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Accurate computational identification of B-cell epitopes is crucial for the

development of vaccines, therapies, and diagnostic tools. However, current

structure-based prediction methods face limitations due to the dependency

on experimentally solved structures. Here, we introduce DiscoTope-3.0, a

markedly improved B-cell epitope prediction tool that innovatively employs

inverse folding structure representations and a positive-unlabelled learning

strategy, and is adapted for both solved and predicted structures. Our tool

demonstrates a considerable improvement in performance over existing

methods, accurately predicting linear and conformational epitopes across

multiple independent datasets. Most notably, DiscoTope-3.0 maintains high

predictive performance across solved, relaxed and predicted structures,

alleviating the need for experimental structures and extending the general

applicability of accurate B-cell epitope prediction by 3 orders of magnitude.

DiscoTope-3.0 is made widely accessible on two web servers, processing over

100 structures per submission, and as a downloadable package. In addition, the

servers interface with RCSB and AlphaFoldDB, facilitating large-scale prediction

across over 200million cataloged proteins. DiscoTope-3.0 is available at: https://

services.healthtech.dtu.dk/service.php?DiscoTope-3.0.
KEYWORDS

structure-based, B cell epitope prediction, inverse-folding, antibody epitope prediction,
ESM-IF1, immunogenicity prediction, vaccine design
1 Introduction

A key mechanism in humoral immunity is the precise binding of B-cell receptors and

antibodies to their molecular targets, named antigens. The antigen regions that are involved

in the binding are known as B-cell epitopes. B-cell epitopes are found on the surface of

antigens, and in the case of proteins they can be classified as linear if the epitope residues are
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sequentially arranged along the antigen sequence, or discontinuous if

they are only proximal in the antigen tertiary structure, but not in the

primary structure. Identification of B-cell epitopes has large

biotechnological applications, including rational development of

vaccines and immunotherapeutics. However, experimental mapping

of epitopes remains expensive and resource intensive. Computational

tools for B-cell epitope prediction offer a viable and large-scale

alternative to experiments. However, prediction of B-cell epitopes

remains a challenging problem (1, 2). Historically, in-silico prediction

methods have been either antigen sequence- or structure-based.

Sequence-based methods such as BepiPred-2.0 (3) are attractive

given the high availability of protein sequences. BepiPred-2.0

utilizes a random forest trained on structural features predicted

from the antigen sequence, but has limited accuracy and struggles

to predict conformational or non-linear epitopes (4). In a recent

work, BepiPred-3.0 (5) further improves the method, demonstrating

large gains by exploiting sequence representations from the protein

language model ESM-2 (6). It was shown to outperform previous

sequence based tools, including Seppa-3.0 (7), ElliPro (8), BeTop (9)

and EPSVR/EPMeta (10).

Structure-based methods should benefit from having direct access

to the antigen tertiary structure, and in particular, its surface topology.

DiscoTope-2.0 (11) was published in 2012, and it estimates epitope

propensity from the local geometry of each residue, taking into

consideration both its solvent accessibility and the direction of its

side chain. Older structure-based methods like DiscoTope-2.0 and the

newer epitope3D (12) are still outperformed by the sequence-based

BepiPred-3.0 (5). However novel methods such as the inverse-folding

based SEMA (13) and the geometric deep-learning network ScanNet

(14) have shown promising advances. Recently, ScanNet demonstrated

improved performance by explicitly considering geometric details at

both the resolution of individual atoms and amino-acids. However,

while structure-based prediction tools may demonstrate improved

performance, they are limited by the availability of antigen structures.

Data scarcity affects the accuracy of prediction tools in different

ways. Firstly, they constrain the amount of data on which such tools

can be trained. As of January 2023, less than 5500 antibody

structures in complex with an antigen are available in the

antibody-specific structural database SabDab (15). After filtering

this dataset for redundancy, one may be left with less than 1500

structures for training, which limits the complexity of the models

that can be reliably trained without incurring in overfitting (5).

Secondly, the available data is a biased sampling of the possible

antibody-antigen complexes. We find that most antigens are found

only once in the dataset, while others, likely due to medical or

biological interest, have been resolved in complex with as many as

43 (15) different antibodies. This means that one cannot confidently

annotate negative residues; they might be part of antibody-antigen

complexes yet to be solved.

Lastly, undersampling of epitopes will also result in an

imprecise assessment of the tools’ accuracy; predicted epitopes

that appear as false positives may just be in antibody bound

regions yet to be identified. The last two points (bias and

undersampling) are typical of a class of problems known as

Positive-Unlabeled (PU) learning. In this scenario, we are only

confident of positive epitopes, while all remaining (surface) residues
Frontiers in Immunology 02
should be treated as unlabeled. Several approaches have been

proposed for increasing the accuracy of B-cell epitope prediction

methods and their estimated metrics in such cases (12, 16, 17). A

simple yet effective strategy is to train ensemble predictors based on

bootstrapping of samples in the Unlabelled class (18), also known as

PU bagging, which is the approach that we employ in this work.

With recent advances in protein structure prediction, AlphaFold2

(19) has enabled accurate prediction of protein structures directly

from sequences. Currently, over 200 million pre-computed structures

are available in AlphaFold DB (20), covering every currently

cataloged protein in UniProt (21). The three-dimensional

coordinates of the proteins, together with the local quality reported

as pLDDT scores, are readily accessible from the database.

To truly harness the remarkable progress in generating accurate

structural models, we must develop robust and informative

numerical representations of both predicted and resolved

structures. This is especially crucial for deep-learning methods,

which thrive on such tasks. The ESM-IF1 inverse folding model is

an equivariant graph neural network pre-trained to recover native

protein sequences from protein backbones structures (Ca, C and N

atoms). The structure-based representations which may be

extracted from this model have been shown to outperform

sequence-based representations on tasks such as predicting

binding affinity and change in protein stability (22). Crucially,

ESM-IF1 is explicitly trained on both solved and AlphaFold

predicted structures, enabling large-scale application of its

representations even when solved structures are unavailable.

In this work, we train DiscoTope-3.0, a structure-based B-cell

epitope prediction tool exploiting inverse folding representations

generated from either AlphaFold predicted or solved structures.

DiscoTope-3.0 is trained on both predicted and solved antigen

structures using a positive-unlabelled learning ensemble approach,

enabling large-scale prediction of epitopes even when solved

structures are unavailable. We compare its performance versus

previous tools and the impact in performance when using

predicted structures versus solved structures, in both cases

showing substantially improved accuracy. DiscoTope-3.0 is

implemented as a web server and downloadable package

interfacing with both RCSB and AlphaFoldDB.
2 Results

The positive-unlabelled ensemble training strategy for

DiscoTope-3.0 is shown in Figure 1. First, epitopes from solved

antibody-antigen complexes are mapped onto the antigen

sequences (1). Using sequences as input, antigen structures are

predicted using AlphaFold2 (2). Next, per-residue structural

representations, for both solved and predicted structures, are

extracted using the ESM-IF1 protein inverse folding model (3 and

4). During training, random subsets of epitopes and unlabelled

residues are sampled across the dataset (5), before finally training an

ensemble of XGBoost models on the individual data subsets (6). The

final DiscoTope-3.0 score is given as the average score from the

ensemble models (7). More details on the training procedure are

available below and in the Methods section.
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Here, we present a quick overview of the dataset and feature

pre-processing procedure. DiscoTope-3.0 training and validation is

based on the BepiPred-3.0 dataset of 582 antibody-antigens

complexes, covering a total of 1466 antigen chains IEDB (23).

Epitopes are defined as the set of residues within 4 Å of any

antibody heavy atom (see Methods). The training and

hyperparameter tuning is based on 2 different datasets: Training

and Validation, while evaluation is performed on the Validation

and external test sets. The external test set consists of 24 antigens

collected from SAbDab (15) and PDB (24) on October 20, 2022.

These antigens share at most 20% similarity to both our own,

BepiPred and ScanNet’s training datasets (see Methods).

In addition to using experimentally solved antigens for training,

structures for the individual antigen chains were additionally

predicted using AlphaFold2. Both the solved and predicted chains

were then embedded with ESM-IF1. Further we extract for each

residue its relative surface accessibility (RSA), AlphaFold local quality

score (pLDDT) as well as the antigen length and a one-hot encoding

for the antigen sequence (see Methods and Table 1). These structural

features (or subsets) were used to train an ensemble of XGBoost

models and the ensemble average is used as the final prediction score.

We chose to use XGBoost for our architecture due to their

robustness to outliers and noise, minimal need to adjust model
Frontiers in Immunology 03
hyperparameters (25), and enabling combination of multiple “weak

learners” in our PU (positive and unlabelled) learning ensemble (26,

27), to produce a robust final prediction.

Structure-based representations have been shown to be a

powerful representation in different downstream tasks. To see if

this is also the case for B-cell epitope prediction, we evaluated the

results obtained using different feature encoding schemes on our

validation set of AlphaFold structures (for details on this dataset

refer to Methods and Table 1). First, we assess whether training a

single XGBoost model using structure representations from

predicted structures outperforms a similar model based on the

sequence representations from ESM-2 (Figure 2). Here, we observe

a marginal but consistent epitope prediction performance using the

structure (AUC-ROC 0.767 ± 0.003) vs sequence representations

(AUC-ROC 0.751 ± 0.003) (p < 0:0001).

As explained in the introduction, the B-cell epitope prediction

problem can be categorized in the broad class of PU training.

Incorrectly labeled negative examples can negatively affect the

training, by introducing frustration in the learning process (28).

We can observe that, by using an ensemble learning strategy with a

dataset bagging approach based on previous works (28–30) (see

Methods), we can further improve performance (AUC-ROC 0.791

± 0.001) and generalization.
FIGURE 1

Overview of the DiscoTope-3.0 method. 1) Antigen sequences are extracted from solved antibody-antigen complexes with mapped epitopes. 2)
Antigen structures are either provided as solved, or predicted with AlphaFold2. 3) Structures are embedded with ESM-IF1. 4) Per-reside features are
extracted. 5) Labelled epitope residues and non-labelled residues are extracted. 6) An XGBoost ensemble is trained on the resulting dataset. 7) The
final model predicts epitope-propensity on input solved or predicted structures. Created with BioRender.com.
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2.1 Effect of using predicted versus
solved structures

One of the risks in training models on either exclusively solved

or AlphaFold structures is that the methods might over-specialize to

one source and perform worse on the other, or even be affected by

data leakage. For example, a model may overfit on conformational

changes present in the side chains of epitope residues in solved

antibody-antigen complexes.

By training on both predicted and solved structures, we obtain a

final model which performs well on both structure types, with an AUC-

ROC 0.799 ± 0.001 for predicted structures (Figure 2), and 0.807 ±

0.001 when predicting solved structures (Supplementary Figure S1).

We note that training separate models, namely using only solved or

only predicted structures, does indeed improve performance slightly

when tested on the same class (AUC-ROC 0.813 and 0.805

respectively), but comes at added complexity. To simplify
Frontiers in Immunology 04
comparison with other tools, we therefore chose the DiscoTope-3.0

version trained on both structure types for further analysis.
2.2 Benchmark comparison to state-of-
the-art methods

To further test the effect of using predicted versus solved

structures, we used the external test set of 24 antigens. These

antigens share at most 20% sequence similarity to both our own,

BepiPred and ScanNet’s training datasets (see Methods). We

benchmark against the structure-based tools ScanNet and SEMA,

while including BepiPred-3.0, as a purely sequence-based and

independent of the different structural variations, and a naïve

predictor using relative surface accessibility as a score. We note

that all benchmarked tools use the same definition for epitope

residues, thus ensuring a fair comparison.

The precision and recall scores of the tools were calculated on this

test set. The results of this evaluation are displayed in Figure 3. Here,

DiscoTope-3.0 outperforms all other tools, for both predicted (AUC-PR

0.232 ± 0.02 vs closest 0.177 ± 0.02 BepiPred-3.0) and solved structures

(0.223 ± 0.02 vs closest 0.185 ± 0.02 SEMA) (see Supplementary Figure

S2 and Table 2 formore performancemetrics).We note that DiscoTope-

3.0 here strongly outperforms BepiPred-3.0, and point to the BepiPred-

3.0 publication for an extensive benchmark demonstrating BepiPred-3.0

again outperforming epitope3D, Seppa-3.0, Ellipro and the previous

version of DiscoTope-2.0.

We introduce a novel metric, the epitope rank score, primarily due

to the need for a fair and normalized comparison among different tools,

that operate with varying score scales. To put it simply, to calculate the

epitope rank scores, we rank-normalize the scores for a given antigen,

then find the mean rank for all observed epitopes in that antigen. For

instance, a mean epitope rank score of 70% signifies that, on average,

epitopes score in the upper 70th percentile of residue scores (see
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FIGURE 2

Effects of inverse folding and bagging. Ablation results on the validation set of AlphaFold predicted structures, with less than 50% sequence similarity
to the training set. The plot reports the AUC-ROC for a single XGboost model trained on representations based on ESM-2 650M parameter (blue)
and on ESM-IF1 (orange), for an ensemble of 20 XGboost models based on bootstraps of ESM-IF1 representations (purple), for models where
additional structural features are included (see Methods) tested on both AlphaFold models (green) and on the corresponding solved structures (red)
(see Methods). Error bars indicate 95% confidence interval.
TABLE 1 Feature overview.

Feature Dimensions Description

ESM-
IF1 embeddings

512 Inverse folding representations from
input antigen structures

Antigen sequence 20 Amino-acid sequence, one-
hot encoded

Antigen length 1 Length of sequence

AlphaFold
quality score

1 Residue pLDDT score, as predicted
by AlphaFold2

Relative
surface

accessibility

1 Calculated by Shrake-
Rupley algorithm

Total: 535 L x 535
Input features for the XGBoost model architecture.
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Methods). A typical real-case scenario for this metric, would be for

users to submit individual antigens, and then to analyze the top scoring

epitope residues, regardless of their specific scores. Using this metric,

DiscoTope-3.0 consistently outperforms ScanNet, SEMA and

BepiPred-3.0 in the case of predicted structures, and is only matched

in performance by ScanNet on solved structures (Supplementary

Figure S3).
2.3 Robustness to relaxation and
predicted structures

We note that DiscoTope-3.0’s performance is largely unaffected

by the type of structures used for prediction. To further test the

robustness of the tools to minor differences in the antigen

structures, we performed an energy minimization on the solved

structures using the software FoldX (31). This minimization only

impacts the side chain, thus leaving the backbone of the native

structure unaltered. The ESM-IF model does not use the side chain

atoms in its structure representations, and consequently

DiscoTope-3.0 should not be affected by the relaxation process.

We observe that after side-chain relaxation in solved structures,

ScanNet’s epitope rank scores are reduced by ∼ 3.1 percentile

points, while swapping solved for predicted structures leads to a loss

of ∼ 7.5 percentile points (see Methods). In contrast to this,

DiscoTope-3.0 only loses ∼ 0.1 and ∼ 0.6 percentile points

respectively, again indicating robustness to the modeling process

(Supplementary Figure S4).

These observations can be attributed to the different ways the

two models process structural features. ScanNet uses side-chain
Frontiers in Immunology 05
atomic coordinates explicitly, whereas DiscoTope-3.0 relies solely

on the accuracy of backbone modeling. This difference suggests that

some models, like ScanNet, might overfit to the specific orientations

of side-chains present only in bound antibody-antigen complexes,

information which would not be useful in predicting novel epitopes.

By training models on both predicted and relaxed, solved structures,

we can potentially avoid this overfitting and increase the

generalizability of the models.
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FIGURE 3

Improved performance on solved and predicted structures. AUC-PR curve plots on the external test set of 24 antigen chains, at most 20% similar to
the training set of all models. Structures provided as AlphaFold predicted, experimentally solved, or sequence in the case of BepiPred-3.0. Standard
deviation calculated from bootstrapping 1000 times (see Methods). See Supplementary Figure S2 and Table 2 for additional performance metrics.
Please see BepiPred-3.0 publication (5) for its improved performance versus DiscoTope-2.0, epitope3D, Seppa-3.0 and ElliPro.
TABLE 2 Performance on benchmarking datasets.

Metric Dataset

Lysozyme
(AlphaFold)

External
test set

(AlphaFold)

External
test set
(Solved)

AUC-PR 0.722 0.232 0.223

AUC-ROC 0.809 0.783 0.795

MCC 0.521 0.227 0.214

Total residues 129 6788 6788

Observed
epitope residues

55 (223
before

collapsing)

436 436

#
antigen structures

1 (12
before

collapsing)

24 24
Overview of external test set and lysozyme test sets for solved and AlphaFold predicted
antigens. Matthew correlation coefficient (MCC) calculated at optimal sensitivity-specificity
threshold using the Youden-index.
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2.4 Improved prediction on exposed and
non-linear epitopes

We also investigated if the structural information available to

DiscoTope-3.0, ScanNet and SEMA affects the prediction of

different types of epitopes. To this aim, epitopes were split into

different sub-categories (Exposed, Buried, Linear and Non-linear).

Exposed and Buried epitope residues are defined depending on

whether their relative surface accessibility was above or below 20%,

respectively. Linear epitopes are defined as any group of 3 or more

epitope residues found sequentially along the antigen sequence,

allowing for a possible gap of up to 1 unlabeled residue in between.

Finally non-linear epitopes were defined as epitopes not satisfying

the conditions of the linear group.

The result of this performance evaluation in the external test set

reveals improved performance of DiscoTope-3.0 across all epitope

subsets (Figure 4). DiscoTope-3.0 performance is remarkably good

for non-linear epitopes. In the case of buried epitopes (relative

surface accessibility < 20%), all models score poorly in the 30-37th

percentile (not shown). This low performance is likely an artifact of

the epitope labeling definition (shared between all tools), where

inaccessible residues in proximity to the bound antibody are

included in an epitope patch, despite not directly being involved

in molecular interactions with the antibody.
2.5 Effect of predicted structural quality

Next, we investigate how the quality of the AlphaFold predicted

structures affects the prediction of exposed epitopes. Overall, lower

structural quality leads to small decrease in predictive performance
Frontiers in Immunology 06
(Figure 5), with high quality structures (pLDDT 95-100) having amean

epitope rank score of 84.2%, and moderate quality structures (pLDDT

85-95) having a non-significant decrease in mean epitope rank score of

81.2%. Only the group of antigens in the lowest quality pLDDT 60-85

group ($\sim$ 9% of antigens) perform significantly worse, with a

score of 75.5% (p < 0:005). Fitting a linear model, the epitope rank

score on average lowers by about 5 percentile points for every 10 point

decrease in structural quality or pLDDT score (Figure 5B).
2.6 Calibrating scores for antigen length
and surface area

We note that DiscoTope, BepiPred and SEMA exhibit a bias

towards lower scores for longer antigen lengths (Pearson

correlation -0.74, -0.71 and -0.51 respectively on external test set,

not shown). If using a fixed threshold for binary epitope prediction,

this results in most residues in shorter antigens being assigned as

positives, while longer antigens may have all residues assigned

as negatives.

To correct for this length bias, we calibrate antigen scores based

on a predicted m and standard deviation value, calculated from the

antigen length and its mean surface score (see Methods and

Supplementary Figure S8). The calibrated scores demonstrate

independence towards the antigen length, and clear separation of

buried and exposed residues across antigens in the validation set S6.

Furthermore, we find that calibrating the scores enables setting a

fixed threshold that provides reliable epitope recall across shorter

and longer antigens. For example, if we choose the 50th percentile

calibrated score for exposed epitopes (in the validation set), and use

this for binary epitope prediction on the lysozyme case study (see
All
lab

eled

epi
top

es Exp
ose

d

(RS
A>=2

0%) Lin
ear

+ exp
ose

d
Non

-lin
ear

+ exp
ose

d

Epitope subsets

62.5

65.0

67.5

70.0

72.5

75.0

77.5

M
ea

n
ep

it
o
p
e

ra
n
k
sc

o
re

(%
)

Model

DiscoTope-3.0

ScanNet

BepiPred-3.0

All
lab

eled

epi
top

es Exp
ose

d

(RS
A>=

20%
) Lin

ear

+ exp
ose

d
Non

-lin
ear

+ exp
ose

d

Epitope subsets

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

M
ea

n
ep

it
o
p
e

ra
n
k
sc

o
re

(%
)

Model

DiscoTope-3.0

ScanNet

BepiPred-3.0

SEMA

FIGURE 4

Improved performance on linear and non-linear epitopes. Mean epitope rank scores across antigens in the external test set, for the following
epitope subsets: All labeled epitopes, Exposed (relative surface accessibility < 20%), Exposed Linear epitopes and exposed Non-linear epitopes (see
text and Methods). Mean values calculated after bootstrapping 1000 times, with whiskers showing 95% distribution range.
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next section), we achieve an expected ∼ 50% epitope recall (see

Methods and Supplementary Figure S7).
2.7 Lysozyme case study with
collapsed epitopes

As a noteworthy test case, we evaluate the performance of

DiscoTope-3.0 on lysozyme, a well-studied antigen extensively

mapped against different antibodies. First, we identified 12

lysozyme chains with mapped epitopes at 90% similarity to the

chain C of the PDB structure 1A2Y. Next, DiscoTope-3.0 was re-

trained excluding these chains. Next, we calculated an antibody hit

rate, a ratio of on the number of times a given epitope residue was

observed as an epitope across all of the 12 structures. Here, a score

of 90% means the same residue was observed as an epitope in 11 out

of 12 of the chains, which is the case for 5 out of 129 residues.

Overall, we find that calibrated DiscoTope-3.0 scores correlate with

the observed epitope count or antibody hit rate with a Spearman
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correlation of 0.58 (Figure 6). Fitting a linear model, we find that a 0.20

point increase in calibrated scores on average leads to a 10% increase in

the antibody hit rate (p < 0:0001, Supplementary Figure S5).

We note that the residues at positions ∼ 30-40 (Figure 6) score

highly in DiscoTope but lacked observed epitopes. Upon further

investigation into the IEDB database, we found this region to be part

of a discontinuous epitope patch (including K31, R32, G34, D36, G37,

G40…) bound by a camelid antibody deposited under the PDB id 4I0C.
2.8 DiscoTope-3.0 web server

Finally, we deployed a DiscoTope-3.0 web server, which enables

rapidly predicting epitopes on either solved or predicted structures

(Figure 7). The web server currently accepts batches of up to 50

PDB files at a time, with any number of chains. Users may upload

structures directly as PDB files, or automatically fetch existing

structures submitted as a set of RCSB or AlphaFoldDB IDs.

Output predictions are easily visualized through an interactive 3D
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Effects of predicted structural quality. Validation set performance on AlphaFold predicted antigens dependent on predicted structural quality,
excluding buried epitopes. (A) Epitope rank score distribution for antigens split into increasing quality bins of mean antigen pLDDT 60-85, 85-95 and
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view directly on the web server using Molstar (32), and predictions

may be downloaded in both a CSV and PDB format.
3 Discussion

In this work, we present DiscoTope-3.0, a tool for improved B-cell

epitope prediction. Our method exploits structure representations

extracted from the ESM-IF1 inverse folding model. Extensive

benchmarking of the tool demonstrated state of the art performance

on both solved and predicted structures. Importantly the performance,
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in contrast to earlier proposed structure-based models, was found to be

maintained when shifting to predicted and relaxed structures. This

observation is of critical importance since it alleviates the need for

experimentally solved structures imposed in current structure-based

models, and allows for predicted structures to be applied for accurate

B-cell epitope predictions. This extends the applicability of the tool by 3

orders of magnitude, from ∼ 200K solved structures in the PDB (24),

to ∼ 200M predicted structures available in the AlphaFoldDB (20).

We note that other structure-based tools perform worse than

the sequence-based BepiPred-3.0 in cases where only predicted

structures and their sequences are available. This may arise from
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FIGURE 7

DiscoTope-3.0 web server interface. The web server provides an interactive 3D view for each predicted protein structure. DiscoTope-3.0 score on
an example PDB, with increasing epitope propensity from blue to red. DiscoTope-3.0 is accessible at: https://services.healthtech.dtu.dk/service.php?
DiscoTope-3.0, https://services.healthtech.dtu.dk/service.php?DiscoTope-3.0.
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sensitivity to the quality of predicted structures, or relying on

signals only present in solved or unrelaxed structures. DiscoTope-

3.0’s use of structure representations based on the protein backbone

makes it robust to the predicted structural quality, and remarkably,

able to perform similarly across solved, predicted and relaxed

structures. It is, to the best of our knowledge, the first tool that

presents highly accurate results on protein structural models.

We also find that other DiscoTope-like B-cell epitope prediction

tools demonstrate a bias towards lower scores for longer antigens.

After calibrating DiscoTope-3.0 scores for antigen length and

surface residue scores, we provide calibrated score thresholds

which provides the user with consistent expected epitope recall

rates across shorter and longer antigens.

Finally, DiscoTope-3.0 interfaces with AlphaFoldDB and RCSB,

enabling rapid batch processing across all currently cataloged

proteins in UniProt and deposited solved structures. The web

server is made freely available for academic use, accepting up to

50 input structures at a time, with any number of chains.

Our tool has been trained and evaluated on individual antigen

chains. One could envision that, for multimeric antigen structures,

it would be possible to further increase the tool performance by

training and testing on the antigen complex. At this time,

AlphaFold2 modeling accuracy for complexes is not yet on par

with its accuracy on individual chains, and predicted complexes are

not yet available in the AlphaFoldDB. As the science and technology

behind the structural modeling progresses, it will be likely possible

to further improve B-cell epitope predictions.

On the other hand, the positive-unlabelled learning strategy

based on ensemble models and dataset bagging we use displays a

remarkable boost in performance. We can imagine that, given the

large dimension of the potential antibody space, the large gap

between potential and observed epitopes will not be easily filled.

An alternative strategy, that could circumvent this problem and

provide valuable information to users, would be to perform

antibody-specific epitope predictions. This approach has been

tested by us and others in the past (33, 34), but the results are yet

to provide a significant improvement in accuracy.

In summary, DiscoTope-3.0 is the first structure-based B-cell

epitope prediction model that accepts and maintains state-of-the-

art predictive power across solved, relaxed and predicted antigen

structures. We believe this advance will serve as an important aid

for the community in the quest for novel rational methods for the

design of novel immunotherapeutics.
4 Methods

4.1 Training and evaluation of
DiscoTope-3.0

The antigen training dataset as presented in BepiPred-3.0 was

used as the starting point for our work. The dataset consists of 582

AbAg crystal structures from the PDB, filtered for a minimum

resolution of 3.0 Å and R-factor 0.3. Epitopes are defined as any

antigen residue containing at least 1 heavy atom within 4 Å of an

antibody heavy atom. From this dataset, using the tool MMseqs2,
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we first remove any sequences with more than 20% sequence

identity to the BepiPred-3.0 test set, resulting in 1406 chains.

Next, the antigen sequences are clustered at 50% sequence

identity. Each cluster has then been selected to be part of the

validation (281 chains) or the training set (1125 chains).

In the ablation study, single XGBoost models (25) with default

parameters were trained using representations from either the

predicted structure or antigen sequence respectively. When

testing feature combinations, ensemble size and effect of training

on solved and predicted structures, error bars were estimated from

re-training 20 times.

We manually adjusted three XGBoost hyperparameters from

their defaults, guided by suggestions in the XGBoost documentation

(??, xgb) and after observing improved performance on the

validation set. Specifically, decision-tree max_depth was adjusted

from 6 to 4, and the training data subsampling ratio subsample from

1.00 to 0.50 to reduce overfitting. n_estimators was adjusted from

100 to 200 trees after observing a plateauing improvement in the

validation set AUC-ROC. The gpu_hist method was used to enable

faster training on a GPU.
4.2 Dataset bagging and ensemble training

When sampling residues for each model in the ensemble, we

randomly select 70% of available observed epitopes (positives)

across the training dataset, then sample unlabelled residues

(negatives) with a ratio of 5:2. When using both predicted and

solved structures, these were sampled at a 1:1 ratio.

Ensembles were constructed by iteratively training independently

trained XGBoost models on the randomly sampled datasets. When

training an ensemble, we set a different random seed each time.
4.3 ESM-IF1 and ESM-2 representations

To generate per-residue ESM-IF1 structure representations,

antigen structures were first split into single chains, and these

inputted into ESM-IF1 following the instructions as listed on the

official repository (Research, 35).
1. import esm.inverse_folding.

2 . s t r u c t u r e =

esm.inverse_folding.util.load_structure(fpath,

chain_id).

3 . c o o r d s , s e q =
esm.inverse_folding.util.extract_coords_from_structure

(structure).

4. rep = esm.inverse_folding.util.get_encoder_output

(model, alphabet, coords).

For per-residue ESM-2 sequence representations, sequences

were first extracted from all antigen chains and stored in a

FASTA format. Next, the FASTA file was provided as input to
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the official extract.py script (Research, 35) using the pre-trained

ESM-2 650M parameter model.
Fron
./extract.py ––model_location esm2_t33_650M_UR50D \

––fasta_file sequences.fasta \

––include per_tok \

––output_dir output/
4.4 Feature calculation and data filtering

Each isolated chain was processed as a single PDB file with

ESM-IF1, extracting for each residue its latent representation from

the ESM-IF1 encoder output. pLDDT values were either extracted

from the PDB files in the case of AlphaFold structures, or set to 100

for solved structures. In the case of training on both solved and

predicted structures, we include a binary input feature set to 1 if the

input is an AlphaFold2 model, and 0 for solved structures.

Residue solvent accessible surface area was calculated using the

Shrake-Rupley algorithm using Biotite (36), with default settings,

and converted to relative surface accessibility using the Sander and

Rost 1994 (37) scale as available in Biopython (38).

When training DiscoTope-3.0, we removed any antigen with

less than 5 or more than 75 epitope residues, as well as PDBs with a

mean pLDDT score below 85 or residues with a pLDDT below 70.

No data filtering was performed during evaluation on the validation

and external test datasets.
4.5 Calibration of DiscoTope-3.0 scores

When using calibrated scores, each antigen’s DiscoTope-3.0

scores are normalized using the following formula:

Calibrated   score =
score − m

std

The values for m and std are calculated for each antigen, using

two separate linear generative additive models (GAMs) (39) fitted

on the validation set. The length to μ model is fitted on antigen

length versus mean score of antigen surface residues (RSA > 20%),

while the surface mean to std model is fitted on antigen mean

surface residue score versus standard deviation of the same scores

(Supplementary Figure S8).
4.6 External test set generation
and evaluation

The external test set, used for comparing our tool to ScanNet

and BepiPred-3.0, consists of solved antibody-antigen complexes

deposited in either SAbDab and the PDB after April 2021

(collection date June 2022). Any antigen with more than 20%

sequence identity to the training datasets used in this work, in

ScanNet, or in BepiPred-3.0 were removed using MMseqs2. We
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annotated epitopes using the same approach as in BepiPred-3.0,

which is common to all the tools.

We submitted either solved or AlphaFold2 predicted structures

to the ScanNet web server (40), using the antibody-antigen binding

mode and otherwise default parameters. BepiPred-3.0 predictions

were generated from its online web server (5) using the antigen

sequence and default parameters.

When evaluating DiscoTope-3.0 on the external test set, we

retrained the final model with an ensemble size of 100, on the full

training and validation set.
4.7 AlphaFold2 modeling and
structural relaxation

Sequences for each antigen chain containing at least 1 epitope

were extracted and modeled with the ColabFold implementation of

AlphaFold2 at default settings. We picked the top ranking PDB after

5 independent iterations of 3 recycles, as ranked by AlphaFold2’s

internal quality measure.

For relaxation of the solved structures we used the foldx_20221231

version of FoldX, with the RepairPDB command for relaxing residues

with bad torsion angles, van der Waals clashes or high total energy.
4.8 Data analysis

To calculate the mean epitope rank score, the predicted residue

scores for an antigen were first ranked in ascending order. Next, we

calculated the average of the rank scores for all epitope residues.

Exposed epitopes were defined as all epitopes with a relative

surface accessibility exceeding 20%, while the remaining epitopes

were defined as buried.

When reported, significance testing was performed with a one-

sided paired t-test using scipy.stats.ttest_rel (41). The linear model

on the mean antigen pLDDT vs mean epitope rank scores was fitted

using a linear least-squares regression model (scipy.stats.linregress)

with two-sided alternative hypothesis testing.

For confidence estimation with bootstrapping, the dataset was

sampled fully with replacement 1000 times, with the bootstrapped

datasets used to calculate means, epitope rank scores and standard

deviation values.
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SUPPLEMENTARY FIGURE 1

Validation set performance up to ensemble size 20. Validation set gain in
AUC-ROC from ensembling the full-feature model. Performance graphs are

shown for training on either experimentally solved, AlphaFold predicted or

both structures, and then evaluated on either the solved or predicted
structure validation set.

SUPPLEMENTARY FIGURE 2

External test set AUC-ROC. Test set AUC-ROC, as evaluated on 24 antigens
modeled with AlphaFold. For AUC-PR see.

SUPPLEMENTARY FIGURE 3

External test set PDB performances. Evaluation on 24 antigens modeled with

AlphaFold (left) or experimentally solved structures (right). BepiPred-3.0
performances on antigen sequences only.

SUPPLEMENTARY FIGURE 4

DiscoTope-3.0 is robust towards modeling and relaxation. External test set

change in mean epitope rank scores across PDBs, when (A) swapping
predicted structures with their original solved structure or (B) solved

structures with the same structure after FoldX relaxation (see Methods).
Mean performance loss shown in percent.

SUPPLEMENTARY FIGURE 5

DiscoTope-3.0 score significantly correlates with antibody hit rate. Lysozyme

case study on 1a2y_C, showing PDB antibody hit rate (ratio of times an
epitope residue is observed across all 12 lysozyme chains) versus calibrated

DiscoTope-3.0 scores. Model is trained excluding all lysozyme structures
from training (see Methods).

SUPPLEMENTARY FIGURE 6

DiscoTope-3.0 calibrates for antigen length and surface area. Uncalibrated

DiscoTope-3.0 surface scores are biased towards the antigen length, which
may cause all residues to be assigned as positives/negatives for some

antigens, if using a fixed, binary threshold. (A) Validations set DiscoTope-3.0
score distributionsbefore normalization and (B) after correcting for antigen

length and surface scores (see Methods). (C) Calibrated score distributions in
the validation set, for buried residues, exposed residues (relative surface

accessibility > 20%) and exposed epitopes. The top 70th, 50th and 30th

percentile scores for exposed epitopes are shown in red dashed lines (A, B), as
suggestive thresholds for binary epitope prediction.

SUPPLEMENTARY FIGURE 7

Benchmarking calibrated score thresholds on Lysozyme. Binary epitope
prediction performance on the collapsed lyzosyme dataset, for different

calibrated score thresholds. Recall of total observed epitopes shown in

blue, with precision for any observed epitopes above the threshold. Green
line shows the median epitope count per residue for residues above the given

threshold (maximum 12). Red lines shown for the previously mentioned top
70th, 50th and 30th exposed epitope percentile scores from the validation set

(Figure S6).

SUPPLEMENTARY FIGURE 8

Fitted GAMmodels for calibrating scores. Length to m and surface to std fitted
GAM models on the validation set, used for calibrating DiscoTope-3.0 scores

(see Methods).
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