematically in Box 2. Broadly, the two treatments offset one another by inhibiting the metaphenotypes that the opposite treatment promotes.
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baseline. As seen in Figures 5A–D, combination therapy outperforms

monotherapy in both vascular settings, but vascular dynamics drive

differences in monotherapy outcomes. For example, anti-PD-L1 (red)

therapy does not appreciably slow tumor evolution or growth in weak

vasculature (Figures 5A, B). In contrast, anti-PD-L1 does induce large

tumor remission in intermittent hypoxia (Figures 5C, D), albeit only
Frontiers in Immunology 08
temporarily before a strong relapse. These results are seen across a

range of immune recruitment rates (Figures 5B, D).

The metaphenotypes leading to immune escape are shown in

Figures 5E, F for each treatment scenario. As T-cell recruitment rate

increases left-to-right, tumors evolve metaphenotypes in response

to immune infiltration. Vascularization drives differential selection
BOX 1 Defining metaphenotypes.

Let T(x, y) be a two-dimensional grid representing the time since the last T-cell interaction has occurred within the local neighborhood of grid location (x, y). We define the
tumor-immune interaction grid, I(x, y), where I = 1 if an immune cell has traversed within a cancer cell’s neighborhood within the previous Tw days and I = 0 otherwise at
the current timestep, t.

I(x, y) =
1,   if T(x, y) ≥ t − Tw

0,   otherwise

(
(1)

Metaphenotypes (MP) are defined in such a way that MP expression is scaled from zero to one and each cell can take on multiple MP: ~M = m1,m2,… ,m7f g
where mi ∈ ½0, 1�

2.1.1 MP1: Immune desert
We first consider the abscence of immune interaction: the immune desert metaphenotype, MP1, given by one minus I(x,y) given by Equation 1.

MP1(x, y) = 1 − I(x, y) (2)

2.1.2 MP2: PD-L1 attack
Next, we classify cells which employ the PD-L1 counter-attack, defined as high PD-L1 expression (low probability of T-cell kill; see Equation 17) with a recent T-cell

interaction:

MP2(x, y) = ( 1 − Pk)|fflfflfflffl{zfflfflfflffl}
Prob :  avoiding T−cell kill

� I (x, y)|fflffl{zfflffl}
recent T−cell interaction

(3)

2.1.3 MP3: Mooch PD-L1
In contrast to MP2, cells which interact with T-cells but have low PD-L1 expression can rely on (“mooch”) neighboring cell protection. Here, the metaphenotype is

proportional to neighborhood PD-L1 expression.

MP3(x, y) = Pk|{z}
Prob :  T−cell kill

� 1−I(x, y)|fflfflfflfflffl{zfflfflfflfflffl}
no T−cell interactions

�max
j∈Nm

PD − L1j (4)

where Nm is a Moore neighborhood of Nm = 8 neighbors.
2.1.4 MP4: Self-acidify
As cell increase glycolytic capacity (phenotype value pG), more protons are added. The per cell proton production rate is given by:

pR = fH (1 − B(t)) (5)

where proton production (see Box 2, Equation 14) rate is scaled by buffer treatment concentration, B(t) (34, 35).

MP4(x, y) = PAI (x, y)|fflfflfflfflffl{zfflfflfflfflffl}
Probability of Acid−Inactivation

� �pR|{z}
scaled proton production rate

� I (x, y)|fflffl{zfflffl}
recent T�cell interaction

(6)

where the production rate, p
�
R , is normalized such that any value for phenotype above the buffering capability of a vessel is assumed to be mostly self-acidify

metaphenotype (MP4), while below is assumed to be mostly mooch acid (MP5).
2.1.5 MP5: Mooch acid
Similarly, the mooch acidify metaphenotype occurs when the probability of T-cell acid-inactivation is high, but where the highly acidic microenvironment is not due

to self-acidification.

MP5(x, y) = PAI (x, y)|fflfflfflfflffl{zfflfflfflfflffl}
Probability of Acid−Inactivation

� ( 1 − �pR)|fflfflfflffl{zfflfflfflffl}
scaled proton production rate

� I (x, y)|fflffl{zfflffl}
recent T�cell interaction

(7)

This metaphenotype typically occurs early in simulations in empty regions without tumor or vasculature.
2.1.6 MP6: Proliferate fast

MP6(x, y) = 1 −
Dx,y

Tm|{z}
fraction of cell cycle completed

0
BBB@

1
CCCA� I (x, y)|fflffl{zfflffl}

recent T−cell interaction

(8)

where Di is the time until next division for the cell at location (x, y) and Tm is the inter-mitotic cell division time for a metabolically normal cell.
2.1.7 MP7: Starve glucose
Tumor cells may also compete with T-cells to starve immune cells of glucose, giving rise to the following metaphenotype:

MP7(x, y) = Pg|{z}
Prob: T−cell dies in low glucose

� I (x, y)|fflffl{zfflffl}
recent T−cell interaction

(9)
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of metaphenotypes in baseline untreated dynamics. Weak

vasculature (panel E; untreated) is associated with acidification

metaphenotypes (Self-Acidify, pink; Mooch Acid, green). These

are aggressive, highly glycolytic metaphenotypes that facilitate acid-

mediated invasion. In contrast, intermittent hypoxia (panel F;

untreated) selects for PD-L1-based immune-escape mechanisms

(PD-L1 Attack, yellow; Mooch PD-L1, dark blue).

Treatment alters the type and magnitude of metaphenotype

expression. Anti-PD-L1 selects for acidification metaphenotypes

(Self-Acidify or Mooch Acid) in both vascularization cases. Buffer

treatment eliminates the emergence of both Self-Acidify and Mooch

Acid phenotypes by slowing evolution (e.g. refer to Figure 3B). But

in response, PD-L1 Attack is selected (yellow). Only combination

therapy targets both acidification metaphenotypes and PD-L1

phenotypes. Tracking the response of metaphenotypes to

treatment explains why combination therapy is ideal for

minimizing tumor growth, compared to monotherapy options.

Importantly, only combination decreases the sum total of

metaphenotypes expressed, and specifically targets aggressive

phenotypes (Self-Acidify and Mooch Acid) across both

vascularization scenarios.
3.4 Spatial configuration of
metaphenotypes under treatment

The explanatory power of these defined metaphenotypes is seen

most clearly by observing their spatial arrangement under high

immune predation (see Figures 5G, H and associated Supplementary

Videos S2, S3). For example, weak vasculature (Figure 5G) is associated

with the Self-Acidify and PD-L1 Attack metaphenotypes on the
TABLE 1 Model parameterization.

Parameters Value Units Description

dx 20 μm Diameter of CA grid point

pD 0.005 1/d Normal tissue death rate

p▵ 0.7 1/d Death probability in
poor conditions

pn 5e-4 1/d Necrotic turnover rate

DO 1820 μm2/s Diffusion rate of oxygen

Dg 500 μm2/s Diffusion rate of glucose

DH 1080 μm2/s Diffusion of protons

OO 0.0556 mmol/L Oxygen concentration in blood

GO 5 mmol/L Glucose concentration in blood

pHO 7.4 pH pH of blood

VO 0.012 mmol/L/s Maximal oxygen consumption

kO 0.005 mmol/L Half-max oxygen concentration

kG 0.04 mmol/L Half-max glucose concentration

kH 2.5e-4 – Proton buffering coefficient

Ad 0.35 – ATP threshold for death

Aq 0.8 – ATP threshold for quiescence

pH,min 6.1 pH Maximal acid
resistance phenotype

pH,norm 6.65 pH Normal acid
resistance phenotype

DH 0.003 pH Phenotype variation rate
(acid res.)

pG,max 50 – Maximal glycolytic phenotype

DG 0.15 – Phenotype variation
rate (glycolysis)

tmin 0.95 Days Minimum cell cycle time

smin 80 μm Minimum vessel spacing

smean 150 μm Mean vessel spacing

vmean [5, 100] Days Vessel stability

pang [0, 1] – Angiogenesis rate

TM 1 – Probability T-cell moves

tT 4 – T-cell response delay

aT [1e-
4,1e-1]

– T-cell recruitment rate

bT 10 Days Non-activated T-cell decay

pP,min 5 – Maximal PD-L1 phenotype

pP,norm 2.7 – Normal PD-L1 phenotype

DP [0,1] – Phenotype variation rate
(PD-L1)

de 0.042 Days T-cell engagement duration

(Continued)
TABLE 1 Continued

Parameters Value Units Description

He 6.6 – half-max pH T-cell
engagement time

se 4 – steepness of T-cell
engagement time

Hp 6.6 – half-max pH T-cell
engagement probability

sp 6 – steepness of T-cell
engagement probability

Li 65.35 percent T-cell survival rate in
high glucose

L0 21.78 percent T-cell survival rate in
low glucose

Lg -16.67 percent T-cell glucose
deprivation parameter

DA 100 μm2/s Anti-PD-L1 diffusion parameter

gA 0.5 1/s Anti-PD-L1 natural decay rate

gP 0.001 1/s Cellular bound PD-L1
decay rate
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invasive front of the tumor. Much of the tumor interior is unaffected by

immune cells (Immune Desert), regardless of tumor phenotype.

Treatment with Anti-PD-L1 selects for the aggressive Self-Acidify

metaphenotype, while Buffer selects for PD-L1 Attack on the tumor

rim. Combination therapy is required to achieve maximum tumor

response, resulting in small tumors consisting mostly of non-aggressive

metaphenotypes (Starve Glucose or Proliferate Fast).

In contrast, under intermittent hypoxia vasculature the

Immune Desert comprises a much lower fraction of tumor

metaphenotypes, as this improved vascularization delivers T-cells

into the tumor core. PD-L1 Attack is used near blood vessels and on

the tumor rim, and Self-Acidify does not occur due to low turnover

in untreated conditions. Treatment with Anti-PD-L1 negates

immune escape from PD-L1 Attack, inducing cellular turnover

and subsequently selecting for Self-Acidify and Mooch Acid

metaphenotypes. Combination therapy results in small, slow-

growing tumors with less aggressive metaphenotypes (Mooch PD-

L1 and Starve Glucose).

In both vasculature settings, cells slightly inset from the rim use

metaphenotypes that Mooch Acid and Mooch PD-L1 from cells on

the rim (see Supplementary Videos S2, S3) while cells in regions of

high turnover employ the Proliferate Fast metaphenotype. Starve

Glucose remains at low levels throughout all treatment modalities

and vasculature settings. As seen in the (Supplementary Videos S2,

S3), it is difficult to determine the major driver of immune escape

from the maps of phenotypes alone, as areas of high glycolysis and

high PD-L1 are each spatially heterogeneous and overlapping. There

likely exists heterogeneity in vascular stability and renewal rates

within a single patient’s tumor, which may drive heterogeneous

metaphenotype expression (see Supplementary Video S5).
4 Discussion

Several factors contribute to a lack of responsiveness to immune

checkpoint blockade, including abnormal tumor microenvironment

where poor tumor perfusion hinders drug delivery and increases

immunosuppression (41). Poor vascularization also leads to a

hypoxic and therefore acidic microenvironment, increasing acid-

mediated immunosuppression. The modeling we present here

recapitulates this trend, as immune predation is less effective in weak

vascularized tumors than in intermittently vascularized tumors. The

importance of acidity inmodulating immune response in cancer is only

just beginning to be understood. Our results highlight the potential

utility in buffering agents combined with immunotherapy. Whilst such

buffering agents are not yet used in cancer treatment due to GI

irritability and subsequent patient non-compliance, efforts continue

to develop a buffer therapy that patients can tolerate and that is

convenient to administer (42). Tumor acidosis can also be addressed

bymore indirect means. Some preclinical work has shown the potential

influence of diet on acid buffering, but this remains poorly studied and

may have limited effect on tumor pH (43).

Drugs that alter the vasculature are another possible indirect

method for altering tumor pH. Development of agents that promote

stable tumor vasculature would reduce acidosis and also increase

both immune cell access and systemic-delivered drug penetration.
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However, there are potential risks to increasing tumor vascularity,

regarding increased nutrient delivery and a higher potential for

metastatic spread. Vascular renormalization can be enhanced

through administration of anti-angiogenic agents (e.g., anti-

vascular endothelial growth factor agents) to fortify immature

blood vessels and improve tumor perfusion (44). However, our

results indicate that administration of immune checkpoint blockade

in tumors with increased vascularization may lead to a short-term

good response but poor long-term outcomes as selection for

increased glycolysis occurs. Mathematical modeling allows for

direct comparison of initially identical simulations in the absence

(Figure 3) and presence (Figure 4) of immune predation. We

observe an immune gambit under high vascular renewal

(intermittent hypoxia), due to an evolutionary bottleneck. The

impact of this evolutionary bottleneck is reduced when anti-PD-

L1 is combined with buffer therapy.

Characterization of collective phenotypes into metaphenotypes

enables a straightforward explanation of the effect of treatment in a

complex, multi-scale model. This characterization is necessary, in part,

due to the fact that acid-mediated invasion is a collective phenotype

phenomenon (Figure 1). Immune escape is also, by definition, a

collective phenomenon by requiring the presence of two cell types in

close proximity: tumor and immune. A summary schematic of the

results is shown in Figure 5I. The interaction diagram describes the role

of anti-PD-L1 and buffer in either promoting (green) or inhibiting (red)

each metaphenotype. Broadly, the two treatments offset one another by

inhibiting the metaphenotypes that the opposite treatment promotes.

The two exceptions, starve glucose and immune desert, are both non-

aggressive phenotypes. This summary schematic illustrates the utility of

defining metaphenotypes in the context of treatment to provide insight

into immune-escape dynamics. The most dominant mechanism of

immune escape seen in the model is the lack of immune interactions

(immune desert), especially when the tumor bed is poorly vascularized.

Tumor-expressed PD-L1 is a viable immune-escape mechanism in the

absence of treatment, across a range of vascularization, but treatment

with anti-PD-L1 selects for the two acid-inactivation metaphenotypes

(Self-Acidify and Mooch Acid). Environmental conditions must also

consider neighboring (and self) cellular phenotypes. A cell in acidic

conditionsmay rely on acid-inactivation either by self-production of acid

or mooching from neighboring producer cells, a form of “public good”

(45). Buffer therapy limits selection for self-acidification, driving selection

toward less aggressive metaphenotypes (Glucose Starvation or Immune

Desert). It’s also important to note that mooching metaphenotypes only

occur in the presence of non-mooching phenotypes. Because of this, and

the fact that phenotypes of individual cells change only slowly (upon

division), mooching phenotypes are not expected to be a viable long-

term immune escape strategy, but limited to transient, local patches co-

localized with non-moochers. However, in a model where the ratio of

two phenotypes is determined stochastically, for example, a population of

both phenotypes could coexist for a longer period of time.

It would be of interest to test the predictions of this model, and

as described above, previous experimental exploration of acid-

mediated invasion and immune suppression aligns with the

findings of our paper (3, 7, 19, 24). New technology has enabled

spatially resolved transcriptomics which can quantify cellular

heterogeneity in context of spatial information (46). However, the
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metaphenotype as a dynamic spatiotemporal metric is a challenge

to measure (47), since most spatially resolved methods of

interrogating a tumor in vivo are either destructive or of low

resolution, and therefore lack the needed temporal component.

Novel in vivo live-imaging technologies are one possible route to

investigate how the different cellular phenotypes in the tumor

environment change over time in response to emergent

physiological changes and to therapeutic interventions (48).

Another option would be the use of organoid cultures(e.g. 49),

especially in conjunction with a 3D printer that could initialize

different spatial configurations of the cells and environment for

testing of hypotheses (50, 51).

The modeling framework presented here is not without its

limitations. For example, 1) it is a two-dimensional representation

of a three-dimensional tumors, 2) tumors may be heterogeneous in

vasculature conditions, 3) we ignore directed motion of immune

cells, and 4) parameters are an estimation based on literature values

but may in reality be patient-specific. We also note limitations

regarding the fundamental biological assumptions made in the

model. For one, we are modeling the dominant form of cellular

metabolism, namely the glycolytic and aerobic respiration pathway,

but this is not the only source of cellular energy. Other forms

involving glutamate, lactate, and more have been observed in tumor

cells and would potentially alter how cells evolve in different

environments. Another simplification involves the dynamics of

immune response. T-cell activation, recruitment, engagement, and

tolerance are all highly complex processes involving numerous cell

types and cytokines, dynamic expression of different surface

markers, and processes that work on many different timescales.

Here we have limited ourselves to the influx of active T cells and not

modeled upstream processes, nor immunosuppression generated by

factors other than checkpoints and pH (e.g., regulatory T cells and

other suppressive cells, TGF-beta and other suppressive secreted

factors, and variable tumor antigenicity). These additional elements

of immune response and tumor escape would certainly be worthy of

further investigation in future work but will of course add

significant complexity.

The intimate feedback between a growing tumor and the

homeostatic tissue it is invading drives both ecological and

evolutionary dynamics that should not be ignored in modern

cancer therapy. The results we presented here indicate that

treatments that modulate context may turn out to be just as

important as those that target the tumor.
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