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Background: The thymus plays a central role in shaping human immune

function. A mechanistic, quantitative description of immune cell dynamics and

thymic output under homeostatic conditions and various patho-physiological

scenarios are of particular interest in drug development applications, e.g., in the

identification of potential therapeutic targets and selection of lead drug

candidates against infectious diseases.

Methods: We here developed an integrative mathematical model of thymocyte

dynamics in human. It incorporates mechanistic features of thymocyte

homeostasis as well as spatial constraints of the thymus and considerations of

age-dependent involution. All model parameter estimates were obtained based on

published physiological data of thymocyte dynamics and thymus properties in

mouse and human. We performed model sensitivity analyses to reveal potential

therapeutic targets through an identification of processes critically affecting thymic

function; we further explored differences in thymic function across healthy

subjects, multiple sclerosis patients, and patients on fingolimod treatment.

Results: We found thymic function to be most impacted by the egress,

proliferation, differentiation and death rates of those thymocytes which are

most differentiated. Model predictions also showed that the clinically observed

decrease in relapse risk with age, in multiple sclerosis patients who would have

discontinued fingolimod therapy, can be explained mechanistically by decreased

thymic output with age. Moreover, we quantified the effects of fingolimod

treatment duration on thymic output.

Conclusions: In summary, the proposed model accurately describes, in

mechanistic terms, thymic output as a function of age. It may be further used

to perform predictive simulations of clinically relevant scenarios which combine

specific patho-physiological conditions and pharmacological interventions

of interest.
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1 Introduction

The thymus is a primary lymphoid organ in the chest cavity,

where immature T cells, known as thymocytes, differentiate into

functional T cells. Structurally, the thymus is surrounded by a

fibrous capsule and consists of multiple lobes which are separated

into two main regions, the outer cortex and the inner medulla (1).

According to their developmental origin, thymic cells are

subdivided into hematopoietic cells (CD45-positive) and stromal

cells (CD45-negative); the non-hematopoietic components are

further divided into cortical and medullary thymic epithelial cells

(cTEC and mTEC, respectively) and various mesenchymal cells

(fibroblasts, capsule- and septae-forming connective tissue cells, as

well as endothelial cells) (2). Functionally, the thymus comprises the

true thymic epithelial space (TES), where thymopoiesis occurs, and

the non-epithelial, non-thymopoietic perivascular space (3).

The T-cell developmental process starts when T-cell precursors

from the bone marrow transfer into the thymus via blood vessels at

the corticomedullary junction. T-cell precursors are also known as

bone marrow-derived thymus-seeding progenitors (TSPs) and most

likely comprise multiple cell types: IL-7R+ common lymphoid

progenitors (CLPs), Flt3+ lymphoid primed multipotent

progenitors (LMPPs) and other T-cell precursors (4). Once in the

thymus, the T-cell developmental process proceeds with two phases:

1. Initiation of antigen receptor gene rearrangement and b-
selection; 2. Positive and negative selection and further

differentiation to specific effector cell lineages, i.e., CD4+ helper T

cells, CD8+ cytotoxic T cells, or CD4+ regulatory T cells (1).

TSPs proliferate in the subcapsular cortex and differentiate into

double negative (DN) thymocytes. Further DN differentiation

includes several sequential cellular sub-types: DN1, DN2, DN3 and

DN4, differing by various cell surface markers and related functions,

i.e., DN1 thymocytes (CD177+ CD44+ CD25- CD4- CD8-) migrate

to the cortex and actively proliferate; DN2 thymocytes (CD177+

CD44+ CD25+ CD4- CD8-) rearrange their g-, d-, and b-chains of T-
cell receptor (TCR); DN3 thymocytes (CD177+ CD44- CD25- CD4-

CD8-) perform b-selection, whereby cells failing to produce a

functional TCR b-chain undergo apoptosis (5). Those cells that

successfully complete b-selection initiate rearrangement of the TCR

a-chain, yielding DN4 thymocytes (CD177- CD44- CD25- CD4-

CD8-), which may further differentiate into a double-positive CD4+

CD8+ (DP) phenotype. DP thymocytes undergo a two-stage selection

process in the thymic cortex. Positive selection is responsible for

survival of cells whose T-cell receptor can bind major

histocompatibility complexes (MHC) I or II, with at least a weak

affinity. During negative selection, thymocytes that bind self-peptides

or MHC with high affinity undergo apoptosis. Successfully selected

DP cells further differentiate into single-positive (SP) cells, which

express either CD4 (CD4+ CD8-) or CD8 (CD4- CD8+) markers. SP

cells reside in the thymic medulla and, upon a final maturation stage,

leave the thymus and migrate as recent thymic emigrant (RTE) cells

to peripheral lymphoid tissues such as the spleen, gut, and lymph

nodes. In secondary lymphoid organs, RTE cells differentiate into

naïve cells, with a full potential to initiate an immune response.

It is well-known that the efficiency of the T-cell developmental

process in the thymus is crucial for the ability of the immune system
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prevent the host from severe forms of infections or cancers. This

function gradually decreases with age, starting during the first year

of life (3, 6). Unfortunately, the exact mechanisms underlying this

process are still poorly understood (7). Several hypotheses of

thymus involution have been proposed, including the aging of

hematopoietic progenitors, dysfunctioning in the thymic

microenvironment, or elevation in the levels of sex hormones (8,

9). It is also known that the expansion of the perivascular space -

mainly due to adipogenesis and shrinkage of the thymic epithelial

space - results in a decreased thymic output (3, 6). Moreover, the

cortex involutes more rapidly than the medulla, according to

experimental findings (10).

An integrative mathematical modeling of T-cell development

may allow for a better quantitative understanding of mechanisms

affecting thymocytes dynamics and the ability of the immune

system in fighting infections. Several models of thymopoiesis,

using various modeling techniques, have been developed in the

literature (4). These models may be categorized into three types:
• Models of thymocyte population dynamics formulated with

linear ordinary differential equations (ODE) (11–14). These

models describe, mathematically, basic cellular turnover

processes, such as proliferation, differentiation, and death.

• Models based on the logistic growth equation, to account

for a maximal carrying capacity of certain structural niches

in thymus, for specific cell populations (13) and/or for the

total number of thymocytes (13, 15). Such models typically

consider the descriptor of growth control as an important

physiological component in mathematical modeling, as it

limits excessive, non-physiological cell proliferation.

• ODE-based generation-structured models, which account

for cell number dynamics at each stage of cell division (16).
However, there is no general agreement on an optimal model

structure, to adequately describe thymus dynamics (4). Moreover,

the majority of existing models feature definite limitations

associated with physiological background and constraints

underlying the described processes, such as cell proliferation

dynamics, realistic anatomical and physiological descriptors of a

niche, etc.

Similarly to thymopoiesis, various modeling approaches have

been published to quantitatively describe thymus involution. In one

approach, thymus function decline was modeled phenomenologically

by decreasing the overall thymic output proportionally to the TES

volume (17). In another approach, TES involution with age was

modeled using a modified exponential decay function (6). While it is

not possible to directly measure thymic function, various surrogate

measures have been used, such as signal joint TCR excision circles

(signal joint TRECs), to assess thymic output, or the level of

expression of the proliferation marker Ki67, to assess the T-cell

proliferation rate (18). Thymus involution has also been described

using an age-dependent function of TES as a carrying capacity of the

thymus (15). In yet another approach, exponentially decreasing

proliferation rates for each modeled cell population were utilized

(19). Although these modeling approaches may allow one to predict
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thymic output as a function of age, the respective models do not

consider the effects of age on thymocyte populations (6, 18) and/or

lack a solid biological basis for mechanistically describing the thymus

function, since there are no experimental data on the age-related

decrease in proliferative activity for each thymocyte population (19).

Historically, research on thymopoiesis dynamics has been

hampered by a lack of longitudinal data on specific thymocyte

types in humans; a majority of physiological studies have indeed

been conducted in mouse. Challenges relating to an adequate

translation or scaling of data from mouse to human are still

unresolved. In general, conventional empirical models for cross-

species translation are oversimplified and not suitable to address

practical questions related to, for example, preclinical-to-clinical

drug development. In the modern paradigm of model-informed

drug discovery and development (MID3), the value of integrative,

mechanistic, quantitative systems pharmacology (QSP) models has

been well-recognized (20). QSP models are based on a mechanistic

and quantitative description of operating biological and patho-

physiological processes, with an opportunity to integrate

experimental data over multiple scales of biological organization

(20). Importantly, mechanistic QSP models of the immune system

have been used to support decisions not only in basic research, but

also in regulatory assessments. For instance, regulatory approval of

the first CAR-T cell product, tisagenlecleucel, was supported by a

mechanistic model describing murine immune responses to a

lymphocytic choriomeningitis virus and characterizing the

expansion and persistence of tisagenlecleucel, as a substitute for

traditional, semi-empirical compartmental pharmacokinetic

modeling (21–23).

The primary objective of the present study was to develop a

mechanistic mathematical model of thymopoiesis which integrates

a substantial amount of realistic, physiologically-relevant, biological

details which are most crucial to thymopoiesis, such as thymus

spatial structure, specific physiological cell niches, physiological

homeostasis, and age-related thymus involution. An integrative

model of this nature is expected to describe thymocyte numbers

at quasi steady-state and to address issues relevant to the

development and efficacy evaluation of novel medicines – for

example, the observed changes in immune homeostasis under

pathological conditions and specific effects of therapeutic

interventions that modulate thymic function.

The paper is organized as follows: Section 2 describes the model

development workflow, with an overview of relevant experimental

data and details of the model equations used. Section 3 presents

model calibration and validation results, a sensitivity analysis, and

novel predictions on thymic function. Finally, Sections 4 to 5

provide, respectively, a discussion and conclusions.
2 Materials and methods

2.1 Data

2.1.1 Experimental and clinical data
A systematic review of the literature has been performed, to

identify all relevant sources with experimental and clinical data.
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The PubMed database and Google Scholar were searched using the

keywords “thymocytes”, “thymus”, “human” and “flow cytometry”

to identify pertinent data sources. Quantitative information on

dynamic and kinetic characteristics of various thymocyte sub-

populations, as well as thymic weight and cellularity during age-

dependent involution was assessed from peer-reviewed articles

presenting clear tables, figures, and experiments of adequate

quality, ensuring the validity of the published cell phenotypes.

Additionally, references from listed review papers were examined.

Multiple sets of mouse and human data spanning diverse age

groups were thus curated and used for model parameter

estimation and model validation (Table 1).

2.1.2 Physiological parameter ranges
Physiological ranges of DN, DP and SP thymocytes were

derived based on the curated data, for model calibration and

validation purposes. The total thymocyte count was calculated

based on thymus wet weight and thymic cell density per gram of

thymus tissue, among individuals and across an age range (6, 25).

As data for each thymocyte population were limited, model

calibration was performed on the 0-to-1 year old group data.

Thymocyte counts for each cell population (DN, DP, SP4, and

SP8 cells) in the 0-to-1 year old group were derived by multiplying

the total thymocyte count range by the median relative proportion

of each thymocyte population for the respective age group (25–31).

Details on data transformation and related calculations are

summarized in the Supplementary Materials (Supplementary

Tables 1, 2).
2.2 Model formulation

2.2.1 Model structure
The schematic structure of the human thymocyte dynamic

model that characterizes DN (CD4- CD8-), DP (CD4+ CD8+),

SP4 (CD4+ CD8-) and SP8 (CD4- CD8+) thymocyte homeostasis is

shown in Figure 1A. The respective time-dependent cell

populations which are considered in the model are denoted as TDN

(t), TDP(t), TSP4(t) and TSP8(t).

The model was initially built based on a model proposed by Ye

et al. (15). The inflow to the DN compartment represents thymic-

seeding progenitors, which enter the thymus from the blood. The

death rates of cells represent net apoptosis due to T-cell

commitment and b-selection for the DN population, as well as

positive and negative selections for the DP population. A death rate

for SP cells was also included in the model, due to the negative

selection that occurs at the SP stage, yet at a slower rate as compared

to the overall death rate due to positive and negative selection in the

cortex at the DP stage (36). Cell proliferation was implemented for

each cell population (DN, DP, SP4 and SP8) (1, 46). Distinct

maximal allowable numbers of thymocytes in the cortex and

medulla were introduced, to prevent excessive proliferation of

certain thymocytes in these areas, given that DN and DP cells

primarily reside in the cortex and SP cells in the medulla. The

maximal allowable number of thymocytes in the medulla was also
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set to reflect the differentiation process of DP into SP cells and the

subsequent migration of cells into the medulla. In contrast to the Ye

et al. structural model, we: (i) included only one compartment for

DN cells; and (ii) implemented growth controls separately in the

thymic cortex and medulla vs. the entire thymus (15, 36).

Thymus involution was modeled with an age-dependent

function describing the maximal allowable number of cells in the

cortex and medulla, in agreement with existing experimental data

(6). To quantify such an age-dependent function, the respective data

were processed as shown in the flow diagram (Figure 1B).

2.2.2 Model equations
The mathematical model describing thymocyte dynamics

consisted of a system of ordinary differential equations (ODEs),

with parametrization of the growth control and age-dependent

functions describing decreases in cortex and medulla cell counts.

The dynamics of DN thymocytes (TDN ) was described using the

following equation:
Frontiers in Immunology 04
dTDN

dt
= f 1 −

TDN + TDP

Tmax
cort (age)

� �
− j1TDN

+ l1 1 −
TDN + TDP

Tmax
cort (age)

� �
TDN − m1TDN , (1)

where Tmax
cort (age) represents an age-dependent function for the

maximal thymocyte numbers (i.e., carrying capacity) in the

thymic cortex; f(1 −   TDN+TDP
Tmax
cort (age)

) represents the inflow of

thymocyte precursors; j1TDN is the differentiation rate of DN

cells to DP cells; l1(1 −   TDN+TDP
Tmax
cort (age)

)TDN represents a logistic

growth function for the DN cell proliferation in the thymic

cortex; m1TDN represents the DN cell death; f is the thymocyte

precursor inflow rate (cells*d-1); j1 is the rate constant of DN-to-

DP differentiation (d-1); l1 is the DN cell proliferation rate constant

(d-1); and m1 is the DN cell death rate constant (d-1).

The dynamics of DP thymocytes (TDP) was described by the

following equation:

dTDP

dt
=  j1TDN + l2 1 −  

TDN + TDP

Tmax
cort (age)

� �
TDP − (j4

+ j8) 1 −
TSP4 + TSP8

Tmax
med(age)

� �
TDP − m2TDP , (2)

where l2(1 −   TDN+TDP
Tmax
cort (age)

)TDP represents a logistic growth function

for the DP cell proliferation in the thymic cortex; Tmax
med (age)

represents an age-dependent function for the maximal thymocyte

number (i.e., carrying capacity) in the thymic medulla; (1 −
  TSP4+TSP8
Tmax
med (age)

) is a logistic growth function in the thymic medulla; j1

TDN is the DN-to-DP differentiation; (j4 +  j8)(1 −   TSP4+TSP8
Tmax
med

(age) )TDP

represents the DP-to-SP4/SP8 differentiation; m2TDP is the DP cell

death rate; j1 is the DN-to-DP differentiation rate constant (d-1); l2
is the per capita DP cell proliferation rate constant (d-1); j4 and j8

are rate constants of DP-to-SP4 and DP-to-SP8 differentiations,

respectively (d-1); and m2 is the DP cell death rate constant (d-1).

The dynamics of SP4 (TSP4) and SP8 (TSP8) thymocytes were

described by the following equations:

dTSP4

dt
= j4 1 −

TSP4 + TSP8

Tmax
med(age)

� �
TDP − e4TSP4

+ l4 1 −
TSP4 + TSP8

Tmax
med(age)

� �
TSP4 − m4TSP4, (3)

dTSP8

dt
= j8 1 −

TSP4 + TSP8

Tmax
med(age)

� �
TDP − e8TSP8

+ l8 1 −
TSP4 + TSP8

Tmax
med(age)

� �
TSP8 − m8TSP8, (4)

where j4(1 −   TSP4+TSP8
Tmax
med

(age) )TDP and j8(1 −   TSP4+TSP8
Tmax
med

(age) )TDP represent

DP-to-SP4 and DP-to-SP8 differentiation rate constants,

respectively; e4TSP4 and e8TSP8 represent SP4 and SP8 outflux

rates, respectively; l4(1 − TSP4+ TSP8
Tmax
med (age)

)TSP4 and l8(1 − TSP4+ TSP8
Tmax
med (age)

)
TSP4 are the logistic growth functions for SP4 and SP8

proliferation in the thymic medulla, respectively; m4TSP4 and m8

TSP8 represent, respectively, SP4 and SP8 cell deaths; j4 and j8 are

rate constants of DP-to-SP4 and DP-to-SP8 differentiation,
TABLE 1 Experimental and clinical data used for model development.

Data description Data
assignment

Ref.

Human thymus wet weight Parameter
calibration

(6,
24)

Model
validation

(6)

Relative proportions of human double-negative,
double-positive and single-positive thymocytes

Parameter
calibration

(25–
31)

Model
validation

(25–
33)

Volumes of lymphatic tissue and of lymphocytic
perivascular space in human thymus, relative
proportions of thymic epithelial space

Parameter
calibration

(3, 6,
34,
35)

Human thymic cortico-medullary ratio Parameter
calibration

(10)

Cell count and residence time of different
thymocyte sub-types in mouse and human

Parameter
calibration

(36–
39)

Cell count ratio, mouse-to-human Parameter
calibration

(40)

Turnover rate of different thymocyte sub-types
in mouse

Parameter
calibration

(41–
43)

Percentage of DN3 thymocytes that undergo
apoptosis at the b-selection checkpoint

Parameter
calibration

(5)

SP thymocyte emigration time in mouse Parameter
calibration

(44)

Thymocyte outflux from thymus in human Parameter
calibration

(45)

Thymic cellular density in human (cells/g) Model
validation

(25)

Human thymus volume Model
validation

(6)

Relative volume of thymic cortex in human Model
validation

(6)
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respectively (d-1); e4 and e8 are rate constants of SP4 and SP8

outflows, respectively (d-1); l4 and l8 are rate constants of SP4 and
SP8 proliferation, respectively (d-1); and m4 and m8 are SP4 and SP8

cell death rate constants, respectively (d-1).

The age-dependent functions Tmax
cort (age) and Tmax

med (age) were

parameterized using a combination of different factors such as

thymus weight loss (relatively to thymus weight in infants), the

relative proportion of TES, the cortico-medullary ratio and the total

thymic cell count in infants (Figure 1B). Linear and nonlinear forms

were tested to describe the age-related changes in the thymic wet

weight [WW(age)], the relative proportion of TES [TES(age)], and

the cortico-medullary ratio [CM(age)]. A nonlinear model based on

the Hill equation for WW(age) and nonlinear exponential models

for TES(age) and CM(age) were finally selected, to quantitatively

account for age-related changes in the respective variables.

Overall, the age-dependent functions of maximal thymocyte

number in the thymic cortex [Tmax
cort (age)] and medulla [Tmax

med (age)]

were described by the following equations:

Tmax
cort (age) =  

T0CM(age)
CM(age) + 1 *

WW(age)*TES(age)
WW(0)*TES(0)

, (5)
Frontiers in Immunology 05
Tmax
med(age) =  

T0

CM(age) + 1 *
WW(age)*TES(age)
WW(0)*TES(0)

, (6)

where WW(age) = WWBL   (1 −   ageg

ageg +ECg
50
) represents the age-

dependent thymus wet weight function; TES(age) =   btes*e
−ktes*age  

represents the age-dependent relative proportion of TES function; CM

(age) =   bcm*e
−kcm*age represents the age-dependent cortico-medullary

ratio function; T0 is the absolute total number of thymocytes in infants

(0- to-1 year of age); WWBL stands for the thymus wet weight in

infants; EC50 is the age corresponding to the 50% of the maximum

decrease in thymus wet weight; g is a Hill coefficient; btes and bcm are

regression coefficients representing the relative proportion of TES and

cortico-medullary ratio in infants; ktes and kcm are regression

coefficients representing the slope of the relative proportion of TES

and cortico-medullary ratio decrease functions.
2.3 Quantitative analysis workflow

Model analysis was performed in three sequential steps: model

calibration, model validation, and simulations including sensitivity
B

A

FIGURE 1

Scheme of the mechanistic model describing human thymocyte dynamics. (A) Model scheme, thymocyte homeostasis; (B) Model development
steps describing thymus involution.
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analyses. Model performance was evaluated using multiple criteria

including diagnostic plots, uncertainty of parameter estimates, and

values of objective function.
2.3.1 Model calibration
Parameters related to thymocytes homeostasis and age-dependent

thymus involution were estimated separately. The thymus involution

sub-model was calibrated using the data on thymus wet weight (24), data

on the relative proportion of TES [derived from total thymus, lymphatic

tissue and lymphocytic perivascular space volume data in human thymus

(3, 6, 34, 35)], the total number of thymocytes in infants [derived from

(6) and (25)], and data on the thymic cortico-medullary ratio (10).

Parameter values in Equations 5, 6 were estimated via nonlinear

regression on the respective data (Table 1). Parameter uncertainty was

assessed through a Standard Error (SE) and Relative Standard Error

(RSE) calculation for each parameter in the thymus involution sub-

model, with an RSE< 50% being considered as acceptable.

The thymocyte homeostasis sub-model was calibrated using

derived physiological ranges of DN, DP, SP4 and SP8 cells in 0-to-

1 year old infants (Section 2.1.2) and the available information on

thymocyte kinetics (Table 1). For calibration purposes, the maximal

numbers of thymocytes in the cortex (Tmax
cort ) and the medulla (Tmax

med )

in infants were fixed using mean predicted values from the thymus

involution model for the 0-to-1 year of age group. In particular,

parameter values were adjusted to reproduce the quasi steady-state

turnover of DN, DP, SP4 and SP8 thymocytes within observed

physiological ranges. An uncertainty analysis also considered the

determination of admissible ranges of model parameters (generalized

estimates), which were initially quantified via a local sensitivity

analysis (model-based estimates) and further adjusted according to

published experimental data (experimental estimates).

A further model analysis was performed on physiologically

plausible parameter sets which satisfied the condition of quasi

steady-state levels of thymocytes, within their physiological ranges

(47). A Latin hypercube sampling (LHS) method with a uniform

distribution was used for parameter value sampling in the

thymocyte homeostasis model (Equations 1–4). Generalized

estimates were used to run the LHS (Table 2). Calculated quasi

steady-state levels of DN, DP, SP4 and SP8 cells for each of the

150,000 parameter sets were then verified to fall within their

respective physiological ranges.
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2.3.2 Sensitivity analysis
Local and global sensitivity analyses were performed to define

admissible parameter ranges and to quantify how an arbitrary change

in model parameters would impact thymic function; parameters were

then ranked with respect to the estimated impact. A partial rank

correlation coefficient (PRCC) was used as a global sensitivity

characteristic (48). A global sensitivity analysis was performed by

sampling parameters from physiologically plausible sets. A graphical

check on data linearity and heterogeneity was performed prior to the

sensitivity analysis. A statistical significance threshold was defined by

introducing a “dummy” parameter in the sensitivity analysis; this

parameter acted as a “negative control”, as it did not appear in the

model equations and thus would not have affected the model (48).

2.3.3 Model validation
Model validation was conducted for the thymus involution

model, at each model development stage, using data available

from literature sources (6, 25). Data on the relative thymic cortex

volume Tmax _ relvol
cort vs. age were used to validate the model prediction

for Tmax
cort (6). The validation data (thymic cortex relative volume)

differed from the model output (thymic cortex cell count); thus, for

validation purposes, we modified Equation 5, from describing the

maximal cell number in cortex (Tmax
cort ), to Equation 7 for the relative

cortex volume (Tmax _ relvol
cort ). Validation data and model predictions

were normalized to the corresponding values for 0-to-1 year old

infants, to synchronize initial conditions.

The relative thymic cortex volume (Tmax _ relvol
cort ) was described by

the following equation:

Tmax_relvol
cort =  

CM(age)
CM(age) + 1

WW(age)*TES(age)
Dens(age)

� �
1

Vol(age)

� �
,

(7)

where TES(age) is the age-dependent relative TES proportion function

(see Equations 5, 6 for further details);WW(age) is the age-dependent

thymus wet weight function (see Equations 5, 6 for further details);

CM(age) is the age-dependent cortico-medullary ratio function (see

Equations 5, 6 for further details); Dens(age) is the age-dependent

thymic density (g/cm3) function, estimated according to thymus wet

weight and volume data (6); Dens(age) =   kd * age + bd ; Vol(age) is

the age-dependent thymic volume (cm3) function, estimated according

to thymus volume data (6);  Vol(age) =   kv * age + bv ; where bd and
TABLE 2 Estimates of the calibrated parameters in the thymus involution model.

Parameter Value SE RSE, % Data

WWBL , g 20.652 0.994 4.8 (24)

EC50, y 94.729 4.285 4.5 (24)

g 3.721 0.885 23.8 (24)

ktes , %*y
-1 0.035 0.004 11.8 (3, 6, 34, 35)

btes , % 93.344 5.343 5.7 (3, 6, 34, 35)

kcm , y
-1 0.035 0.004 11.4 (10)

bcm 2.77 0.206 7.4 (10)
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bv are regression coefficients representing thymic density and thymic

volume in infants, and kd and kv are regression coefficients

representing, respectively, the slopes of thymic density and thymic

volume decrease functions.

The predictive power of the fully-developed thymocyte

dynamics model was assessed via a comparison of simulations to

empirical data on the relative proportions of DN, DP and SP cells

and absolute numbers of total thymocytes (6, 25–33).
2.4 Software

Data digitization was performed usingWebPlotDigitizer, version 4.6

(https://apps.automeris.io/wpd/). Extracted experimental and clinical

data were gathered in the database using Microsoft Excel 365 (https://

office.microsoft.com/excel). Data visualization (packages: ggplot2,

cowplot, gridExtra, scales), model development (packages: dplyr, tidyr,

stringr, stats, nlstools, deSolve), model simulations (RxODE package)

and sensitivity analyses (packages: epiR, sensitivity) were performed in

the R Statistics software, version 4.0.2 (R-project, www.r-project.org).
3 Results

3.1 Integrative model development

3.1.1 Thymus involution dynamics
The range of the total number of thymocytes in 0-to-1 year old

infants, T0, was identified as [2.2*1010; 5.8*1010] for Equations 5, 6

(see Supplementary Table 1). Model parameters for the thymus

involution model are presented in Table 2.

Parameter uncertainty estimation was assessed based on the

RSE and each parameter was assessed as identifiable (RSE< 50%).
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Goodness-of-fit plots are presented in the Supplementary Materials

(Supplementary Figures 1–3).

3.1.2 Thymocyte homeostasis turnover
Physiological ranges for DN, DP, SP4 and SP8 cells were

identified as, [1.3*109; 3.4*109], [1.2*1010; 3.2*1010], [6.3*109;

1.7*1010] and [2.3*109; 6.0*109], respectively. Tmax
cort and Tmax

med in

infants were fixed to values of 2.84*1010 and 1.05*1010, respectively,

based on the mean prediction of the thymus involution model for

the 0-to-1 year old infant group. Parameter estimates for the

thymocyte homeostasis model are presented in Table 3.

Steady-state values for the DN, DP, SP4 and SP8 thymocyte

populations, with the proposed set of parameters values as specified

in Table 3, were ~2.72*109, ~2.12*1010, ~7.45*109 and ~2.79*109,

respectively, and were in full agreement with experimentally

observed physiological ranges for these variables. For further

details, we refer the reader to the Supplementary Materials

(Supplementary Tables 1, 2).

Based on the local sensitivity analysis, lower admissible bounds

for parameters f, l4, l8, m4, and m8 could not be determined and

were set to zero. Final generalized estimates were identified by

matching the experimental and model-based estimates. As shown in

Table 3, all estimated parameter values were consistent with

experimentally observed physiological ranges. Derivations of all

experimental estimates are presented in the Supplementary

Materials (Supplementary Tables 3, 4).
3.2 Critical parameters

The resulting physiologically plausible parameter sets upon which

further analyses were performed contained 3,474 sets out of 150,000
TABLE 3 Parameter estimates for the calibrated thymocyte homeostasis model.

Parameter Baseline
Value

Experimental
estimates

Model-
based estimates

Generalized
estimates

Relevant
Ref.

f, cells*d-1 4.8*105 [104; 4.8*105] [0; 8.1*107] [104; 8.1*107] (36, 40)

j1, d
-1 0.21 [0.18; 8.20] [0.2066; 0.2168] [0.2066; 0.2168] (36, 42)

m1, d
-1 0.056 [0.049; 0.056] [0.053; 0.063] [0.053; 0.063] (5, 36)

m2, d
-1 0.5 [0.25; 3.05] [0.487; 0.507] [0.487; 0.507] (36, 42)

l1, d
-1 1.67 [1.67; 3.33] [1.627; 1.693] [1.627; 1.693] (36)

l2, d-1 3.125 [3.125; 5.988] [3.106; 3.233] [3.106; 3.233] (36)

j4, d
-1 0.8 [0.004; 1.930] [0.491; 1.042] [0.491; 1.042] (36, 42)

j8, d
-1 0.3 [0.002; 0.960] [0.233; 0.505] [0.233; 0.505] (36, 42)

l4, d
-1 0.22 [0.19; 0.22] [0; 0.877] [0.19; 0.877] (36, 44)

l8, d-1 0.22 [0.19; 0.22] [0; 1.338] [0.19; 1.338] (36, 44)

m4, d
-1 0.005 [0; 0.06] [0; 0.029] [0; 0.029] (36, 42, 44, 45)

m8, d
-1 0.005 [0; 0.12] [0; 0.022] [0; 0.022] (36, 42, 44, 45)

e4, d
-1 0.06 [0.06; 0.23] [0.046; 0.084] [0.046; 0.084] (36, 44, 45)

e8, d
-1 0.06 [0.06; 0.22] [0.036; 0.077] [0.036; 0.077] (36, 44, 45)
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sets generated. Results from the global sensitivity analysis are presented

in Figure 2. The SP thymocyte number was chosen as a key output of

the model, since it reflects most closely overall thymic function.

Relationships between the model output and each parameter were of

a monotonic, linear nature (see Supplementary Figure 4).

All model parameters significantly affected the output,

according to the PRCC-based sensitivity analysis. The highest

PRCC coefficients were predicted for e4, e8, j4, l4 and m4 (PRCC

> 0.5), indicative of these parameters being most critical in driving

the system’s behavior.
3.3 Model performance evaluation

Model validation results are presented in Figure 3. The band

represents the 95% uncertainty of each model-predicted solution.

The function capturing the age-dependent decrease in thymus wet

weight, as a part of the thymus involution model, was successfully

validated based on published thymus weight data (6) (Figure 3A). Due

to differences in baseline values (0-to-1 year of age group) between

calibration and validation datasets, the thymus wet weight model was

adjusted from the validation data to a baseline value of 27.3 g.

Validation results of the composite model outcome (Tmax
cort ) after

adjustment (see Section 2.3.3. for further details) are shown in

Figure 3B. Estimates of the calibrated parameters and goodness-of-fit

plots for thymic density (Dens(age)) and thymic volume (Vol(age)),

which are needed for validation of the thymus involution model

(Equation 7), are presented in the Supplementary Materials

(Supplementary Table 5; Supplementary Figures 5, 6).

Combining the thymocyte homeostasis sub-model with the

thymus involution sub-model provided the overall integrative

model for describing thymocyte dynamics with age. The
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thymocyte dynamics model was validated by comparing its

output to the absolute values and relative fractions of thymocyte

sub-types curated from various sources, as presented in Figures 3C,

D. A moving average with a 10-year step was applied to the relative

proportions of thymocyte sub-type data, to visualize data variability

and compare such vs. model predictions.

According to these validation results, the integrative model

adequately described the age-related thymic function, both in

qualitative and quantitative terms. Relative proportions of DN and

DP thymocytes decreased with age, while the proportion of SP cells

increased (Figure 3C). Such a process can be explained due to a faster

involution of the cortex vs. the medulla. Inconsistencies arose in the

predictions of DP and SP counts in the 10- to 30-year age group and

the >50-year age group for the SP cell population, primarily due to the

sparsity and relative lack of data for these groups (Figure 3C). The

absence of data on the absolute values of total thymocyte numbers in

human, combined with the necessity to merge data from various

sources to calculate the absolute number of thymocytes, resulted in a

partial discrepancy between model predictions and the data

(Figure 3D). Nevertheless, the overall model adequately reproduced

the age-dependent trends in both total thymocyte counts and all

thymocyte sub-population counts.
3.4 Prediction of thymic function for
clinically relevant settings

The integrated model of thymocyte dynamics was next used to

perform simulations of thymus function changes with age

(Figure 4), specifically, to predict thymocyte counts in the

different anatomical compartments: the cortex, the medulla, and

the overall thymus (Figure 4A); and of the various cell populations,
FIGURE 2

Global sensitivity analysis on a physiologically plausible set of parameters using a PRCC-based method.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1321309
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kulesh et al. 10.3389/fimmu.2024.1321309
including DN, DP, and SP cells (Figure 4B). The model explicitly

captured the dynamics of main thymocyte populations (DN, DP,

SP4 and SP8) and implicitly included various sub-populations, such

as thymic-derived regulatory T-cells (tTreg) and re-entered mature

lymphocytes. Given that tTreg cells constitute ∼1 – 3% of SP4 cells

in the thymus, it becomes feasible to predict the absolute number of

these cells (49, 50). In infants, the calculated tTreg count was

3.2*106 – 9.6*106 cells per gram of thymus, a value which roughly
Frontiers in Immunology 09
aligns with experimental data (14.1 ± 4.2*106 cells per gram of

thymus (51)).

Thymic function simulations were performed for subjects under

three sets of physiological conditions: healthy subjects, subjects with

an early onset of thymus involution, and subjects with an early

onset of thymus involution and with blocked thymocyte egress

(Figures 4C, D). Early-onset thymus involution may occur under

certain pathological conditions, while thymocyte egress blockage
B

C D

A

FIGURE 3

Validation of the thymocyte dynamics model. (A) Thymus wet weight [solid line and shaded area represents the model predicted mean with 95% CI
uncertainty band, respectively, and symbols and error bars stand for the mean and 95% CI of clinical data (6)]; (B) Relative volume of thymic cortex,
normalized to initial value, derived from the modified function in Equation 7 [solid line and shaded area represents the model predicted mean with
95% CI uncertainty band, respectively, and symbols and error bars stand for the mean and 95% CI of clinical data (6)]; (C) Relative proportions of DN,
DP and SP cells [solid line and shaded area represents the model predicted mean with 95% CI uncertainty band, respectively, symbols stand for
clinical data (25–33) and black solid line with error bars represents moving average with 95% CI (10 years step)]; (D) Absolute values of total
thymocyte numbers [solid line and shaded area represents the model predicted mean with 95% CI uncertainty band, respectively, and symbols and
error bars stand for mean and 95% CI of clinical data derived from (25, 6); see also Supplementary Table 1].
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may occur under therapeutic pharmacological interventions with

certain immunomodulators such as fingolimod. The corresponding

model predictions were expressed as the rate of exported SP cells

(cells*d-1). Average parameter values from physiologically plausible

parameter sets were used to simulate healthy subjects. Early-onset

thymus involution was modeled by reducing the EC50 parameter

value to EC50 = 40 years. Thymocyte egress blockage was modeled

by lowering the egress rates of SP4 (e4) and SP8 (e8) cells from 0.076

d-1 and 0.082 d-1 to 0.011 d-1 and 0.012 d-1, respectively. A detailed

description of the parameter values used to simulate both early-

onset thymus involution and thymocyte egress blockage scenarios is

provided in the Supplementary Materials (Supplementary

Table 6) (52).

One of the clinical factors limiting the use of fingolimod is the

development of severe lymphopenia. According to European

Medicines Agency (EMA) guidelines, fingolimod-based treatment

should be discontinued when the absolute lymphocyte count in

blood drops below 200 cells/mm3 (53, 54). The average duration of

fingolimod treatment prior to developing severe lymphopenia was

identified through simulations of the impact of fingolimod
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discontinuation on thymic output. A detailed description of the

estimation of the average threshold of thymic output for fingolimod

therapy discontinuation is presented in the Supplementary

Materials (Supplementary Table 7) (41, 55–57).

We determined a model-based, ∼1.1-fold difference in absolute

numbers of exported SP cells, when comparing healthy subjects vs.

subjects with early-onset thymus involution in a 20 year-of-age group

(Figure 4C); this difference in thymic count, however, increased with

age (Figure 4D). Blockage of thymocyte egress led to a decrease in the

absolute values of exported SP cell counts (Figure 4C). However, no

significant differences in the rate of thymus involution were observed,

with respect to subjects’ age, with or without thymocyte egress

blockage (Figure 4D, blue and yellow lines). Considering the

calculated thymic output threshold for fingolimod discontinuation,

grade 4 lymphopenia is expected to develop after ∼19 years of

continuous fingolimod, with drug treatment initiated at the age of

20 (Figure 4C). The effect of fingolimod treatment duration on the

thymic output rebound after drug discontinuation in 20-year old

multiple sclerosis patients is presented in Figure 4E; the shorter the

treatment duration, the greater the extent of thymocyte rebound after
B

C D E

A

FIGURE 4

Predictions of the thymocyte dynamics model. (A) Absolute values of all thymocyte counts and of cortex and medulla thymocytes (solid line and
shaded area represents the model predicted mean with 95% CI uncertainty band, respectively); (B) Absolute values of DN, DP and SP thymocyte
populations (solid line and shaded area represents the model predicted mean with 95% CI uncertainty band, respectively); (C) Predicted mean of
thymic output for healthy subjects, subjects with early-onset thymus involution, and subjects with early-onset thymus involution and blocked
thymocytes egress (dashed line – thymic output threshold for fingolimod discontinuation); (D) Predicted mean of SP cell counts, expressed as
changes from baseline, for healthy subjects, subjects with early-onset thymus involution, and subjects with early-onset thymus involution and
blocked thymocytes egress; (E) Predicted thymic output rebound after thymocyte egress restoration in 20-year old subjects with early-onset
thymus involution.
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fingolimod discontinuation (Figure 4E). However, this would also

present a higher risk of severe lymphopenia development (Figure 4C).
4 Discussion

The development and validation of an integrative mechanistic

model of thymocyte dynamics is a challenging task, given not only the

inherent complexity of the underlying biology and physiology, but also

due to intrinsic and extrinsic uncertainty and variability in the data, as

can be seen in Figure 3. These challenges are further compounded by

the lack of longitudinal thymocyte data in humans. Framing thymocyte

homeostasis while identifying and extracting consistency across multi-

source, multi-scale experimental data and biological knowledge is an

essential and demanding task for the development of a quantitative,

dynamic, physiologically-based mathematical model. This type of

models may then be used to perform predictive simulations under

scenarios of various pathophysiological conditions and/or therapeutic

pharmacological interventions. The model of thymic function we

proposed here is consistent with current qualitative and quantitative

knowledge on homeostasis of various thymocyte populations

and on age-related differences in thymic function. Furthermore, the

model adequately described the changes in thymic function under

certain pathological conditions, such as multiple sclerosis, and

pharmacological immunomodulatory intervention, such as

fingolimod administration. Finally, our model-based analysis

revealed parameters (e4, e8, j4, l4 and m4) which are most critical in

determining the system performance characteristics, which may

be “targeted” to improve thymic function, e.g., under

pharmacological modulation.

Model development and validation were based on a broad set of

published experimental and clinical data, on thymocyte

homeostasis and age-dependent thymus involution. Our model

calibration approach is more exhaustive than previous thymus

modeling efforts, whereby single sets of mainly murine data

[thymocyte kinetic data in normal thymus (16) and in thymus

with induced T-cell development abnormalities (12, 13); steady-

state thymocyte counts (14)] were used for model development.

Despite the heterogeneity of data sources, calibration of parameter

estimates in the model resulted in a close agreement with previously

published models (Supplementary Table 8). However, the inflow

rate of thymocyte precursors was difficult to compare across

existing mathematical models of the thymus, given that cell

content within the DN compartment varied among models.

Differences in underlying structures between the presently

described vs. previously published models resulted in differences

for several parameter estimates. Because not every published model

incorporates DP cell proliferation rate or the control of cell

transition from the cortex to the medulla, estimates for the DP

proliferation rate and the DP-to-SP4 and DP-to-SP8 differentiation

rates were approximately an order of magnitude higher than

respective parameter estimates from previously published models

(Supplementary Table 8).

The quality of the data used for model verification along with the

utilization of mouse data may influence the reliability of the model

predictions. All quantitative data identified through our systematic
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literature review were used for parameter estimation and model

validation. No assessment was made regarding publication bias in

the experimental and clinical data, and there remains a need for

establishing quantitative criteria to distinguish high quality

experimental immunological data from lesser quality ones.

Addressing this issue involves the consideration of options

proposed by the QSP community, such as focusing on parameter

variability and model validation (58). Several dynamic characteristics

of various thymocyte subsets were extracted from experiments

conducted in mouse (Supplementary Table 3). The derivation of

experimental estimates for model parameters (Table 3) involved

scaling from mouse to human (36, 40), except for parameters m1,

l1, l2, l4, l8, e4 and e8 (Supplementary Table 4). According to the

sensitivity analysis results (Figure 2), parameters e4 and e8 exerted the
most significant influence on thymic function. Discrepancies in the

derivation of these parameters could potentially impact model

performance. However, the consistency of model estimates with

experimental values (Table 3), as well as the ability of the model to

adequately describe human data (Figures 3C, D) provided support in

using such data. Nevertheless, model verification should be refined as

more human data become available.

Estimates of maximal thymocyte numbers in the cortex and the

medulla were derived, both to quantify age-related thymus

involution and to limit excessive, non-physiological cell

proliferation and cell flow across thymus compartments. A

similar approach to thymocyte growth control has been

implemented in the Ye et al. model, whereby a time-dependent

function of the thymus epithelial space was used to limit the

proliferation of each subset of thymocytes (15). We elected to

consider cortex and medulla in the thymus separately, since

involution rates in these areas significantly differ from each other

(10). The derived quasi steady-state values of each thymocyte subset

were lower than the estimated maximal number of thymocytes in

the cortex and the medulla, which provided an opportunity to allow

for an increase in cell proliferation as may occur under infection or

specific therapeutic intervention conditions.

The sensitivity analysis showed that the egress, differentiation,

proliferation and death rates of SP (especially SP4) cells were the

most critical system parameters controlling thymic function.

Sensitivity analysis results were consistent with those predicted by

other mathematical models, whereby the SP4 emigration rate,

together with T-cell division and death rates were found to be the

most important parameters affecting the concentration of TRECs

and, subsequently, thymic output (15). Moreover, the sensitivity

analysis revealed a low impact of thymocyte precursor inflow on

thymic output, which can be explained by a limited number of TSP

niches in the thymic cortex (36). While age-dependent involution is

characterized by a stronger loss of cortex as compared to the

medulla, parameters most critical for thymic function were those

affecting SP cells, as a more rapid depletion of DP and DN cells

resulted in a conditional accumulation of SP cells. The observed

inconsistencies of model prediction with experimental data,

particularly regarding the relative number of SP cells, can be

attributed to the absence of processes in the model required to

mechanistically describe other immune cell differentiation (e.g.,

tTreg) and the process of mature lymphocyte re-entering.
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The developed model was used to simulate several clinically

relevant scenarios reflective of patho-physiological conditions and

specific pharmacological interventions. For example, a condition of

early-onset thymus involution, through a setting of low levels of SP

cells in the thymus could be implemented in the mechanistic model;

such a condition may be linked to chronic autoimmune conditions,

e.g. multiple sclerosis. Patients with multiple sclerosis exhibit early-

onset of thymus involution, since they feature levels of TREC-

containing CD4+ and CD8+ T cells which would be equivalent to

those found in 30-year old healthy subjects (59). Another clinically

relevant scenario which may be prospectively simulated with the

present model relates to chronic treatments using pharmacological

immunomodulators such as fingolimod, a small molecule drug

which inhibits S1P receptors (60). S1P/S1PR1 signaling is indeed

required for thymocytes to emigrate out of the thymus (61). S1P

activation of S1PR1 onmature SP cells may allow thymocytes to exit

the thymus and enter the circulation. Accordingly, a lack of S1PR1

would result in thymocytes being unable to leave the thymus (61). It

has been shown that thymocyte egress is delayed upon fingolimod

administration (60, 62).

The performed simulations provided a mechanistic basis for

understanding thymic output dynamics and its dependence on age,

in cases of healthy subjects, multiple sclerosis patients, and patients

on fingolimod treatment. Our predictive simulations showed that

thymic output significantly differed between healthy subjects and

multiple sclerosis patients, even though these systemic interventions

would not affect the slope (rate) of the thymus involution process.

One may infer from such simulations results that, upon fingolimod

discontinuation, the probability of multiple sclerosis relapse would

decrease with age, since thymic output is significantly lower at more

advanced ages. Such an inference is actually supported by clinical

evidence, whereby patients at younger ages exhibited a higher risk

of relapse following fingolimod discontinuation (63, 64). However,

it is also important to note that relapse would not occur solely due

to a rapid re-entry of lymphocytes into the periphery and the central

nervous system; relapse has been observed even under conditions

whereby lymphocyte counts remained depressed (65). It is also

important to understand the effect offingolimod treatment duration

on the risk of developing severe lymphopenia (54). Our model

predictions provided insights into how the duration of fingolimod

use may affect thymus function. An average treatment duration

of ∼19 years in 20-year old subjects, as defined by the present

model, was qualitatively consistent with reports of infections (e.g.,

cryptococcal meningitis) which may occur after 2-3 years of

treatment (54). Indeed, thymus function varies among patients,

depending on their individual characteristics, and our simulation

results reflected average trends. The next challenge lies

in individualizing model-based simulations, based on a

subject’s drug pharmacokinetics and transcriptomic and

immunophenotypic data.

The proposed mechanistic model of thymocyte dynamics

provides a consistent description of T-cell development, in

agreement with existing clinical data – yet it also comes with a

number of limitations. For example, we used a deterministic

approach to quantify and extrapolate thymic function dynamics,

in relation to time and age. Therefore, in order to follow the
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parsimony principle and to avoid overt parameter identifiability

issues (66), we simplified the model structure. Specifically, we did

not take into account all aspects and all intermediate stages of T-cell

development. Another potential limitation is that our model did not

consider the development of other immune cells that takes place in

the thymus, such as tTreg, and mature re-entering lymphocytes.

Although the model allows for the calculation of tTreg numbers in

the thymus as a small (1 – 3%) fraction of SP4 cells (50), one of the

model limitations is related to the inability to mechanistically

describe tTreg development and, consequently, assess the velocity

of this process, explore other paths to tTreg differentiation [such as

evaluating the contribution of an alternative CD25- progenitor Treg

subpopulation (49)], or investigate the impact of autoimmune

diseases such as Myasthenia gravis (67). Accounting for the re-

entry of mature lymphocytes may represent a priority option for

model expansion (35). To address this, the model should

incorporate at least one population of peripheral lymphocytes.

Moreover, since the ability to re-enter differs between naïve and

previously activated T-cells (68), incorporating a dynamic

description of peripheral T-cell behavior could be beneficial.

Capturing re-entered lymphocytes into distinct subpopulations

and providing a more detailed description of the latter stages of

thymocyte development may well enhance the model’s accuracy in

quantitative predictions and overall performance. However, this

would necessitate a more extensive dataset comprising experimental

and quantitative data on corresponding cellular dynamics and

remains to be systematically addressed in the future.

Nevertheless, the mechanistic model featured here may be used

as a basis for further multi-scale modeling of T-cell dynamics. The

current version of the model may also be extended to capture

scenarios of infections (e.g., HIV) and/or drug- or stress-induced

thymus atrophy processes. Such model extensions will provide a

tool for further quantitative and mechanistic understanding of

thymus function, under various conditions and combinations of

homeostatic disruptions.
5 Conclusions

An integrative mechanistic model of thymocyte dynamics in

human was developed and validated using multi-scale experimental

and clinical data. The model integrated key mechanistic processes of

human thymopoiesis, including homeostasis of various thymocyte

populations and age-related changes in thymic function. A model-

based sensitivity analysis revealed that the SP cell export,

differentiation, proliferation and death were the more important

processes influencing overall thymic function. Our model-based

simulations suggested that the clinically observed decrease in

relapse risk with age, in multiple sclerosis patients who would

have discontinued fingolimod therapy, can be explained

mechanistically by decreased thymic output with age. A

quantitative assessment of the relationship between thymic output

and duration of fingolimod treatment revealed an average therapy

duration of ∼19 years until the development of grade 4

lymphopenia. The model described here may be interrogated to

quantitatively explore various scenarios of pharmacological
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interventions and personalized treatments relevant to drug

development. It may also serve as a basis for further mechanistic

extensions, including consideration of additional T-cell dynamics

regulation processes as well as the impact of infections and drug- or

stress-induced thymus atrophy scenarios.
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