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Introduction: Kawasaki disease (KD) is a pediatric vasculitis that can result in

coronary artery aneurysm (CAA) formation, which is a dangerous complication.

Treatment with intravenous immunoglobulin (IVIg) significantly decreases the

risk of CAA, possibly through competitive binding to Fc-gamma receptors

(FcgRs), which reduces the binding of pathological immune complexes.

However, ~20% of children have recrudescence of fever and have an increased

risk of CAA. Therefore, we aimed to identify genetic markers at the FCGR2/3

locus associated with susceptibility to KD, IVIg resistance, or CAA.

Materials and methods: We investigated the association of single-nucleotide

polymorphisms (SNPs) and copy number variations (CNVs) at the FCGR2/3 locus

with KD susceptibility, IVIg resistance, and CAA risk using a family-based test (KD

susceptibility) and case–control analyses (IVIg resistance and CAA risk) in

different cohorts, adding up to a total of 1,167 KD cases. We performed a

meta-analysis on IVIg resistance and CAA risk including all cohorts

supplemented by previous studies identified through a systematic search.
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Results: FCGR2A-p.166His was confirmed to be strongly associated with KD

susceptibility (Z = 3.17, p = 0.0015). In case–control analyses, all of the

investigated genetic variations at the FCGR2/3 locus were generally not

associated with IVIg resistance or with CAA risk, apart from a possible

association in a Polish cohort for the FCGR3B-NA2 haplotype (OR = 2.15, 95%

CI = 1.15–4.01, p = 0.02). Meta-analyses of all available cohorts revealed no

significant associations of the FCGR2/3 locus with IVIg resistance or CAA risk.

Discussion: FCGR2/3 polymorphisms are associated with susceptibility to KD

but not with IVIg resistance and CAA formation. Currently known genetic

variations at the FCGR2/3 locus are not useful in prediction models for IVIg

resistance or CAA risk.
KEYWORDS
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Introduction

Kawasaki disease (KD) is a pediatric vasculitis involving the

coronary arteries that mainly affects children under the age of 5 (1).

The disease can result in coronary artery aneurysm (CAA)

formation, which occurs in up to 25% of untreated cases, making

it the most common cause of acquired heart disease in children in

developed countries (2). The risk of CAA has significantly

diminished since the introduction of treatment with human-

pooled intravenous immunoglobulin (IVIg) (3). Although its

exact mechanism of action remains uncertain, various

mechanisms of action have been proposed (4–7). Similarly, there

is the involvement of the Fc-gamma receptors (FcgRs), for instance,
by competitive binding of IVIg to the FcgRs, thereby reducing the

binding of pathological immune complexes and inhibiting cellular

activation. In turn, IVIg-resistant patients have an increased risk of

developing CAA (8, 9). IVIg resistance occurs in approximately

20% of treated patients (10), with up to 20% of affected children

developing CAA despite timely treatment (9). This underlines the

need to better understand the mechanisms behind poor treatment

response and the importance of identifying prognostic markers that

accurately predict children at risk for poor treatment response or of

developing CAA. Although risk scores have been developed to

predict IVIg resistance including various laboratory findings (11–

14), these risk score systems have been developed for the Japanese

population and have a limited predictive value in non-Japanese
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populations (15, 16). As has also been proposed in the KD

guidelines of the American Heart Association (AHA) (17) and

the European Initiative Single Hub and Access point for pediatric

Rheumatology in Europe (SHARE) (18), better predictive models,

possibly incorporating biomarkers or genetic variants, are needed

for non-Asian populations.

The exact etiology of KD is unknown, but it is hypothesized to

be a post-infectious hyperinflammatory reaction in children with a

genetic susceptibility. The hypothesis of a post-infectious etiology

was reinforced by the recent outbreak of multisystem inflammatory

syndrome in children, which shares some clinical features with KD

and is triggered by severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) infection (19, 20). Several findings point to a genetic

susceptibility for KD. Firstly, the incidence of KD differs widely per

country, with the incidence in European countries ranging between

10 and 15 per 100,000 children under the age of 5 per year (21).

Over 10-fold higher incidence rates of KD have been reported in

Asian countries, particularly in Japanese and Koreans, which persist

when patients of these ethnicities migrate to other countries (22,

23). Secondly, as has been shown by twin studies and familial cases,

siblings of patients with KD have a higher KD risk compared with

the general population (24, 25).

Among other gene regions (encoding, e.g., caspase 3, human

leukocyte antigen class II, B-cell lymphoid kinase, inositol 1,4,5-

trisphosphate kinase C, and CD40 protein) (17), KD has been linked

to the gene cluster of the FcgR family (26). This FCGR2/3 locus consists

of genes encoding the five low- to medium-affinity FcgRs (FCGR2A,
FCGR2B, FCGR2C, FCGR3A, and FCGR3B) that either activate or

inhibit (FCGR2B) cellular immune functions after binding

immunoglobulin G (IgG). Various single-nucleotide polymorphisms

(SNPs), haplotypes, and copy number variations (CNVs) at the

FCGR2/3 locus impact receptor function and expression levels (27–29).

Most studies on the association of KD with the FCGR2/3 locus

have focused on the genetic association of the SNP FCGR2A-
frontiersin.org
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p.His166Arg (rs1801274, formerly known as FCGR2A-

p.His131Arg) with KD susceptibility and have shown that

FCGR2A-p.166His is a marker of increased susceptibility (30–33).

This SNP in the FCGR2A gene can be typed with conventional

methods, such as genome-wide association study (GWAS).

However, the FCGR2/3 locus is notoriously difficult to genotype.

Firstly, it comprises a large segmental duplication with over 98%

homology shared between the duplicated regions (30). Secondly,

CNV is common in this locus, resulting in a highly polymorphic

region. There is a strong linkage disequilibrium (LD) between

various variants (27). Most of the known variants on the FCGR2/

3 locus cannot be included in GWAS analyses.

Comprehensive analysis of the FCGR2/3 locus can be achieved

using the previously described multiplex ligation-dependent probe

amplification (MLPA), which can reliably distinguish the currently

known SNPs, haplotypes, and CNVs. These SNPs include FCGR2A-

p.Gln62Trp, FCGR2A-p.His166Arg, FCGR2B-p.Ile232Thr, and

FCGR3A-p.Val176Phe. Known haplotypes that can be

distinguished include the FCGR2B and FCGR2C promoter

haplotypes 2B.1/2B.2/2B.4, FCGR3B NA1/NA2/SH haplotypes

(which encode the human neutrophil antigen), and FCGR2C

Stop/ORF/non-classic ORF haplotypes. CNVs (both deletions and

duplications) occur in the CNR1–CNR4 regions, generally

involving either FCGR3A-FCGR2C or FCGR2C-FCGR3B, and can

be distinguished. Using MLPA, Nagelkerke et al. found that, in

addition to FCGR2A-p.His166Arg, the FCGR2C-ORF haplotype

(rs759550223 and rs7677413) was significantly associated with

susceptibility to KD in the European population (30). Although

the association of FCGR2A-p.His166Arg appears to be independent

of ethnicity, a clear ethnic variation was seen for the FCGR2C-ORF.

This haplotype was associated with susceptibility to KD in

Europeans but is virtually absent in Asian subjects, stressing the

importance of accounting for ethnicity when investigating genetic

associations in KD.

The association of FCGR2A-p.His166Arg with KD

susceptibility raises the question of whether this SNP or other

genetic variants at the FCGR2/3 locus may also impact the clinical

outcomes of patients with KD, particularly the risk of IVIg

resistance and CAA. The few studies that investigated such

associations lack consensus and often only focus on one or

several FcgRs in relatively small patient populations (31–36). This

highlights the need to further fine-map genetic associations at the

FCGR2/3 locus accounting for ethnic variations in extensive patient

populations. In the present study, we, therefore, investigated the

association of all currently known functionally relevant SNPs,

haplotypes, and CNVs at the FCGR2/3 locus with susceptibility to

KD, response to treatment, and risk of CAA development using a

family-based test (KD susceptibility) and case–control analyses

(CAA and IVIg response). Cases were recruited from four cohorts

from different parts of Europe (the Netherlands and Poland), the

United States, and Australia. Subsequently, we performed a meta-

analysis for the association of FCGR2/3 genetic variations with IVIg

resistance and CAA risk in all four cohorts, supplemented by

studies identified through a systematic review.
Frontiers in Immunology 03
Materials and methods

Power analysis

We used the Quanto software to calculate the statistical power

of our cohort size (37). We expected a total cohort of at least 800

subjects (children with KD) with an estimated prevalence of IVIg

resistance of 0.22 and an estimated CAA prevalence of 0.30. We

calculated the power to detect an odds ratio of 2 per minor allele for

variants with minor allele frequencies (MAFs) ranging from 0.05 to

0.5, assuming an allelic genetic model and setting the significance

threshold (p-value) at 0.05. For IVIg, the power to detect an OR of 2

was >80% for variants with an MAF of 0.05 and >90% for an MAF

≥0.1. For CAA, the power was >90% for the whole MAF range.
Subjects

KD cases
Complete KD cases , who had not received prior

immunomodulatory or immunosuppressive treatment, were

recruited from the Netherlands (n = 388), the United States (n =

447), Australia (n = 213), and Poland (n = 119) with diagnosis based

on the standard diagnostic clinical criteria from the AHA (17). In

total, 1,167 patients were included in the study. A total of 762

patients (701 complete trios and 61 incomplete trios) were included

in the transmission disequilibrium test (TDT) analysis for

susceptibility to KD.

This TDT analysis is an extension of our previously published

TDT analysis (30) using the same trios supplemented by an

additional 155 trios from the Netherlands.

As per the 2017 AHA guidelines, primary treatment consisted

of a single IVIg infusion (2 g/kg) and aspirin (started at 30–50 mg

kg−1 day−1 and reduced to 3–5 mg kg−1 day−1 once fever subsided

for 48 h) (17).

For associations within the patient groups for susceptibility to

CAA and response to IVIg treatment, we performed case–control

analyses for all patients for which these clinical parameters, as well

as self-reported ethnicity, were documented. For both these case–

control analyses, there was considerable, but not complete, overlap

with the patients in the TDT. Many of the KD cases were previously

studied for general susceptibility to KD in our GWAS (33) and

follow-up study (27). There was no overlap with the patients with

KD described by Biezeveld et al. (28). In total, 872 patients of self-

reported European descent and 60 patients of self-reported Asian

descent were included in the case–control analyses. For an overview

of the cohorts, see Supplementary Table 1.
Data collection

Clinical data
Clinical information from the disease episode (i.e., sex,

ethnicity, treatment response, and CAA development) was
frontiersin.org
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collected using electronic health records and processed in a

combined database (REDCap and Castor). CAAs were defined as

a coronary artery with a Z-score ≥2.5 (17). In the case–control

analysis, cases were defined as patients with CAA, whereas controls

were defined as patients without CAA. IVIg resistance was defined

as persistent or recurrent fever >38°C at >36 h and <7 days after

completing the initial IVIg infusion in patients treated with IVIg

≤10 days post-onset of fever (17). In this case–control analysis, cases

were defined as patients having an adequate IVIg response, while

controls were defined as patients with IVIg non-responsiveness.

This case–control analysis only included patients treated with IVIg

≤10 days of the onset of the disease.

MLPA
Genomic DNA from whole blood was isolated using the

QIAamp Blood Mini kit (Qiagen, Hilden, Germany). Genomic

DNA from saliva was isolated using the Oragene DNA self-

collection kit (DNA Genotek, Ontario, Canada) or the Puregene

DNA purification kit (Qiagen, Hilden, Germany).

SNPs and CNVs in the low-affinity FCGR genes were

determined using an FCGR-specific MLPA assay as described

previously (30, 38) (P110 and P111, MRC-Holland, Amsterdam,

the Netherlands). The MLPA contained probes to detect all the

currently known SNPs and the gene-specific probes to determine

CNVs. DNA samples of three healthy individuals well typed for all

CNVs and SNPs were included as a reference in all experiments.

The results were analyzed using the program Genemarker version

3.0.0 (Soft Genetics LLC, State College, PA, USA), with

consideration for the homology within the locus and taking into

account known LD aiding in the construction of haplotypes, as

described previously (29, 30).
Family-based analyses
For the family-based analysis using FBAT (see Statistical

analysis), phased genotypes were required (i.e., separated into the

paternal and maternal alleles for each individual). Because the

MLPA results could not be phased over the full locus, we

separated the genotypes for each SNP manually, assuming an

“even distribution” of the copies over the columns. For example,

if an individual had two allele copies (no CNV), then we assumed

that each allele contained one copy unless our trio data suggested

otherwise (rare occasions). Regarding CNVs of FCGR3B and the

NA1 and NA2(SH) genotypes, previous evidence has shown that

the NA1 and NA2(SH) genotypes are generally on the same allele

(the duplication allele) (39). For the other genotypes, this was not

found, and we assumed that the duplication allele contained the

same genotypes (e.g., FCGR2C: ORF-ORF and Stop-Stop). In case

of ambiguity, the genotypes were solved by using the trio

information combined with the linkage information on the locus.
Statistical analysis

Firstly, we performed a (multi-marker) TDT (using an FBAT

toolkit in R) in the parent-affected offspring trios to investigate the
Frontiers in Immunology 04
association between KD susceptibility and the various SNPs, CNVs,

and haplotypes.

Thereafter, differences in the prevalence of variants were

compared between the cohorts using Fisher’s exact test to assess

which data could be pooled in further analyses. There were

significant differences in the variants for one or more variants

between all groups, except for the US and Australian cohorts. The

latter cohorts showed no significant differences and were merged

into a single cohort (data not shown).

Subsequently, case–control analyses of the association of each

genetic variant (allelic model) with IVIg resistance and CAA

development were conducted. Analyses were performed in R

using one-sided Fisher’s exact tests and univariable logistic

regression models. Variants that were significantly associated with

IVIg resistance or CAA development in previous literature reports

and/or in our own analyses were included in a meta-analysis of the

findings found in all separate cohorts (meta package in R). To assess

differences by ethnicity, we primarily separated the ethnic groups in

the case–control analysis and then performed a meta-analysis with

the complete dataset.

A p-value below 0.05 was considered statistically significant.

Statistical analyses were performed in R version 4.1.
Systematic literature review

A systematic search in PubMed/Medline was conducted on March

2, 2023, to identify all studies that reported the relationship between

SNPs in the FCGR2/3 locus and IVIg resistance and CAAs in patients

with KD. The search strategy included the following search terms:

(FCGR* OR FCgR* OR Fc-gamma OR CD64 OR CD32 OR CD16 OR

rs1801274 OR rs759550223 OR rs76277413 OR rs149754834 OR

rs201218628 OR rs143796418 OR rs396991 OR rs5030738 OR

rs1050501) AND (“Mucocutaneous Lymph Node Syndrome” [Mesh]

OR “Mucocutaneous Lymph Node Syndrome” OR MCLS OR

“Kawasaki disease” OR KD OR “Kawasaki-disease” OR “Kawasaki

Syndrome” OR “Acute inflammatory Vasculitis”). Studies solely

reporting on DNA methylation status were excluded. We extracted

data on the study characteristics (e.g., study design, number of patients

enrolled in the study, number of patients fulfilling the review’s

inclusion criteria, ethnicity of the patients, length of follow-up, and

methods), outcome measures (e.g., definitions used and detection

methods), and the main study results. A meta-analysis was

performed with the pooled data of comparable studies with similar

definitions (KD, IVIg resistance, and CAA). We collected all available

allele-specific beta coefficients and standard errors (calculated using the

odds ratios and 95% confidence intervals) from univariable logistic

regressions performed to investigate the association between various

allele frequencies within the FcgR locus and the risk of IVIg resistance

and/or CAA development. When only the genotypic odds ratios were

reported, then we calculated the allele-specific odds ratios by using the

genotype frequencies. Lastly, we conducted a meta-analysis that

included our own data and the data extracted from the studies

identified in the systematic literature review. The meta-analysis was

performed using the meta package (version 6.2-0) in R. Forest plots

were made in R using the forest package.
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Study approval

Informed consent and written approval were obtained. All

patients were included in accordance with the study protocol, the

International Conference on Harmonization Good clinical Practice

guidelines, and the provisions of the Declaration of Helsinki.

Further information per cohort is listed below.

The Netherlands
Subjects from the Netherlands were recruited at the Amsterdam

UMC and participating hospitals in the broad Amsterdam region as

part of the long-term observational Kawasaki disease study as

approved by the Medical Ethical Board of the AMC, with the

reference number 2012_155 (no. NL41023.018.12).

The United States
Subjects from the United States were recruited at Rady

Children’s Hospital San Diego (n = 241), Boston Children’s

Hospital (n = 81), Northwestern University (n = 37), University

of Hawaii (n = 19), Children’s Hospital of Los Angeles (n = 6), and

individuals across the US who directly contacted the University of

California San Diego to participate (n = 63). The Human Research

Protection Program of the University of California San Diego

approved this research protocol (IRB 170790). All parents and

subjects gave written consent or assent as appropriate.

Australia
Subjects from Australia (n = 213) were recruited in accordance

with the protocol approved by the ethics committees of all

participating tertiary pediatric hospitals.

Poland
The blood samples of 119 patients diagnosed with KD were

collected between 2016 and 2020, isolated, and stored at the

Department of Pediatrics, Nutrition and Metabolic Diseases,

Children’s Memorial Health Institute in Warsaw, Poland. All

children were born in Poland (Mazowieckie Voivodeship) and
Frontiers in Immunology 05
were of European ethnic descent. Patients were included as part

of the project “Searching for molecular markers related to Kawasaki

disease,” which has been approved by the Bioethics Committee at

the Children’s Memorial Health Institute Review Board.
Results

In total, 2,631 individuals were genotyped. A detailed description

of the included patients is shown in Supplementary Table 1.
Association of FCGR2A-p.His166Arg SNP
with KD susceptibility

In our TDT analysis (FBAT), we included 762 families, with 701

complete trios and 61 incomplete trios. A significant association

with susceptibility to KD of the FCGR2A-p.His166Arg SNP, which

has been previously confirmed in meta-analyses, was found in our

cohort in the single-marker FBAT analysis (Supplementary Table 2)

and was also confirmed in the multi-marker FBAT (Table 1).

Neither FCGR2C-ORF nor any of the other SNPs were

significantly associated with susceptibility to KD (Table 1).
Association of the FCGR2/3 SNPs and
haplotypes with IVIg resistance in the
case–control analysis and meta-analysis

We performed a case–control analysis including KD patients

with adequate IVIg response as cases and patients with IVIg non-

responsiveness as controls. None of the variants tested were

associated with IVIg response in our case–control analysis for the

combined US and Australian cohort (Supplementary Table 3), the

Dutch cohort (Supplementary Table 4), or the Polish

cohort (Supplementary Table 5). The subsequent meta-analysis

of our different cohorts did not reveal associations either

(Supplementary Figure 1).
TABLE 1 Multi-marker transmission disequilibrium test for the different variants at the FCGR2/3 locus in a family-based association study.

SNP/haplotype No. of allelesa No. of familiesb Degree of freedom Chi-square p-value

FCGR2A p.His166Arg 2 515 1 10.05 0.0015

FCGR2A p.Gln62Trp 2 261 1 0.17 0.68

FCGR2B p.Ile232Thr 2 262 1 0.05 0.82

FCGR3A p.Val176Phe 7 511 6 7.70 0.26

FCGR2B promoter 3 242 2 4.72 0.09

FCGR2C promoter 11 450 5 5.18 0.39

FCGR3B NA1/NA2/SH 12 546 7 6.26 0.51

FCGR2C ORF/NC ORF/Stop 12 462 6 7.62 0.27
fro
NC ORF, non-classic ORF.
aNumber of different alleles in the cohort. For genes without copy number variation, this is 2; for genes with copy number variations, this can be higher, for example when there is a null allele due
to a deletion or an allele with two variants on one allele due to duplication.
bNumber of informative families in which ≥1 parent is heterozygous for the indicated allele or haplotype.
Bold values are statistically significant (P<0.05).
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Subsequently, we performed an additional meta-analysis based

on studies identified through a systematic search (Supplementary

Figure 1). Although four studies focused on the relationship

between variants at the FCGR2/3 locus with IVIg resistance (31,

34, 35, 40), only a single study (34) could be included in our

subsequent meta-analysis (Supplementary Table 6; Supplementary

Figure 2). This study focused on SNPs in FCGR2B, including the

SNP FCGR2B-p.Ile232Thr, which was not significantly associated

with IVIg resistance in this study, nor in our meta-analysis. The

study also reported that minor allele A at FCGR2B-c.-120T/A was

more frequently detected in patients of European descent who

responded to IVIg (OR = 3.23, 95% CI = 1.22–8.33, p = 0.01)

(34). We also included the latter SNP in our meta-analysis as part of

the FCGR2B promoter haplotype 2B.4 and could not reproduce the

significant association with IVIg (Figure 1). While this SNP can also

occur before FCGR2C, this is extremely rare [5/2,631 (0.19%)

samples in the current study] and likely does not affect our

analysis. The other studies could not be included in our meta-

analysis because they 1) compared patients with IVIg resistance to

healthy controls (31) and 2) did not report allelic frequencies

(35, 40).

Although not included in the meta-analysis, one of these studies

found over-transmission of FCGR3B-NA1 among IVIg non-

responders (cases) compared to healthy controls (controls) (31).

In another study, the copy numbers of FCGR2C in Hispanics and

FCGR3B in the European population were found to be associated

with IVIg resistance (35). No significant associations of FCGR2A-

p.166His with IVIg resistance were found (31, 40).
Association of the FCGR2/3 SNPs and
haplotypes with CAA risk in the case–
control analysis

We also performed a case–control analysis including KD

patients with CAAs as cases and patients without CAAs as

controls. On the basis of self-reported ethnicity, we investigated

informative cases of European descent (the Netherlands: 65 cases,

291 controls; Poland: 43 cases, 76 controls; and Australia and USA:

105 cases, 262 controls) and Asian ethnicity (Australia and USA: 23

cases, 46 controls) separately. The various genotypes and allele
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frequencies of the CNVs and SNPs are shown in Supplementary

Tables 7–9.

In the Polish cohort, the FCGR3B-NA2 haplotype was significantly

associated with CAA risk (Fisher’s exact test: p = 0.05; single logistic

regression: p = 0.02; OR = 2.15, 95% CI = 1.15–4.01). In the same

cohort, having less than two copies of CNR1 was also associated with

CAA risk using Fisher’s exact test (p = 0.05), but was not confirmed in

the single logistic regression (OR = 0, 95% CI = 0.00–Inf, p = 0.99),

presumably because of the low MAF of less than two copies (deletion)

of this CNR.

None of the other SNPs or haplotypes were associated with

CAA risk in any of the cohorts investigated (Supplementary

Tables 7–9).
Association of the FCGR2/3 SNPs or
haplotypes with CAA risk in the
meta-analysis

In our systematic literature review, we identified studies that

focused on the relationship between variants at the FCGR2/3 locus

and the risk of CAA (28, 31, 32, 36, 40, 41) (Supplementary Table 6;

Supplementary Figure 2). Four of these focused on the association

of FCGR2A-p.His166Arg with clinical outcomes. FCGR2A-

p.166His was significantly associated with CAA risk in one

(Taniuchi et al.) of the four studies (28, 32, 36, 41) in which it

was investigated. In addition, over-transmission of FCGR3B-NA1

was described in one study among patients with CAAs (31) but was

not confirmed in another study (32). None of the other variants

investigated were associated with CAA risk.

Subsequently, we performed a meta-analysis including our own

cohorts and the four studies that used similar definitions for cases

(KD patients with CAAs) and controls (KD patients without

CAAs). The variants investigated in the meta-analysis including

the studies from the literature were FCGR2A-p.His166Arg,

FCGR2B-p.Ile232Thr, FCGR3A-p.Phe176Val, and FCGR3B-NA1.

None of the variants investigated were associated with CAA risk

in our meta-analysis of the total population (Supplementary

Figure 3). This included the FCGR3B-NA2 haplotype, which,

although significantly associated in the current Polish cohort, was

not associated in the meta-analysis. Finally, because a strong
FIGURE 1

Forest plot of the meta-analysis investigating the association of the FCGR2B 2B.4 promoter haplotype, which contains the FCGR2B-c.-120T/A minor
allele A, investigated in Shresta-2011, with intravenous immunoglobulin (IVIg) resistance in individuals of European descent in the current study
cohorts and the cohort from Shresta-2011.
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correlation of FCGR2A-p.166His with CAA risk was reported by

Taniuchi et al. (32), we also performed a separate meta-analysis

with the European (from all four current study cohorts) (28, 41) and

Asian subpopulations (from the current Australian and US cohorts)

(32, 36) to exclude an ethnicity-dependent association. No

significant effect of FCGR2A-p.166His on CAA risk was found in

either the European or the Asian subpopulation (Figures 2A,

B, respectively).
Discussion

In the current study, we investigated the association of all

currently known functionally relevant SNPs and CNVs at the

FCGR2/3 locus with KD susceptibility, IVIg resistance, and CAA

risk in an extensive cohort, taking into account ethnic differences and

using a meta-analysis. We confirmed the established association of

the FCGR2A-p.His166Arg SNP with susceptibility to KD, whereas

none of the investigated genetic variations at the FCGR2/3 locus were

associated with resistance to IVIg or risk of CAA.

Firstly, we reproduced the association of the FCGR2A-

p.His166Arg SNP with susceptibility to KD in an extended single-

and multi-marker TDT analysis, which corrected for ethnic

differences (parents of the affected child were used as internal

controls). This overall association reinforces the findings in our

initial GWAS in KD (33) and the previous meta-analyses (42–44).

The SNP results in an arginine (R) or histidine (H) at amino

position 131 in the mature protein after cleaving of signal peptides,

with the histidine variant being a risk factor for KD. It is important

to note that FcgRIIa-His131 can bind human IgG2, whereas
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FcgRIIa-Arg131 cannot (45, 46). IgG2 is the second most

prevalent IgG in the IVIg preparations; the distribution of the

different IgG subclasses in IVIg varies slightly per preparation, and

an IVIg infusion contains approximately 54%–70% IgG1, 29%–45%

IgG2, 1%–4% IgG3, and 0%–0.5% IgG4 (47).

It has been previously suggested that the genetic association

may only account for susceptibility to KD in Asian patients but not

in European patients (43). A more recent meta-analysis (42) did

find a significant association of the SNP with KD susceptibility in

sub-analyses including solely patients of European descent,

although methodological issues of the study resulted in the

inclusion of two studies with the same study population (27, 33),

which may have resulted in bias. Nevertheless, this study did not

include the data of the TDT analysis that we have previously

performed for FCGR2A-p.His166Arg in European patients only

(48). In this cohort, the FCGR2A-p.166His was also significantly

associated with susceptibility to KD (Z = 2.94, p = 0.003) (19).

Therefore, we postulate that the association of the FCGR2A-

p.His166Arg SNP with KD susceptibility is general and holds true

in different ethnicities.

Interestingly, neither the FCGR2C-ORF haplotype nor any of the

other FCGR2/3 variants were associated with KD susceptibility in our

TDT analyses. This haplotype results in the expression of the

activating FcgRIIc, which is usually not expressed because of a stop

codon in exon 3 (38). In our previous study (30), the FCGR2C-ORF

haplotype was not significantly associated with KD susceptibility in a

TDT analysis, but it was associated with KD susceptibility in a case–

control analysis in patients with European ancestry and remained

significant in a meta-analysis combining the associations of the TDT

and case–control analyses. In the current TDT cohort, which largely
A

B

FIGURE 2

Forest plot of the meta-analysis investigating the association of the FCGR2A-p.His166Arg SNP with coronary artery aneurysm (CAA) risk in individuals
of European descent in the current study cohorts and cohorts identified in the literature review (A) and in (B) Asian individuals from the Australian
and US cohorts and the Asian cohorts identified in the literature review.
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overlapped with our previous study (30), the SNP was again not

significantly associated with KD susceptibility in the TDT analysis,

indicating that FCGR2A SNP rs1801274 is the major gene variant for

the clear association with the disease.

None of the known functional variations at the FCGR2/3 locus

were associated with IVIg resistance or CAA risk in KD in our case–

control analyses, apart from the Polish cohort in which the

FCGR3B-NA2 haplotype was significantly associated with CAA

risk. Notably, this cohort also had the highest proportion of

patients with IVIg resistance (35% vs. 13%–26%), possibly leading

to an overestimation of the effect of the FCGR3B-NA2 haplotype. In

contrast to our own findings, several previous studies have reported

associations between various genetic variations and IVIg resistance

(31, 34, 35, 40) or CAA risk (28, 31, 32, 36, 40, 41). However, these

studies relied on limited study populations [n = 177–358 vs. n = 653

in our cohort (IVIg); n = 41–424 per cohort vs. n = 911 (CAA)],

which may have impacted the statistical power and heterogeneity of

these studies. On the basis of our combined meta-analysis, we show

that a prognostic value of genetic variations at the FCGR2/3 locus in

prediction models for IVIg resistance or CAA risk in KD patients of

European descent is unlikely.

The lack of a direct link between polymorphisms in either the

activating or inhibitory FcgRs indicates that other factors likely play
a role. The mechanism of action of IVIg could be explained by

additional interactions with multiple other components of the

immune system (e.g., dendritic cells, natural killer cells, T cells,

and neutralization of autoantibodies) (49). For instance, it has been

suggested that IVIg contains antibodies capable of neutralizing

cytokines, further strengthened by the beneficial effects of anti-

inflammatory treatment with TNF antagonists (50) and IL-1

antagonists (51, 52). Furthermore, it is known that the

glycosylation of antibodies significantly impacts their effector

functions and immunogenicity (53). Specifically, the proportion

of anti-inflammatory sialylated IgG antibodies (up to 15% of

healthy serum IgG) (54)) is reduced in inflammatory diseases

(55), including KD (56). It has been suggested that a-2,6-
sialylated IgG may be the biologically active component for the

immunomodulatory effects of IVIg (57, 58), possibly via the

induction of IL-33 and the increase of the inhibitory FcgRIIb
surface expression on macrophages, dendritic cells, and B cells

following IVIg infusion (59, 60) although such mechanisms do not

occur in all circumstances (61, 62). In the setting of KD, treatment

response has previously been shown to only be associated with

lower sialylation levels of endogenous IgG, but not therapeutic IVIg

(56). In addition, previous studies have indicated distinctive

metabolic profiles in IVIg-resistant KD (63, 64) and KD patients

with CAAs (65–67), indicating that the mechanisms behind IVIg

resistance and CAA formation are multifaceted and require

further elucidation.

Although we captured all SNPs and CNVs that are known to

date in our current study, future whole-genome sequencing

techniques may reveal new functionally relevant variations at the

FCGR2/3 locus, which could not be captured in the current study.

One of the limitations of our study was that our cohorts mainly

included European patients. The underrepresentation of Asian

patients, in particular, increases the risk of overlooking ethnicity-
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specific associations of genetic variations at the FCGR2/3 locus with

clinical outcomes in KD. A second limitation was the low number of

studies that could be included in our meta-analysis, partially

explained by the rarity of Kawasaki disease, making it challenging

to obtain cohorts powered for investigating IVIg resistance and

CAA risk. Consequently, we suspect a certain degree of publication

bias when no significant effects are identified in (underpowered)

patient populations. However, a major strength of our study was

our extensive and homogeneous study population, which included

only complete KD cases, ensuring sufficient power to investigate the

associations with IVIg resistance and CAA risk (see Materials and

methods). Secondly, we investigated ethnic differences by primarily

separating the ethnic groups in the case–control analysis and then

performing a meta-analysis including the complete dataset, which

indicated minimal heterogeneity (except for the FCGR3B-NA2

haplotype, I2 = 73%).

In conclusion, our current study does not support the

hypothesis that variations within the FCGR2/3 locus predict

resistance to IVIg and risk of CAA (17). Although it is impossible

to fully exclude an association of genetic variations at the FCGR2/3

locus with clinical outcomes in KD, we determined that our patient

population offers sufficient statistical power, and our combined

meta-analysis indicates that such a correlation is unlikely and that

genotyping FCGR2/3 variants in patients with acute KD to guide

initial treatment is not useful.
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