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Genome-wide association studies (GWAS) have identified thousands of variants

in the human genome with autoimmune diseases. However, identifying

functional regulatory variants associated with autoimmune diseases remains

challenging, largely because of insufficient experimental validation data. We

adopt the concept of semi-supervised learning by combining labeled and

unlabeled data to develop a deep learning-based algorithm framework,

sscNOVA, to predict functional regulatory variants in autoimmune diseases and

analyze the functional characteristics of these regulatory variants. Compared to

traditional supervised learning methods, our approach leverages more variants’

data to explore the relationship between functional regulatory variants and

autoimmune diseases. Based on the experimentally curated testing dataset and

evaluation metrics, we find that sscNOVA outperforms other state-of-the-art

methods. Furthermore, we illustrate that sscNOVA can help to improve the

prioritization of functional regulatory variants from lead single-nucleotide

polymorphisms and the proxy variants in autoimmune GWAS data.
KEYWORDS

autoimmune disease, regulatory variant, semi-supervised, deep learning, genome wide
association studies
Introduction

Autoimmune disease (AD) is a type of disease in which the immune system mistakenly

attacks the body’s own tissues and organs, resulting in symptoms such as myocarditis, skin

rash, and joint pain, including asthma, type I diabetes, and systemic lupus erythematosus

(1, 2). Family clustering of different autoimmune diseases suggests that genetic factors

underlie common disease pathways (3), increasing the risk of certain autoimmune diseases

by affecting the function of the immune system.
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Recently, genome-wide association studies (GWAS) revealed

that approximately 90% of disease-associated susceptibility variants

are in noncoding regions (4). Now, we know that noncoding

regions in the human genome harbor distinct regulatory

elements, regulatory variants within these elements can

potentially impact the regulation of gene expression (5), and

hundreds of risk loci associated with autoimmune diseases have

been identified (6)—for example, the G allele of the noncoding

variant rs7216389 is associated with an increased risk of asthma (7).

Although associations between variants and diseases can be

identified (8), few regulatory variants were validated; it is still

difficult to identify causal variants in autoimmune diseases (9).

Deep learning can now extract valuable information from

complex genomic data, enabling the comprehension of regulatory

variants linked to autoimmune diseases (10). Yousefian-Jazi et al.

used a random forest model to identify regulatory variants associated

with autoimmune diseases and studied their functionality, including

the classification of putative causal variants for atopic dermatitis and

inflammatory bowel disease (11). An integrated network-based

approach called ARVIN was used to identify functional regulatory

variants, and it was applied to seven autoimmune diseases (12). Lee

et al. formulated the deltaSVM tool to predict several single-

nucleotide polymorphisms (SNPs) associated with autoimmune

diseases (13). Zhou et al. developed the ExPecto framework based

on deep learning, enabling the prediction of mutation tissue-specific

transcriptional effects, and experimentally validated predictions for

four immune-related diseases (14). However, the data for functional

regulatory variants in autoimmune diseases used by the previously

mentioned tools is limited in quantity, either encompassing a smaller

dataset or exclusively comprising variants from HGMD (15) and

ClinVar (16). It is still difficult to systematically identify the function

of regulatory variants in autoimmune diseases.

Given the lack of a “gold standard” dataset for functional

regulatory variants, several unsupervised models were developed

to identify functional regulatory variants, for example, MACIE (17),

Eigen (18), and semi-supervised model GenoNet (19). Although

unsupervised methods do not rely on labeled dataset, their

capability may lag behind supervised methods when trained on a

high-quality labeled dataset (17).

Here we develop sscNOVA, a semi-supervised convolutional neural

network algorithm to identify functional regulatory variants fromGWAS

and eQTL dataset and explore the functional characteristics of regulatory

variants in autoimmune diseases. We evaluate sscNOVA on the

independent testing dataset and curated an experimentally validated

testing dataset, and the results show that sscNOVA performs better than

the state-of-the-art methods. sscNOVA could also identify the functional

regulatory variants which are validated by the wet experiment and the

candidate causal variants.
Results

Overview of sscNOVA

sscNOVA mainly includes the following modules: (1) acquiring

and processing GWAS and ImmuNexUT data to construct the
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training data of sscNOVA, (2) 141 features related to 31

autoimmune diseases and 28 immune cell types are annotated by

feature selection process, (3) training a supervised convolutional

neural network (CNN) framework using GWAS and ImmuNexUT

data and constructing a semi-supervised convolutional neural

network framework (sscNOVA) with the GWAS data which do

not have interactions with ImmuNexUT, and (4) evaluating the

capability of the sscNOVA framework using GWAS and

ImmuNexUT testing datasets as well as experimentally validated

HGMD and ClinVar testing datasets (Figure 1).
Feature annotation, selection, and analysis

Variants in the GWAS catalog that have a significant association

with autoimmune diseases are unevenly distributed across different

autoimmune diseases, especially variants associated with asthma and

systemic lupus erythematosus (Supplementary Figure 1). Merging

variants from the GWAS catalog and eQTLs with autoimmune

diseases, we find that most of the positive variants are more likely

to enrich in T helper cells, monocytes, and dendritic cells across 28

immune cell types (Supplementary Figure 2), which is consistent with

what has been reported (20). To annotate all variants, we adopt

21,907 features by the Sei framework (21). Feature selection methods

are employed to reduce the feature number, while the annotation

features are redundant. Ultimately, 141 features were selected with

top feature importance which was calculated based on random forest,

150 features were selected by SelectKBest with mutual_info_classif

method, and 40 sequence class features were provided by the Sei

framework (details in “Methods” section). The T-SNE plot shows that

the classification effect of 141 features is better than that of 150

features and 40 features (Figures 2A–C).

To compare the three feature selection methods, we train

the CNN with a training dataset to test the model performance

on the independent testing dataset (details in “Methods”

section). According to the model performance on the

independent testing dataset, when using the 141 features, the

CNN model performs the best, achieving an area under curve

(AUC) of 0.891 and an area under the precision–recall curve

(AUPRC) of 0.893, which demonstrates that using 141 features

is superior to using 150 features and 40 features (Figures 2D,

E). These results indicate that the proposed method based on

the CNN model has better performance for predicting

regulatory variants in autoimmune diseases when using 141

features (Supplementary Figure 3).
Training and evaluation of sscNOVA

As the positive dataset in the CNN model only covers 10

autoimmune diseases, we adopt a semi-supervised learning

approach to further improve the generalization ability of the

model with the GWAS data which do not have interactions with

the ImmuNexUT dataset (details in “Methods” section). As

expected, sscNOVA shows an improvement in predictive
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FIGURE 1

Overview of sscNOVA. sscNOVA takes VCF files as input and generates predicted probabilities for each variant as output. Among them, 80% of the
intersection variants are designated as the training dataset (green solid box and arrow) for input into the convolutional neural network model (black
solid box). The pre-training process employing a fivefold cross-validation training strategy, with 20% of the variants serving as an independent testing
dataset for evaluating model performance (area under curve, AUC = 0.891, green curve). Based on the model’s predicted probability values, an
optimal threshold is identified, and pseudo-labels are assigned to these unlabeled genome-wide association studies data without ImmuNexUT
intersection variants (purple solid box and arrow). Subsequently, the dataset with pseudo-labels is merged with the original training dataset (yellow
dashed box), and the model undergoes another round of fivefold cross-validation training. In this cross-validation process, the model with the
highest AUC is referred to as sscNOVA. Notably, sscNOVA achieves an AUC of 0.892 on the independent testing dataset (yellow curve). The
performance of sscNOVA is evaluated using seven metrics (blue section).
B C

D E

A

FIGURE 2

Feature selection and performance evaluation. (A) T-SNE plot of 141 features are chosen by the calculation of feature importance based on random
forest. (B) T-SNE plot of 150 features selected by SelectKBest with mutual_info_classif method. (C) T-SNE plot of 40 features related to sequence
classes which are provided by the Sei framework. (D) Comparison of the AUC between the 141, 150, and 40 features on the independent testing
dataset with the convolutional neural network (CNN) model. (E) Comparison of the area under the precision–recall curve (AUPRC) between the 141,
150, and 40 features on the independent testing dataset with the CNN model.
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performance on the independent testing dataset; its AUC and

AUPRC are 0.892 and 0.896, respectively (Figures 2D, E).

For the purpose of comparing the capability of CNN with other

models, we construct three comparative models based on support

vector machine (SVM), random forest, and transformer algorithms.

Using the three types of features mentioned earlier, we apply the

CNN model and these three models to perform fivefold cross-

validation on the training dataset and evaluate their predictive

performance on the independent testing dataset. According to the

experimental results, we find that rf_141 achieves slightly higher

AUC and AUPRC values, followed by the cnn_141 model

(Figure 3A; Supplementary Figure 4). Afterward, we utilize the

dataset containing pseudo-labeled data and train four models using

identical methods. Though the AUC and AUPRC of sscNOVA on

this dataset are slightly lower than rf_pseudo_141, sscNOVA still

has the best recall (Figure 3B; Supplementary Figure 5). This

suggests that sscNOVA is capable of accurately capturing features

associated with positive variants, thereby reducing the risk of false

negatives. This capability contributes to ensuring the effective

identification of actual positive variants. The experimental results

demonstrate that the pseudo-labeling method effectively alleviates

the issue of limited labeled data and helps optimize the model’s

predictive performance.
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Comparison on an experimentally curated
testing dataset

To further validate the model performance, we use an

experimentally curated testing dataset, in which positive variants

include data from the HGMD and ClinVar databases (11), to evaluate

four different models. Negative variants are obtained through three

different methods: first, 190 negative variants are selected adjacent to

positive variants (within ±1 kbp chromosomal positions); second, 118

negative variants are randomly selected from the human genome

based on the chromosome numbers of positive variants; and third,

134 negative variants are selected adjacent to positive variants (within

±500 bp chromosomal positions). To compare the performance of

the sscNOVA model on these three datasets, it is observed that the

model performs best on the 190 negative variants selected adjacent to

positive variants (Supplementary Table 1). Therefore, variants

obtained through this method are chosen as the negative variants

for the experimentally curated testing dataset. We observe that

sscNOVA demonstrates excellent performance on both AUC and

AUPRC metrics, ranking first (AUC = 0.658, AUPRC = 0.580) and

showing significant improvement compared to the rf_141 model

(Figure 3C; Supplementary Figures 6, 7). These results indicate that

sscNOVA exhibits better generalization capabilities, allowing it to
B

C D

A

FIGURE 3

Comparison of performance among different models or tools. (A) Bubble plot of a different supervised model performance on the independent
testing dataset. The x-axis is area under curve (AUC), the y-axis is area under the precision–recall curve (AUPRC), and the size of the bubble
represents recall. (B) Bubble plot of a different semi-supervised model performance on the independent testing dataset. The x-axis is AUC, the y axis
is AUPRC, and the size of the bubble represents recall. (C) Comparing convolutional neural network, support vector machine, random forest, and
transformer algorithm models based on the experimentally curated testing dataset. The x-axis is AUC, and the y-axis is AUPRC. (D) Comparing
sscNOVA, ExPecto, and deltaSVM tools based on the experimentally curated testing dataset. The calculation method involves weights for three types
of cell lines for deltaSVM and employs two ExPecto score calculation methods. The x-axis is AUC, and the y-axis is AUPRC.
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adapt better to new samples and data distributions. In addition, when

training sscNOVA on the dataset containing pseudo-labeled data, the

capability of sscNOVA on the experimentally curated testing dataset

shows improvement in contrast to cnn_141 (Supplementary

Figures 6, 7). Moreover, we compare sscNOVA with existing tools

for predicting regulatory variants in autoimmune diseases. We

evaluate the capability of sscNOVA, ExPecto, and deltaSVM on the

experimentally curated testing dataset (details in “Methods” section).

Based on the experimental results, the sscNOVA model achieves

better performance than the state-of-the-art methods in identifying

regulatory variants in autoimmune diseases (Figure 3D).
Prioritizing functional regulatory variants

The functional predictions of sscNOVA can be used to

prioritize variants in GWAS. To illustrate the function of

sscNOVA in this setting, we show two cases of variants with

systemic lupus erythematosus and Crohn’s disease risk. The 213-

bp open chromatin regions containing the variant rs4385425

targeted by CRISPR-CAS9 showed increasing IKZF1 (Ikaros)

expression in Jurkat cells (22). This variant is proxy to the

sentinel rs11185603 (r2 = 0.99) associated with systemic lupus

erythematosus. sscNOVA predicts this variant as positive, with a

score 0.944. As shown in the UCSC Genome Browser (23),
Frontiers in Immunology 05
rs4385425 falls into the intergenic region and peak region of

H3K27ac (Figures 4A, B). Compared with allele A, allele C

improves the binding affinity of two active enhancer makers,

H3K27ac and H3K4me1 (24), in multiple lymphocyte cells.

An additional functional regulatory variant is rs212388, which was

found to be associated with Crohn’s disease. The authors show that the

C allele of rs212388 has significantly lower levels of TAGAP mRNA in

PBMCs. Moreover, data suggest that TAGAP deficiency was associated

with infiltration and proinflammatory gene expression in CD4+ T cells

(25). As shown in the UCSC Genome Browser, rs212388 falls into the

intro region of TAGAP (Figures 4C, D). The features of rs212388 show

that this variant has significant changes in the open chromatin features

of CD4+ monocytes. The H3K27ac features in CD4+ lymphocytes also

show differences between alleles of rs212388.

Overall, we investigate that sscNOVA could be used to predict

the functional regulatory variants in autoimmune GWAS but also

prioritize the proxy variants that link with lead SNPs.
Methods

Data acquisition and process

Autoimmune disease-related data are downloaded from the

GWAS catalog with GRCh38 human reference genome. A total of
B

C D

A

FIGURE 4

A total of 141 features of two variants, rs4385425 and rs212388, are produced in sscNOVA. (A, C) The 141 annotation features of variants rs4385425
and rs212388 with the same data type are merged with the average in each cell type to make the bubble plot. The x-axis is data type of annotations,
and the y-axis is the cell type of annotations. (B, D) UCSC Genome Browser on Human with GRCh38 version is adopted to visualize the variants’
genome features.
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10,304 variants data are obtained, involving 31 autoimmune

diseases such as asthma, rheumatoid arthritis, allergy, etc. The

Immune Cell Gene Expression Atlas from the University of

Tokyo (ImmuNexUT) data are downloaded from Ota M et al.

(26) in the National Bioscience Database Centre (NBDC) website.

This dataset includes two accession numbers, E-GEAD-398 and E-

GEAD-420, which consist of expression quantitative trait loci

(eQTLs) analysis data from 337 patients diagnosed with 10

different autoimmune diseases and 79 healthy volunteers,

encompassing a total of 28 distinct immune cell subtypes. These

datasets are used to identify associations between genetic variants

and gene expressions. Among the datasets, E-GEAD-398 and E-

GEAD-420 provide information on the correlation between gene

expression levels and genotypes with 2,389,672 genetic variants

records. E-GEAD-398 comprises variants with significant

associations to autoimmune diseases, while E-GEAD-420 includes

variants with non-significant associations to autoimmune diseases

in addition to those found in E-GEAD-398. Take the intersection of

variants associated with autoimmune diseases in E-GEAD-398 and

GWAS as the positive variants of training dataset and independent

testing dataset; for the corresponding negative variants, use the

variants from E-GEAD-420.

Training dataset and independent testing dataset
The positive dataset was determined by taking the intersection

of the processed GWAS catalog and ImmuNexUT numbered E-

GEAD-398 variants to create 3,362 posit ive variants

(Supplementary Figure 8). The negative dataset is created by

selecting variants with a P-value greater than 0.1 and an allele

frequency (AF) greater than 0.3 in ImmuNexUT data numbered E-

GEAD-420, resulting in 3,670 negative variants (Supplementary

Figure 8). After merging the positive dataset with the negative

dataset, we randomly sampled the variants’ data and split it into

training and independent testing dataset in an 80% is to 20% ratio,

as the 20% independent testing dataset does not participate in any

model training process.

Experimentally curated testing dataset
We use the 140 positive variants utilized by Yousefian-Jazi et al.

(https://github.com/jieunjung511/Autoimmune-research) (11). These

variants come from HGMD and ClinVar, and a total of 118 positive

variants conforming to the VCF format are obtained. Subsequently, we

screen the variants within 1 kbp upstream and downstream of the

chromosomal positions where the 118 positive variants are located,

calculate the conservation values of these variants, and only retain the

variants with a phastcons100way conservation value less than 0.5 and

AF greater than 0.3. Therefore, the final experimentally curated testing

dataset contains 118 positive variants and 190 negative variants

(Supplementary Figure 8). In addition, we employ additional

methods to obtain negative variants. One approach involves using a

pseudo-random number generator on the GRCh37 genome to

randomly select chromosomes and positions. This ensures that the

chosen positions are not adjacent to known positive variants, resulting

in the generation of 118 negative variants. The other method involves

choosing 134 negative variants located within ±500 bp chromosomal

positions adjacent to the positive variants.
Frontiers in Immunology 06
Feature annotation and selection

After annotating the variants with 21,907 features from the Sei

framework, feature selection is carried out to select the most

informative and relevant features for the analysis, thus focusing

on those that are more likely to be associated with the phenotype of

interest or have potential functional significance (27).

Initially, 3,102 features related to immune cells are selected from

the 21,907 features. Next, two methods, mutual_info_classif and

f_classif of SelectKBest, are used to select 1,000, 800, 600, 400, and

200 features from the 3,102 immune-related cell features,

respectively (Supplementary Figure 9). Mutual_info_classif

method of SelectKBest shows better classification performance

than f_classif (Supplementary Figure 10). Subsequently, we

continue using mutual_info_classif to select 150, 100, and 50

features from the 3,102 immune-related cell features.

Additionally, we use the feature importance which was

calculated based on random forest to select 141 features

(Supplementary Figure 10). Three groups of features are

compared by the performance trained with random forest model,

which includes the 150 features selected by SelectKBest, 141 features

selected by the top feature importance which was calculated based

on random forest, and 40 features of sequence classes provided by

the Sei framework. The T-distributed stochastic neighbor

embedding (t-SNE) (28) plot shows that the classification

performance is better with 141 features selected by using the

random forest method (Supplementary Figure 10). Upon

validation using the random forest model, the AUC and AUPRC

based on the 141 features selected outperform those selected by

other methods (Supplementary Figure 11). The mutual_info_classif

method is superior to the f_classif method (details in

Supplementary Table 2).
Method for constructing a pseudo-
labeled dataset

We construct a pseudo-labeled dataset based on autoimmune

disease-related GWAS data which do not have interactions with

ImmuNexUT using a threshold and t-test method. First, we use the

cnn_141 model to predict the probability of the GWAS data

without ImmuNexUT interactions and subject them to a fivefold

cross-validation. For each variant, five probability values are

generated as predictions. First, the Student’s t-test (29) is

conducted to determine if the differences between these five

probability values for each variant are statistically significant, with

a P-value less than 0.05. If the P-value of this variant is less than

0.05, the variant is retained; otherwise, it is discarded. To find the

optimal pseudo-label threshold for this variant, a parameter search

is conducted. Then, using a threshold of 0.5 as a reference, we create

five groups of thresholds with ±0, ± 0.1, ± 0.2, ± 0.3, and ±0.4 for all

unlabeled variants. (Supplementary Figure 12). Next, we utilize the

variants with pseudo-labeled data and the original training dataset

to retrain the model and compare the models’ performance.

Through this approach, we identify the optimal threshold for

applying pseudo-labels, which involves considering cnn_141
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model-predicted probabilities greater than 0.9 as positive variants

and those less than 0.1 as negative variants. In the end, we filter out

2,759 positive variants and 626 negative variants from 6,924

variants data, discarding 3,539 variants that did not satisfy

the criteria.
Method for constructing a semi-
supervised model

The approach to constructing sscNOVA involves using a

trained model to predict variants from the GWAS data which do

not have interactions with ImmuNexUT and then pseudo-labeling

the unlabeled GWAS data using a threshold and t-test method.

After that, we merge the dataset with pseudo-labeled data and the

original training dataset and evaluate the model’s capability using

AUC on the independent testing dataset. The threshold

corresponding to the highest AUC is selected as the final pseudo-

labeling method. Using the same methods, we retrain the models

with the augmented dataset.
Semi-supervised model architecture

Semi-supervised learning is a learning approach that combines

supervised and unsupervised learning (30). In the presence of a

small amount of labeled data, semi-supervised models infer the

structure and features of unlabeled data to perform classification

and prediction tasks, thereby enhancing model performance with

limited labeled data (31). The semi-supervised sscNOVA model

implementation consists of the following eight layers:

1. First convolutional layer: Let x be the input feature of length

141 andW be the convolutional kernel of size 5. The output y of the

convolutional layer can be calculated as Equation 1:

yi = GELU(S4
j=0Wj · xi+j + b) (1)

where i ranges from 0 to 136, and b is the bias term. The

resulting output y will have a shape of (137, 32), the number 32 of

which represents the quantity of distinct kernels applied to the

input data.

2. First max-pooling layer: Given the (137, 32) output shape

from the prior Conv1D layer, applying a max-pooling operation

with a pool size of 2 reduces each feature map’s length by half while

keeping 32 feature maps. The output z of the max-pooling layer can

be calculated by taking the maximum value within every

consecutive two elements in each feature map as Equation 2:

zi,j = max(y2i,j, y2i+1,j) (2)

where i ranges from 0 to 67, and j ranges from 0 to 31. The

resulting output z will have a shape of (68, 32).

3. Second convolutional layer: Let y be the previous output of

shape (68, 32) and W' be the convolutional kernel of size 5 for the

second convolutional layer, where the number of kernels is 64. The

output z can be calculated as Equation 3:
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zi,j = GELU(S4
k=0Wk

0
· yi+k,j + b0) (3)

where i ranges from 0 to 63, j ranges from 0 to 63, k ranges from

0 to 4, and b' is the bias term. The resulting output z will have a

shape of (64, 64).

4. Second max-pooling layer: The output w of the second max-

pooling layer can be calculated similarly to the first pooling layer as

Equation 4:

Wi,j = max(z2i,j, z2i+1,j) (4)

where i ranges from 0 to 31, and j ranges from 0 to 63. The

resulting output w will have a shape of (32, 64).

5. Flattening layer: The flattening operation reshapes the 2D

array w into a 1D array v by concatenating its rows as Equation 5:

vk = wi,j (5)

where k = i×64+j, and k ranges from 0 to 2,047. The resulting

output v will have a shape of (1, 2,048).

6. Fully connected (dense) layer: Let v be the input vector of size

2,048 and W" be the weights of the dense layer. The output x of the

dense layer can be calculated as Equation 6:

xi = GELU(S2047
j=0 W

0 0
j,i · vj + b

0 0
i ) (6)

where i ranges from 0 to 15 and corresponds to the 16 specified

units in the dense layer, j ranges from 0 to 2,047, and b
0 0
i is the bias

term. The resulting output x will have a shape of (16), which

matches the number of units within the layer.

7. Dropout layer: The dropout layer performs an element-wise

multiplication by a binary mask to apply dropout as Equation 7:

yi = xi · mi (7)

where i ranges from 0 to 15, and mi is a binary mask randomly

set to 0 or 1 with a probability of 0.1.

8. Output dense layer: Let y be the output of the dropout layer

andW''' be the weights of the output dense layer. The final output z

can be calculated as Equation 8:

z = s (S15
i=0W

0 0 0
i · yi + b‴) (8)

where s is the sigmoid activation function, and b''' is the

bias term.

The model’s architecture is configured for training by utilizing

the “binary_crossentropy” loss function (BCELoss). The loss

function is as follows Equation 9:

BCELoss = − 1
N SN

i=1(yilog(pi) + (1 − yi)log(1 − pi)) (9)

where N is the number of variants, yi represents the actual label

(0 or 1) of variant i, and pi represents the predicted probability by

the model that variant i belongs to the positive class. In this loss

function, the term yilog(pi) penalizes the model for inaccuracies

when predicting positive variants, while (1–yi)log(1–pi) penalizes

inaccuracies in predicting negative variants. The objective of the

model is to minimize this loss function to make its predictions

closer to the actual labels.
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In this neural network model, we opt to use Gaussian Error

Linear Unit (GELU) (32) as the activation function, and it is applied

in both the convolutional layers and the fully connected layers.

Additionally, the “Adam” optimizer is adopted as the guiding

algorithm responsible for the model’s weight updates throughout

the training process. Utilizing its default learning rate of 0.001, the

Adam optimizer dynamically adjusts the learning rates for

individual parameters (33). The training is conducted in 50 epochs.
sscNOVA functional significance score

For each variant i, yprob[i] is a probability value between 0 and 1,

representing the model’s prediction of the probability that it belongs

to the positive class. Therefore, the scoring formula can be

expressed as Equation 10:

fscore(i) = yprob(i) = dense(flatten(pool(conv(i)))) (10)

where i represents the i–th variant in the dataset; conv, pool,

flatten, and dense represent one-dimensional convolution

operation, maximum pooling operation, pooling result flattening,

and full connection operation, respectively; and fscore(i) represents

the predicted probability of the i–th variant belonging to the

positive class. The aim is to determine a threshold that achieves a

balanced trade-off between these rates within the context of the

specific dataset’s characteristics, where values above the threshold

are classified as positive and values below the threshold are classified

as negative.
sscNOVA comparison with ExPecto
and deltaSVM

When comparing with ExPecto, we try two methods to calculate

the scores. The first method involves comparing the predicted variants

labels from the ExPecto model with the true labels and then computing

the evaluation metrics based on this comparison. Among them,

ExPecto employs a minimum predictive effect threshold (>0.3),

which is a threshold for log fold-change recommended by the official

website (https://hb.flatironinstitute.org/expecto/about). The second

method involves taking the absolute values of the ExPecto model’s

predicted probabilities and then normalizing and calculating the

evaluation metrics based on the normalized probabilities and the

true labels. To calculate the deltaSVM scores, the GM12878, K562,

and HepG2 cell line models developed by deltaSVM are all tested.
Discussion

Identifying the functional impact of regulatory variants related to

autoimmune diseases is a significant challenge in human genetics (34).

Due to the scarcity of experimentally validated functional regulatory

variants in autoimmune diseases, we adopt the idea of semi-supervised

learning, combining labeled and unlabeled data, to develop a
Frontiers in Immunology 08
framework based on convolutional neural network algorithms to

predict functional regulatory variants in autoimmune diseases.

sscNOVA provides a feasible solution for the problem of limited

gold standard data for regulatory variants in autoimmune diseases.

By utilizing the information from unlabeled data, our algorithm helps

the models gain more comprehensive information and further elevates

the predictive performance. Moreover, the current model

results represent the optimal model obtained after fine-tuning

(Supplementary Table 3, 4).

Since sscNOVA is based on sequence prediction, it can predict

various types of variants. To test whether sscNOVA can help find the

rare variants or the variants have not been observed, we utilize the

sscNOVA model to predict the validated rare or not previously

observed variants in two studies in which the variants were validated

by the MPRA assays (35, 36). The recall and AUC values in HeLa,

LNCaP, and NPC cell lines indicate that sscNOVA has potential for

identifying rare variants (Supplementary Figure 13). In contrast to

traditional supervised learning methods, the idea of semi-supervised

learning allows us to effectively utilize unlabeled samples in the

presence of limited labeled samples, overcoming issues related to

data sparsity and missing sample labels (37).

However, some challenges also exist—for instance, the

insufficient number of experimentally validated functional

regulatory variants may introduce label noise during model

training (38), thus reducing prediction performance. It is

expected that an increasing amount of experimentally validated

variants data will become available, which can intensify prediction

performance by leveraging high-confidence data. Due to the limited

number of experimentally validated variants in autoimmune

diseases, there is a decline in performance on the experimentally

curated testing dataset. We localize the positional information of

variants in both the independent testing dataset and the

experimentally curated testing dataset. Additionally, we conduct a

categorized analysis to assess the predictive capability of sscNOVA

for each positional category. (Supplementary Figures 14A, B and

Supplementary Table 5). We find that sscNOVA has better

performance with variants falling into the intron and promoter

regions, but variants in the intergenic regions might be missed out

by sscNOVA. The annotations in intron and promoter regions are

more abundant than those in intergenic regions, which may make it

easier for the model to learn patterns of intron variants during the

training phase (39, 40). Meanwhile, integrating more experimental

validation and functional regulatory variants data will provide

greater opportunities to improve predictive performance.

Furthermore, in the ever-evolving field of deep learning, there

may be better feature annotation tools capable of capturing the

interactions between regulatory regions more effectively. By

combining appropriate feature selection methods and training

strategies, it could improve the prediction of functional regulatory

variants in autoimmune diseases and enhance the capability of

model (41). In conclusion, a model based on semi-supervised deep

learning can provide new insights and directions for the study of

autoimmune diseases, facilitating further investigation into the

pathogenesis of autoimmune diseases.
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