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Background: Mechanical stretch-mediated tissue expansion is effective for

obtaining extra skin and soft tissue required for the repair of defects or

reconstruction of surface organs. Understanding the cellular and molecular

mechanisms and identifying hub genes and key cell types associated

with skin expansion could help predict the success of skin growth during

expansion procedures.

Methods: We analyzed murine chip sequencing data and single-cell sequencing

data available from the Gene Expression Omnibus database. Based on the

differentially expressed and epithelial–mesenchymal transition-related genes,

random forest and protein-protein interaction network analysis identified hub

genes for predicting skin regeneration in tissue expansion. The fate of the cell

subpopulations, expression of hub genes in different cell types, and their

communication were also assessed.

Results: Five genes, integrin beta 5 (Itgb5), tropomyosin 1 (Tpm1), secreted

frizzled-related protein-1 (Sfrp1), Notch1, and insulin-like growth factor binding

protein 2 (Igfbp2), were identified as having the greatest impact on prediction

accuracy. These hub genes were primarily enriched in the Notch and

phosphoinositide 3-kinase-AKT pathways. Immune cell infiltration analysis

further revealed that mast cell infiltration was significantly higher in the

expanded skin group than that in the control group. According to single-cell

data, the interactions between epithelial cells, stem cells, and other cell types

were higher in the expanded skin group than those in the control group.

Moreover, Tpm1, Sfrp1, and Notch1 were highly expressed in all epithelial and

stem cell subgroups.

Conclusions: The hub genes, Notch1, Tpm1 and Sfrp1, and their associated

signaling pathways such as Notch and Wnt signaling and functions in key

cell subsets highlight prospective therapeutic strategies to enhance skin
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growth under mechanical expansion. Moreover, mast cell activation and

infiltration may trigger immune responses in the expanded skin, which requires

further investigation.
KEYWORDS
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1 Introduction

Mechanical stretch-mediated tissue expansion is an effective

procedure to obtain extra skin and soft tissue via skin regeneration

to aid in repairing defects or reconstruction of surface organs in

plastic and reconstructive surgeries (1, 2). During this process, an

expander is inserted underneath the skin and soft tissue. However,

complications, such as expander exposure, may occur if skin

regeneration is insufficient (3). Thus, understanding the cellular

and molecular mechanisms and identifying hub genes and key cell

types associated with skin expansion will help evaluate the degree of

skin growth during tissue expansion and provide insights into

insufficient skin expansion. Furthermore, the analysis of single-

cell and transcriptome data may elucidate the mechanisms

employed by different skin cell populations in response to

mechanical stretching.

Epithelial–mesenchymal transition (EMT) is a key regulator of

skin regeneration during skin expansion as shown in previous study

(4). EMT is a cellular process vital for wound healing and

embryogenesis, during which, the cell–extracellular matrix and

cell–cell interactions become remodeled, leading to a new

transcriptional program that promotes the mesenchymal fate of

epithelial cells. Thus, EMT related genes were chosen in this study

for further analysis. Furthermore, EMT may impact the infiltration

and activation of various immune cell types in the stroma. Indeed,

the relationship between immune response and EMT has been

reported in studies on wound healing (5, 6). In particular, cytokines,

such as interleukin (IL)-6, tumor necrosis factor-alpha (TNF-a),
and transforming growth factor-beta (TGF-b), are released

by activated effector T cells or macrophages and facilitate

EMT (7–9). Meanwhile, immune cells in the expanded skin

microenvironment influence skin regeneration. That is, the

polarization of macrophages from the pro-inflammatory M1

phenotype to the immunosuppressive M2 response is necessary

for skin regeneration during tissue expansion (10). However,

following mechanical stretching, high M1 polarization-related

gene expression is observed in vitro (11). Hence, considering the

prominent role played by monocytes/macrophages in tissue repair

and regeneration, it is necessary to investigate their roles in skin

regeneration during tissue expansion and characterize their

communication with resident cells (12). Moreover, immune

infiltration analysis in expanded skin may provide insights into
02
the mechanism underlying the interactions between immune

responses and skin regeneration during tissue expansion.

Previous studies have illustrated the mechanisms of skin

regeneration and renewal during tissue expansion, in vivo and in

vitro (4, 13). Based on these studies, herein, we comprehensively

analyzed chip and single-cell RNA sequencing (scRNA-seq) data from

the Gene Expression Omnibus (GEO) database. Based on differentially

expressed genes (DEGs) and EMT-related genes, a random forest

model and protein–protein interaction (PPI) network analysis was

performed to identify a group of hub genes capable of predicting skin

regeneration success during tissue expansion. Furthermore, the fate of

cell subpopulations, expression of hub genes in different cell types, and

their communication were evaluated.

The findings of this study will help evaluate the degree of skin

growth during tissue expansion and provide insights into

insufficient skin expansion.
2 Materials and methods

2.1 Data acquisition and processing

The scRNA-seq dataset GSE146637 was downloaded from the

official GEO database (https://www.ncbi.nlm.nih.gov/geo/) for further

analysis (14). The species was Mus musculus, and an Illumina

HiSeq 4000 detection platform was used. Samples were obtained

from the skin tissues of mice in the two expanded skin groups and

one control group. The raw data included 12,309 cells. Quality

control of single-cell data was performed, and the processing

standards were identified according to the following criteria: (1)

gene was expressed in at least 10 cells; (2) at least 200 genes per cell;

(3) total number of counts in each cell was between 0 and 30,000;

(4) the number of genes expressed per cell was between 1,200 and

5,000; (5) mitochondrial gene content was < 10%; and (6) ribosomal

gene content was between 10% and 50%. The final expression

matrix contained 12,263 cells and 8,958 genes, with 7,608 and

4,655 cells in the expanded and control groups, respectively.

Chip data were obtained from the GEO website. Among them,

the GSE126231 dataset was from the Affymetrix HT MG-430 PM

Array Plate platform, including the chip expression matrix and

sample information data of eight Mus musculus samples (13). The

expression matrix and sample information data of the three
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expanded skin groups and the three control samples were selected

for analysis. GSE186773 was obtained from the Affymetrix Clariom

S Assay, Mouse (Includes Pico Assay) platform (species: Mus

musculus) (15) comprising 10 samples. The microarray

sequencing expression matrix and sample information data of

four samples each from the untreated expanded skin group and

four control groups were evaluated. Each dataset contained an

expression matrix and corresponding sample information data

(see Supplementary Table 1).
2.2 Identification of EMT-related genes

We searched the Ensembl database (https://asia.ensembl.org/

index.html) with the keyword “EMT” and obtained 251 EMT-

related genes (16). In addition, we collected multiple EMT gene sets

from the Mouse Genome Informatics (MGI) database (https://

www.informatics.jax.org/) and Molecular Signatures Database

(MsigDB) (17). After removing duplicates, all genes were

included in the subsequent analyses, and 362 EMT-related genes

were identified (see Supplementary Table 2).
2.3 Integration of datasets after batch
effect removal

To expand the sample size and ensure the reliability of the

experimental results, we used the ComBat function in surrogate

variable analysis (SVA; version 3.42.0) to remove the batch effects of

GSE126231 and GSE186773 Chip datasets; the co-expressed genes

were retained (18). The resulting integrated expression matrix was

used for subsequent analyses.
2.4 Variance analysis

Linear Models for Microarray Data (limma) (version 1.34.0)

was used to perform differential analysis on the expression matrix of

all microarray data to identify DEGs between the expanded skin

and control groups (19). The parameters for DEGs included a log

fold change [log(FC)] |logFC|> 0.5 and P-value < 0.05. The DEGs

and EMT-related genes were then intersected to obtain EMT-

related DEGs (EMTRDEGs) for further study.
2.5 Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) analysis

GO analysis is a common method for conducting large-scale

functional enrichment studies on biological processes (BPs),

molecular functions (MFs), and cellular components (CCs) (20).

KEGG is a widely used database that stores information on

genomes, biological pathways, diseases, and drugs (21). The R

package clusterProfiler (version 4.2.2) was used to perform GO

and KEGG annotation analyses of EMTRDEG in the integrated
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dataset (22). The entry screening criterion was P < 0.05, a false

discovery rate value (q-value) < 0.05 was considered statistically

significant, and the Benjamini-Hochberg P-correction method

was used.
2.6 Chromosome location information

We used RCircos (version 1.2.2) to determine the locations of

EMTRDEGs in mouse chromosomes (23). Using the on-chromosome

gene mapping information built into the University of California in

Santa-Clara UCSC. Mouse. GRCm38. CytoBandIdeogram data, we

selected and visualized the EMTRDEGs.
2.7 Establishment of diagnostic model for
skin growth

We used the previously obtained EMTRDEGs as candidate

genes to construct diagnostic models. The randomForest function

in randomForest (version 4.7) was used to perform random forest

variable screening based on the integrated dataset to construct

diagnostic models. According to the random forest machine

learning algorithm, the EMTRDEGs were weighted and scored,

and the top five genes with the highest interpretation degree for the

prediction model were selected as predictors. Only the diagnostic

markers were retained, and the model was reconstructed.

Subsequently, we used the receiver operating characteristic (ROC)

curve function in package pROC (version 1.18.0) to draw the ROC

curve of the diagnostic model (24). The nomogram function in root

mean square (version 6.3-0) was employed to draw the nomogram,

and the model was calibrated with a calibration function to test the

model prediction accuracy.
2.8 Weighted correlation network
analysis (WGCNA)

WGCNA (version 1.71) was performed on all genes in the

integrated dataset (25). The constant-height tree cut cutreeStatic

function was used to filter out outlier samples. We defined a cut

height of 140 mm as an outlier sample with a large deviation for

elimination. The pickSoftThreshold function selected the first

parameter R2 > 0.85 as the soft threshold for the subsequent

construction of gene modules. Next, we clustered the co-

expressed genes using the blockwiseModules function to obtain

gene modules. The important parameters were set as follows: (1)

maximum block size = 16,000; (2) minimum module size = 200; (3)

minimum CoreKME size = 200/3; (4) merge cut height = 0.15; (5)

deep split = 4. The default values were used for the

remaining parameters.

Spearman correlation analysis was performed between the final

gene modules and their characteristic values and the grouping

status of each sample (expanded skin group =“1,” normal control

group =“0”). The most relevant gene modules significantly
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https://asia.ensembl.org/index.html
https://asia.ensembl.org/index.html
https://www.informatics.jax.org/
https://www.informatics.jax.org/
https://doi.org/10.3389/fimmu.2024.1306353
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1306353
associated with skin growth in the expanded group were screened

for P < 0.05.
2.9 PPI network construction and
identification of hub genes

The previously obtained skin growth-related gene modules were

intersected with diagnostic markers to obtain skin growth-related

diagnostic markers (SGRDMs). We then constructed a PPI network

using the Search Tool for the Retrieval of Interacting Genes/

Proteins (STRING) (https://cn.string-db.org/) database (26),

selected the top 20 genes with the highest network connectivity,

excluded the genes that did not exist in the expression matrix of the

integrated dataset, and formed hub genes together with SGRDMs.

Cytoscape software (version 3.9.1) was used to visualize gene

networks (27).

Subsequently, we used Network Analyst (https://www.

networkanalyst.ca/) to construct a micro-RNA (miRNA) and

transcription factor (TF) interaction network of hub genes (28).

Finally, network connectivity was calculated and visualized using

the CytoHubba plugin.
2.10 Immune cell infiltration

The immune cell composition (ImmuCC) model (http://

218.4.234.74:3200/immune/) is based on the principle of linear

support vector regression to deconvolve the transcriptome

expression matrix or chip expression matrix to estimate the

composition and abundance of immune cells in various tissues

(29). We uploaded the integrated dataset of this study to ImmuCC

for evaluation and analyzed the infiltration fraction of 25 immune

cells in different samples and the difference between expanded skin

and control groups. Corrplot (version 0.92) was used to map

correlations between the 25 immune cells and hub genes. We

then screened for statistically significant correlations between

immune infiltration scores and hub gene expression and plotted

the correlations using the scatterplot function. Statistical

significance was set at P < 0.05.
2.11 Dimensionality reduction, clustering,
and grouping of single-cell data

We analyzed the single-cell data using Seurat (version 4.0.5)

(30). Next, the sequencing depth of the GSE146637 dataset was

normalized with the “NormalizeData” function, which is the default

LogNormalize, and detected 1,500 variable features of the dataset

using the variance-stabilizing transformation (VST) method by

calling the FindVariableFeatures function. We then scaled the

data using ScaleData to exclude the effects of sequencing depth.

Subsequently, we selected 12 significant principal components

(PCs) for dimensionality reduction and clustering using the
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FindClusters function (resolution = 0.2). The final visualization

was performed using a Uniform Manifold Approximation and

Projection (UMAP). The cells were then divided into six clusters.
2.12 Identification of characteristic genes
and cell type annotation

We used the FindAllMarkers function in Seurat to identify

characteristic genes specifically expressed in each cell population. A

gene satisfying |logFC|> 0.25 and adjusted P < 0. 05 was considered

a characteristic gene. The characteristic genes of each cell group

were ranked according to |logFC|, and the genes with the highest

ranking were selected to characterize and annotate each group. Each

cell population was type-annotated by examining the expression of

reported marker genes in the population.
2.13 Cell subpopulation identification

Stem cells, endothelial cells, epithelial cells, and fibroblasts were

extracted to identify the cell subpopulations. Further analyses of the

four cell populations were performed using the Seurat protocol. The

important parameters were set as follows: Stem cells and

Endothelial cells: The FindVariableFeatures function used the

VST method to detect 1,200 variable features of the dataset, PCs

= 8, resolution = 0.1; Epithelial cells: The FindVariableFeatures

function used the VST method to detect 800 variable features of the

dataset, PCs = 6, resolution = 0.1.
2.14 Cell communication

CellChat (version 1.1.3) extrapolates the strength of interactions

between different cells based on single-cell expression matrices and

ligand-receptor pair information recorded in the in-house CellChat

mouse database (31). We performed cell communication analysis

on all the cells and visualized them.
2.15 Gene set variation analysis (GSVA)

We downloaded mouse HALLMARK gene sets (32) for GSVA

from MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/). The

HALLMARK gene sets comprised 50 important gene sets related

to biological functions. We selected HALLMARK gene sets based

on the GSE146637 dataset, calculated the biological activity of each

cell population, and identified gene sets with differences in

functional activity between the expanded skin groups and controls.
2.16 Cell differentiation trajectory inference

Monocle (version 2.22.0) was used to construct quasi-temporal

trajectories for four cell populations: stem cells, endothelial cells,
frontiersin.org
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epithelial cells, and fibroblasts (33). The genes used for trajectory

inference were characteristic of all four cell groups.
2.17 TF activity assay

The discriminant regulon expression analysis DoRothEA

resource (version 1.6.0) is a method for inferring the activity of

transcription factors in each cell based on an expression matrix (34).

We calculated the activity of TFs in stem cells, endothelial cells,

epithelial cells, and fibroblast cell groups and identified cell

subgroup-specific TFs.
2.18 Statistical analysis

All data processing and analyses were performed using the R

software (version 4.1.1). To compare two groups of continuous

variables, statistical significance was estimated using the

independent Student’s t-test for normally distributed variables.

Differences between non-normally distributed variables were

analyzed using the Mann–Whitney U-test (i.e., Wilcoxon rank-

sum test). The chi-squared test or Fisher’s exact test was used to

compare and analyze the statistical significance of the difference

between two groups of variables. All statistical P values were two-

sided, and a P < 0.05 was considered significant.
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3 Results

3.1 Flow chart of the
experimental protocol

The flow chart of this study is shown in Figure 1.
3.2 Chip data integration

To expand the sample size, include more analytical data, and

have a more comprehensive characterization of skin growth, we

integrated the Chip datasets GSE126231 and GSE186773 via de-

batching. Before the process, the total expression of the samples in

the two datasets exhibited differences, as reflected in Supplementary

Data Sheet 2. Samples from the different datasets were divided into

two populations (Supplementary Data Sheet 2). Subsequently,

datasets GSE126231 and GSE186773 were processed to remove the

batch effect using the R package sva function to obtain combined

datasets. The datasets before and after batch effect removal were

compared using a distribution box plot (Supplementary Data Sheet

2) and PC analysis (PCA) plots (Supplementary Data Sheet 2).

Fourteen samples were included in the integrated dataset, including

seven from the expanded skin group and seven from the

control group.
FIGURE 1

Flow chart of the experimental protocol. GSVA, Gene set variation analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;
EMT, Epithelial-mesenchymal transition; PPI, Protein-protein interaction network; TF, Transcription factors. DEGs, Differentially expressed genes;
DCA, Decision Curve Analysis; AUC, Area under curve.
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3.3 Identification of EMT-related DEGs

To investigate the differences between the expanded and control

groups, we identified DEGs based on the integrated dataset. Among

them, 379 DEGs were significantly upregulated in the expanded

group and 292 DEGs were significantly downregulated (see

Supplementary Data Sheet 3). We then selected 20 DEGs with the

top ∣logFC∣in expanded and control group, respectively, to
Frontiers in Immunology 06
construct a heat map and found significant differences in gene

expression between the expanded and control groups (Figure 2A).

To further evaluate the relationship between DEGs and EMT-

related genes, we intersected the DEGs with EMT-related genes

obtained from the Ensemble, MGI, and MsigDB (Figure 2B). A total

of 46 EMTRDEGs were obtained (P < 0.05, Figure 2C). Among

these, 28 were upregulated in the expansion group and 18 were

upregulated in the control group (P < 0.05, Figure 2D). To further
FIGURE 2

Identification of EMTRDEGs based on the integrated dataset. (A) DEGs of logFC top 20 were upregulated in expanded and control groups,
respectively. Purple indicates high expression, while green indicates low expression. (B) The intersection of 671 DEGs and 362 EMT-related genes
yielded 46 EMTRDEGs. (C) The volcano plots show the expression of 46 EMTRDEGs in two groups. (D) Box plots show the differences in the
expression of 46 EMTRDEGs between two groups. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. (E) Reactome pathway enrichment map. The
size of the black circle indicates the number of EMTRDEGs to which an entry is enriched. (F) GO pathway enrichment map. The size of the black
circle indicates the number of EMTRDEGs to which an entry is enriched. (G) Location information of EMTRDEGs on different human chromosomes.
EMTRDEGs, EMT-related DEGs.
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assess the biological function of EMTRDEGs and their roles in

signaling pathways, we performed GO and Reactome enrichment

analyses on all 46 EMTRDEGs. The results showed significantly

enriched ECM organization and elastic fiber formation pathways

(P < 0.05; Figure 2E and Supplementary Table 4). GO results

further revealed that the EMTRDEGs were significantly enriched

in mesenchymal cell differentiation pathways related to cell

differentiation other than EMT pathways (P < 0.05; Figure 2F

and Supplementary Table 4). In addition, chromosome mapping

results showed that the EMTRDEGs were located on multiple

chromosomes, suggesting that they might have different biological

functions (Figure 2G).
3.4 Correlation analysis of EMTRDEGs

We performed gene expression correlation analysis on the 46

EMTRDEGs and found that the expression levels of most

EMTRDEGs were significantly positively correlated (P < 0.05, r >

0), whereas those of others were significantly negatively correlated (P

< 0.05, r < 0; Figure 3A). In addition, the expression of various

EMTRDEG pairs, namely, Epha4 and Ecm1 (Figure 3B), Mmp2 and

Itga2 (Figure 3C), Il1b and Fgfr2 (Figure 3D), Fgfr2 and Mmp3

(Figure 3E), Bmp7 and Plod1 (Figure 3F), Bmp7 and Tgfb1

(Figure 3G), Fgfr2 and Ecm1 (Figure 3H), Tpm1 and Postn

(Figure 3I), Fgfr2 and Efemp2 (Figure 3J), and Fgfr2 and Tgfb1

(Figure 3K) were negatively correlated (P < 0.001, r < -0.7). The

expression levels of Pdcd4 and Matn2 (Figure 3L), Acta2 and Basp1

(Figure 3M), EfemP2 and Ecm1 (Figure 3N), Notch1 and Gas1

(Figure 3O), Tiam1 and Slc6a8 (Figure 3P), Bcl9l and Matn2

(Figure 3Q), Trip10 and Lamc1 (Figure 3R), Spry1 and Gas1

(Figure 3S), Pdcd4 and Bcl9l (Figure 3T), and Pdcd4 and Slc6a8

(Figure 3U) were positively correlated (r > 0.8, p < 0.001). This high

degree of correlation between EMTRDEG expression patterns

suggests that they may function concertedly to influence skin growth.
3.5 Construction of skin growth diagnosis
model in skin-expansion tissue based
on EMTRDEGs

To determine the diagnostic value of the 46 EMTRDEGs in the

integrated dataset, we constructed a diagnostic model based on the

integrated dataset using random forest analysis. We found that

when the n-tree parameter was > 300, the model error rate tended to

be stable (Figure 4A). In addition, the accuracy of skin growth

prediction based on the 46 EMTRDEGs was 100% (area under

curve [AUC] = 1) (Figure 4B).

The MeanDecreaseGini in random forests calculates the effect

of each variable on the heterogeneity of the observations at each

node of the classification tree. Comparing the importance of the

variables, the larger the value, the greater the importance of the

variable. We found that the top five genes (integrin subunit beta 5

(Itgb5), tropomyosin 1 (Tpm1), secreted frizzled related protein 1

(Sfrp1), Notch1, and insulin-like growth factor binding protein 2

(Igfbp2)) were of considerable importance for predicting skin
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growth (Figure 4C). Accordingly, these five genes were designated

diagnostic markers and included in the random model for

diagnostic prediction. The resulting random forest classification

model maintained a constant error rate when n-tree parameter was

> 100 (Figure 4D). The predictive accuracy of the five diagnostic

markers for skin growth was 100% (AUC = 1) (Figure 4E).

Subsequently, a calibration curve was drawn using decision curve

analysis (DCA; Figure 4F) and calibration analysis (Figure 4G). The

model prediction based on the results was evaluated based on the

conformity between the actual probability and the probability

predicted by the model under different circumstances. The results

showed that the prediction efficiency of the model was high, and the

prediction results were highly consistent with the actual skin growth

of the model. Finally, we plotted nomograms for the five genes

whose expression levels were good predictors of skin growth

probability (Figure 4H).
3.6 Identification of gene modules
associated with skin growth using WGCNA

In addition to the diagnostic markers, we used WGCNA to

identify modules that were highly correlated with skin growth for

subsequent analysis. To this end, we used the expressionmatrix of the

integrated dataset of all genes as the input file and set the optimal soft

threshold to 12 (Figure 5A). A scale-free network (Figure 5B) was

constructed, and the topological matrix was calculated. Hierarchical

clustering was performed (Figure 5C). Seven gene modules were

obtained by setting the minimum number of modular genes to 200 to

construct gene modules (Figure 5D). We further correlated these

modules with the expanded and control groups and found that the

blue and yellow modules were significantly negatively correlated with

the expanded growth group (P < 0.05, r = -0.66 and -0.8, respectively)

and significantly positively correlated with the control group (P <

0.05, r = 0.66 and 0.8, respectively). Therefore, we identified the blue

and yellow modules as core modules (Figure 5D, Supplementary

Table 5).
3.7 Identification of hub genes

To further investigate the relationship between diagnostic markers

and skin growth, we intersected the five diagnostic markers with the

core modules and found the five diagnostic markers were associated to

core modules related to skin growth processes. (Supplementary Data

Sheet 2).

Next, we constructed a PPI network of these five genes using the

STRING database to identify the hub genes associated with skin

growth. We selected the top 20 genes with the highest network

connectivity (excluding genes not included in the expression matrix

of the integrated dataset) by incorporating the five diagnostic

markers to form 23 hub genes, including catenin beta 1 (Ctnnb1),

Notch1, insulin-like growth factor 1 (Igf1), nicastrin (Ncstn),

presenilin 1 (Psen1), recombination signal binding protein for

immunoglobulin kappa J region (Rbpj), Psen2, Igf1 receptor

(Igf1r), Igf2, amyloid beta precursor protein (App), integrin
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subunit beta 3 (Itgb3), integrin subunit alpha V (Itgav), Numb, hes

related family bHLH transcription factor with YRPW motif 1

(Hey1), Igfbp4, Itgb5, Igfbp1, Igfbp3, Igfbp2, mastermind like

transcriptional coactivator 1 (Maml1), troponin T2 (Tnnt2),

Tpm1, and Sfrp1 (Supplementary Data Sheet 2). Among them,

Notch1, Ncstn, Ctnnb1, and Psen1 showed high connectivity,

whereas Igfbp3, Sfrp1, Tnnt2 , and Tpm1 exhibited low

connectivity (Supplementary Data Sheet 2).
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3.8 Construction of the interaction hub
gene network with miRNAs and TFs

To further evaluate the interactions between hub genes and

miRNAs or TFs, we constructed an miRNA and TF interaction

network with hub genes using the NetworkAnalyst database. We

found that hub genes interacted with multiple miRNAs, among

which Itgav, Igf1, and Igf1r were the most connected, suggesting
FIGURE 3

Correlation analysis of EMTRDEGs based on the integrated dataset. (A) Correlation heat map of 46 EMTRDEGs. Purple represents a positive
correlation and green represents a negative correlation. *P < 0.05, **P < 0.01, ***P < 0.01. (B–U) Scatter plot of EMTRDEG correlations (|r| >0.7 and
P < 0.05).
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that they might have the strongest interactions with miRNAs

(Supplementary Data Sheet 2). In the TF interaction network,

Itgb3, Notch1, and Rbpj were the most connected (Supplementary

Data Sheet 2).
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3.9 Hub gene enrichment analysis

Next, we performed GSVA of the hub genes to explore the

differences in gene set activity between the expanded and control
FIGURE 4

Construction of a diagnostic model based on the integrated dataset and EMTRDEGs. (A). Error curves of 46 EMTRDEGs in random forest
classification model. (B) ROC curves based on diagnostic models for all EMTRDEGs. The area under the curve (AUC) represents the accuracy of the
model. (C) Weight of the first 30 EMTRDEGs in the random forest classification model. The larger the MeanDecreaseGini, the more important the
variable. (D) Error curves of five diagnostic markers in random forest model. (E) ROC curve of diagnostic model based on diagnostic markers.
(F) DCA plot of the diagnostic model. The ordinate is the net profit, and the abscissa is the threshold probability. (G) Calibration curve of random
forest model based on integrated data set. (H) Nomogram plot based on integrated dataset. ROC, receiver operating characteristic; DCA, decision
curve analysis.
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groups. The results showed no significant differences in the activity

of the gene set composed of hub genes between the two groups (P =

0.21; Supplementary Data Sheets 2, 4). The KEGG results showed

that hub genes were mainly enriched in the Notch, PI3K-AKT, and

thyroid hormone signaling pathways, which are important pathways

related to cell proliferation (Supplementary Data Sheet 2,

Supplementary Table 6). In addition, the GO results showed that

hub genes were mainly enriched in the insulin-like growth factor

receptor signaling pathway, regulation of the insulin-like growth

factor receptor signaling pathway, and muscle cell proliferation

(Supplementary Data Sheet 2, Supplementary Table 6). KEGG

analysis revealed the locations of hub genes in important pathways

and their potential upstream and downstream regulatory

relationships. We found that Itgb3, Itgav, and Itgb5 were enriched

in ECM-receptor interactions and that these genes might be involved

in ECM remodeling (Supplementary Data Sheet 2). Notch1, Ncstn,

Psen1, Rbpj, Psen2, Numb, Hey1, and Maml1 were enriched in

the Notch signaling pathway, and these genes were also involved
Frontiers in Immunology 10
in the mitogen-activated protein kinase signaling pathways

(Supplementary Data Sheet 2). Igf1, Igf1r, Igf2, Itgb3, Itgav, and

Itgb5 were also enriched in the PI3K-Akt signaling pathway,

indicating that they play an important role in cell proliferation

(Supplementary Data Sheet 2). In addition, we found that Ctnnb1,

Notch1, Itgb3, and Itgav were enriched in the thyroid hormone

signaling pathway and that thyroid hormones also regulate cell

growth (Supplementary Data Sheet 2).
3.10 Immune cell infiltration

To further analyze the relationship between hub genes and

immune cell infiltration, we evaluated 25 immune cell infiltration

scores for all samples in the integrated dataset using ImmuCC. The

results showed that hub genes, such as Ctnnb1, Ncstn, Psen1, Psen2,

Igf2, Itgav, and Numb, were significantly correlated with the

infiltration of various immune cells (P < 0.05; Figure 6A). In
FIGURE 5

WGCNA screening of skin growth-related gene modules based on integrated datasets. (A) Optimal soft threshold determined as shown with the
scale-free fit index as a function of the soft-thresholding power. (B) Average connectivity of undirected networks corresponding to different
transition thresholds. (C) Formation of different gene modules. (D) Heatmap of Spearman's correlations of seven gene modules with expanded skin
and control groupings. Red indicates positive correlation, while blue indicates negative correlation. *P < 0.05, **P < 0.01. WGCNA, weighted gene
co-expression network analysis.
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addition, a significant correlation was observed between the

infiltration of some immune cells (P < 0.05; Figure 6B).

The results of the difference analysis of immune cell infiltration

between the expanded skin group and the control group showed

that most immune cell infiltrations were not significantly different

between the two groups (P > 0.05; Figure 6C). However, number of

mast cell (MC) was significantly higher in the expanded group than

that in the control group (P < 0.05; Figure 6C).
3.11 Identification of cell type in expanded
skin and control

Aforementioned results have shown that partial cell infiltration

differed significantly between the expanded skin and control groups.

Therefore, it is necessary to further explore the heterogeneity and

diversity of the cellular composition within these groups. Based on
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the GSE146637 dataset, we divided 12,263 cells into six groups:

CD1C-CD141 dendritic cells, stem cells, endothelial cells,

neutrophils, epithelial cells, and fibroblasts (Figure 7A).

Differences were observed in the distribution of different cell

types between the expanded and control groups (Figure 7B).

Specifically, neutrophils were distributed in the expanded skin

group (Figure 7C) while stem cells were more abundant in the

control group, suggesting that the stem cells in this group may not

have differentiated into cell subtypes that promote skin growth.

Considering that the six cell populations specifically expressed

unique markers (Figure 7D), we could distinguish between different

cell types using these markers (Figure 7E). We investigated

the expression of five diagnostic markers associated with skin

growth in different cell types and found that Igfbp2 was specifically

expressed in the fibroblasts (Figure 7F). Except for Itgb5, all

diagnostic markers were clearly expressed in the different cell

types (Figure 7G).
FIGURE 6

Analysis of immune cell infiltration using ImmuCC based on the integrated dataset. (A) Correlation between the infiltration score of 25 immune cells
and hub gene expression. Purple indicates positive correlation, while green indicates negative correlation. (B) Correlation between infiltration scores
of 25 immune cells. Purple indicates positive correlation, while green indicates negative correlation. (C) Difference in infiltration fraction of 22
immune cells in expanded group and control. *P < 0.05, **P < 0.01, ***P < 0.001, ns, not significant.
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3.12 Intercellular communication in
expanded-skin and control groups

Next, we investigated cell-cell interactions between different cell

clusters. Based on the expression matrix of the GSE146637 dataset,

potential cell-cell interactions were inferred from the ligand-

receptor pair data, which were built in CellChat. The number of

interactions among epithelial cells, stem cells, and other cell types
Frontiers in Immunology 12
was higher in the expanded skin group than that in the control

group (Figure 8A). The strength of the interaction between

epithelial cells and epithelial cells, epithelial cells and neutrophils,

and epithelial cells and stem cells was the highest (Figure 8B).

In the control group, interactions between different cell clusters

was shown in Figure 8C. The strongest interactions were detected

between stem cells, stem cells and epithelial cells, and stem cells and

DCs (Figure 8D).
FIGURE 7

Cell type identification based on GSE146637 dataset. (A) UMAP plots of cell clustering. (B) Distribution of total cells in expanded skin and control
groups. (C) Proportion of total cells in expanded skin and controls. (D) Violin plots showing the expression levels of characteristic genes for different
cell clusters. (E) Dot plots showing the expression levels of characteristic genes of different cell clusters. The size of the dots corresponds to the
proportion of cells expressing the gene in the cell type. The darker the color, the higher the average expression. (F) Dot plots showing the
expression levels of diagnostic markers in different cell clusters. The size of the dots corresponds to the proportion of cells expressing the gene in
the cell type. The darker the color, the higher the average expression. (G) Heat map showing the expression levels of five diagnostic markers in
different cell types. Purple indicates high expression, while green indicates low expression. UMAP, Uniform Manifold Approximation and Projection.
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3.13 Functional differences between
cell clusters

GSVA characterized the functional activity of gene sets with

specific biological functions in different cell clusters and tissues

based on single cell expression matrices. To understand the

functional differences of the cell clusters, we selected 50

HALLMARK gene sets and performed GSVA on all cells based

on the GSE146637 dataset, followed by limma analysis of the gene

sets with functional enrichment differences in the expanded skin

and control groups (Supplementary Data Sheet 5).

We found that the myogenesis pathway and the Wingless and

Int-1 (Wnt)-b-catenin signaling pathway were significantly

upregulated in the expanded skin group, while other pathways

associated with cell cycle and cell differentiation, such
Frontiers in Immunology 13
as the G2M checkpoint, E2F targets, and MYC targets, were

significantly upregulated in the control group (Supplementary

Data Sheet 2).

The functional differences between the different cell clusters

were further investigated revealing that in the expanded group,

most functional activities of endothelial cells, DCs, stem cells, and

epithelial cells were upregulated, whereas fibroblasts and

neutrophils exhibited downregulation of many functions

(Supplementary Data Sheet 2). Most functional activities of the

different cell types were downregulated in the control group

compared to those in the skin growth group (Supplementary

Data Sheet 2). Pathways associated with cell proliferation and

growth, such as Wnt-catenin signaling, the G2M checkpoint, E2F

targets, and MYC targets, were also upregulated in multiple cell

types in the expanded skin panel (Supplementary Data Sheet 2).
FIGURE 8

Cell–cell interaction analysis based on the GSE146637 dataset. (A) Number of interactions of all cell types in the expanded group. (B) Intensity of
interactions between different cell types in the expanded group. (C) Number of interactions of all cell types in controls. (D) Intensity of interaction
between different types of cells in control group. The color intensity corresponds to the interaction strength between the different cell types.
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3.14 Subpopulation identification of
stem cells

According to intercellular communication analysis, stem cells

play a potentially important role in cell interactions of skin growth.

Thus, further studies were conducted to classify and annotate the

stem cell subsets. Two stem cell subsets were identified:

hematopoietic and epidermal stem cells (Figure 9A). Among

them, hematopoietic stem cells specifically highly expressed the

CC motif chemokine ligand 27A marker, while epidermal stem cells

expressed pleiotrophin (Figure 9B). Furthermore, the proportion of

epithelial stem cells was significantly higher in the expanded skin

than that in controls (Figure 9C).
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The expression of five diagnostic markers associated with skin

growth was examined in the stem cell subsets. Low expression of

Itgb5 and Igfbp2, and gigh expression of Tpm1, Sfrp1 and Notch1 was

observed in all stem cell subsets (Figures 9D–H). Subsequently, we

investigated TF activity in all stem cell subsets. Each subpopulation

contained a unique TF with upregulated transcriptional activity

(Figure 9I). The transcriptional activity of Pit-Oct-Unc class 4

homeobox 2 (Pou4f2) was upregulated in hematopoietic stem cells,

while that of sterol regulatory element binding TF 2 (Srebp2) was

upregulated in epidermal stem cells (Figures 9J, K).

We then performed functional analysis of different cell subtypes

and constructed pseudo-temporal trajectories. The GSVA results

showed significant differences in the functional activity of most
FIGURE 9

Subpopulation identification of stem cells based on the GSE146637 dataset. (A) The 2,334 stem cells were divided into two subpopulations. (B) Dot
plots showing the expression levels of the marker genes in different subpopulations. (C) Content of different cell subsets in the expanded group and
control. UMAP plots showing the expression levels of Itgb5 (D), Tpm1 (E), Sfrp1 (F), Notch1 (G), and Igfbp2 (H). (I) Heat map showing the top 10 TFs
with the highest transcriptional activity of different cell subset. Yellow: upregulation of transcriptional activity; purple: downregulation of
transcriptional activity. UMAP maps showing transcriptional activity of transcription factor Pou4f2 (J) and Srebf2 (K) in different cell subsets. Red:
high transcriptional activity; gray: low transcriptional activity. UMAP, Uniform Manifold Approximation and Projection; TF, transcription factor.
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HALLMARK gene sets in stem cells from the expanded skin and

normal control groups (Supplementary Data Sheet 6). Among

them, Wnt-b-catenin signaling pathway was significantly

upregulated in stem cells in the expanded skin group (t > 0, P <

0.05). Meanwhile, oxidative-phosphorylation, glycolysis, and

complement pathways were significantly downregulated in the

stem cells of the expanded group (t < 0, P < 0.05; Figure 10A).

However, the functional characteristics of the two stem cell subsets

differed significantly, with particular subsets enriched for unique

functions (Figure 10B).

By constructing pseudotemporal differentiation trajectories of stem

cell subsets, we found that hematopoietic stem cells appeared at the

beginning of the differentiation trajectory and differentiated into

epidermal stem cells (Figures 10C, D). These results suggest that the

stem cell subsets in the expanded skin group and control group exhibit

high heterogeneity and diversity and have unique characteristics in

gene expression, functional activity, transcriptional regulation, and
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differentiation status, which might be the basis for the growth of the

expanded mouse skin.
3.15 Identification of epithelial
cell subpopulations

By classifying and annotating cell subsets, we identified three

epithelial cell subsets: spinous, proliferating basal, and basal cells

(Figure 11A). Among them, the basal cell-specific high expression

markers keratin 5 (Krt5) and Krt14, spinus cell-specific high

expression marker Krt10 (Figure 11B), and proliferating basal

cell-specific high expression marker Mki67 were identified. Basal

cells comprised a significantly high proportion, whereas

proliferating basal cells constituted a lower proportion than other

epithelial subgroups in the expanded group (Figure 11C).
FIGURE 10

Functional analysis and pseudo-timing analysis of stem cells based on the GSE146637 dataset. (A) Differences in the functional activity of 50
HALLMARK gene sets in the expanded skin and control groups. (B) Differences in the functional activity of 50 HALLMARK gene sets in different cell
subsets. Purple: upregulation of activity; green: downregulation of activity. (C) Stem cell subpopulation differentiation trajectory. (D) Pseudo-
temporal differentiation trajectory showing differentiation of stem cell subsets; dark color indicates the start of differentiation and light color
indicates the end of differentiation.
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The expression levels of five diagnostic markers were explored

in different cell subsets, as shown in Figures 11D–H. Among them,

Tpm1 (Figure 11E), Sfrp1 (Figure 11F), and Notch1 (Figure 11H)

were expressed at high levels in all subgroups. Subsequently, the TF

activity was investigated in all cell subsets, revealing that each

subpopulation contained a unique TF with upregulated

transcriptional activity (Figure 11I). Among them, the

transcriptional activity of Krüppel-like factor 4 (Klf4) was

upregulated in basal cells, that of E2f1 was upregulated in spinous

cells, and that of forkhead box M1 (Foxm1) was upregulated in

spinous and proliferating basal cells (Figures 11J–L).
Frontiers in Immunology 16
Subsequently, we performed functional analysis of different cell

subtypes and constructed pseudo-temporal trajectories. The GSVA

results showed significant differences in the functional activity of most

HALLMARK gene sets in epithelial cells from the expanded skin and

control groups (see Supplementary Data Sheet 7). Among them, the

G2M checkpoint was significantly upregulated in the expanded group

(t > 0, P < 0.05), and MYC targets V2 and oxidative-phosphorylation

were significantly upregulated in the control group (t < 0, P < 0.05;

Figure 12A). However, the functional characteristics of different cell

subtypes differed significantly, suggesting that they had unique roles in

the different groups (Figure 12B).
FIGURE 11

Identification of epithelial cell subpopulations based on the GSE146637 dataset. (A) The 1550 epithelial cells were divided into three subpopulations.
(B) Dot plots showing the expression levels of the marker genes for the different subpopulations. (C) Proportion of different cell subsets in the
expanded skin and control groups. UMAP map presentation of the expression level of Itgb5 (D), Tpm1 (E), Sfrp1 (F), Igfbp2 (G), Notch1 (H). (I) Heat
map showing the top 10 TFs with the highest transcriptional activity for each cell subset. Yellow: upregulation of transcriptional activity; purple:
downregulation of transcriptional activity. UMAP plots of TF transcriptional activity: Klf4 (J), E2f1 (K), and Foxm1 (L) in different cell subsets. Red: high
transcriptional activity; gray: low transcriptional activity; UMAP, Uniform Manifold Approximation and Projection.
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By constructing pseudo-temporal differentiation trajectories of

epithelial cell subsets, we also found that basal cells appeared at the

beginning of the differentiation trajectories and differentiated into

spinous cells after the intermediate cell state of proliferating basal

cells (Figures 12C, D).
3.16 Subpopulation identification
of fibroblasts

By classifying and annotating the cell subsets, we identified

three subpopulations of fibroblasts: activated, lipofibroblasts, and

sublining fibroblasts (Figure 13A). Among them, the activated

fibroblasts highly expressed specific marker cytoskeleton-

associated protein 4 (Ckap4), lipofibroblasts specifically highly

expressed markers fatty acid binding protein 5 (Fabp5), and 3-
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hydroxy-3-methylglutaryl-CoA synthase 2 (Hmgcs2), and sublining

fibroblast-specific highly expressed markers Postn and cell adhesion

molecule 1 (Cadm1) (Figure 13B). The number of lipofibroblasts

was significantly higher in the control group while activated

fibroblasts were significantly more abundant than other

subpopulations in the expanded skin group (Figure 13C).

We then explored the expression levels of the five diagnostic

markers in the different cell subsets. The expression of five markers

in fibroblasts was shown in Figures 13D–H. Subsequently, we

investigated TF activity in all cell subsets and found that each

subpopulation had a unique TF with upregulated transcriptional

activity (Figure 13I). The transcriptional activity of regulatory factor

X5 (Rfx5) was upregulated in the activated fibroblasts (Figure 13J),

while that of peroxisome proliferator-activated receptor alpha

(Ppara) was upregulated in the lipofibroblasts (Figure 13K), and

the expression of the specificity protein 1 (Sp1) was upregulated in

the sublining fibroblasts (Figure 13L).
FIGURE 12

Functional analysis and pseudo-temporal analysis of the epithelial cells based on the GSE146637 dataset. (A) Differences in functional activity of 50
HALLMARK gene sets in expanded skin and control groups. (B) Differences in functional activity of 50 HALLMARK gene sets in different cell subsets.
Purple: upregulation of functional activity; green: downregulation of functional activity. (C) Epithelial cell subpopulation differentiation trajectory.
(D) Pseudo-temporal display of differentiation trajectories of epithelial cell subsets; dark color indicates the start of differentiation and light color
indicates the end of differentiation.
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Subsequently, we performed functional analysis of different cell

subtypes and constructed pseudo-temporal trajectories. The GSVA

results showed significant differences in the functional activity of

most HALLMARK gene sets in fibroblasts between the expanded

skin and control groups (Supplementary Data Sheet 8). Among

them, Wnt-b-catenin signaling was significantly upregulated in

fibroblasts in the expanded group (t > 0, P < 0.05), and MYC

targets-V1 and glycolysis were significantly up-regulated in

fibroblasts in the control group (t < 0, P < 0.05; Figure 14A).

However, the functional characteristics of different cell subsets

differed significantly, with different subsets enriched for unique

functions (Figure 14B).
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By constructing pseudo-temporal differentiation trajectories of

fibroblast subsets, we also found that sublinear fibroblasts appeared

at the beginning of the differentiation trajectory, and after

intermediate cell state activated fibroblasts, differentiated into

lipofibroblasts (Figures 14C, D).
3.17 Identification of endothelial
cell subpopulations

By classifying and annotating cell subsets, we identified two

subsets, immature endothelial cells and vascular endothelial cells
FIGURE 13

Subpopulation identification of fibroblasts based on the GSE146637 dataset. (A) The 982 fibroblasts were divided into three subpopulations. (B) Dot
plots showing expression of the marker genes for the different subpopulations. (C) Content of different cell subsets in expanded skin and control
groups. UMAP plots showing the expression levels of Itgb5 (D), Tpm1 (E), Igfbp2 (F), Sfrp1 (G), and Notch1 (H) in different cell subsets. (I) Heat map
showing the top 10 TFs with the highest transcriptional activity of each cell subset. Yellow: upregulation of transcriptional activity; purple:
downregulation of transcriptional activity. UMAP maps showing transcriptional activity of transcription factors Rfx5 (J), Ppara (K), and Sp1 (L) in
different cell subsets. Red: high transcriptional activity; gray: low transcriptional activity.
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(Figure 15A). Among them, heat shock protein family E member 1

(Hspe1) was highly expressed in immature endothelial cells, and the

markers cyclin-dependent kinase inhibitor 1A (Cdkn1a) and

calcium release-activated channel regulator 2B (Cracr2b) were

highly expressed in vascular endothelial cells (Figure 15B). The

proportion of immature endothelial cells was higher in the

expanded group than that in the control group (Figure 15C).

Additionally, the expression of the five diagnostic markers was

evaluated in the different cell subsets, as shown in Figures 15D–H.

Subsequently, we investigated TF activity and found that each

subpopulation contained a unique TF with upregulated

transcriptional activity (Figure 15I). Among these, the

transcriptional activity of E2f4 (Figure 15J) was upregulated in

immature endothelial cells, while that of forkhead box O3 (Foxo3)

was upregulated in vascular endothelial cells (Figure 15K).
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Subsequently, we performed functional analysis of different cell

subtypes and constructed pseudo-temporal trajectories. GSVA

results showed that the functional activity of most HALLMARK

gene sets in endothelial cells from the expanded skin and control

groups differed significantly (see Supplementary Data Sheet 1).

Among them, TNF-a signaling via NF-kB was significantly

upregulated (t > 0, P < 0.05), and oxidative phosphorylation and

glycolysis were significantly downregulated in endothelial cells in

the expanded group (t < 0, P < 0.05; Figure 16A). However, the

functional characteristics of different cell subsets differed

significantly, with different subsets enriched for unique

functions (Figure 16B).

By constructing a pseudotemporal differentiation trajectory of

the endothelial cell subsets, we found that vascular endothelial cells

appeared at the beginning of the differentiation trajectory and
FIGURE 14

Functional analysis and pseudo-temporal analysis of fibroblasts based on GSE146637 dataset. (A) Differences in functional activity of 50 HALLMARK
gene sets in expanded skin group and control group. (B) Differences in functional activity of 50 HALLMARK gene sets in different cell subsets. Purple
indicates upregulation of functional activity, green indicates downregulation of functional activity. (C) Fibroblast subpopulation differentiation
trajectory. (D) Pseudo-temporal display of differentiation trajectories of subpopulations of fibroblasts; dark color indicates the start of differentiation
and light color indicates the end of differentiation.
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differentiated into immature endothelial cells (Figures 16C, D).

These results suggest that stem cell, epithelial cell, fibroblast, and

endothelial cell subsets in the expanded and control groups

exhibited considerable heterogeneity and diversity.
4 Discussion

In the current study, we constructed a diagnostic model for

EMTRDEGs based on an integrated dataset using a random forest

analysis and identified the top five genes (Itgb5, Tpm1, Sfrp1,

Notch1, and Igfbp2) with the greatest impact on the model’s
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predictive capacity. A PPI network of these five genes was

constructed using the STRING database to identify hub genes

associated with skin growth. We selected the top 20 genes with

the highest network connectivity (excluding genes not included in

the expression matrix of the integrated dataset) and 5 diagnostic

markers associated with skin growth in the expanded tissue. Among

these, Notch1, Ncstn, Ctnnb1, and Psen1 had higher connectivity

than the other genes.

To further evaluate the interactions between hub genes and TFs,

we constructed a TF interaction network with the hub genes and

found that Itgb3, Notch1, and Rbpj were the most connected and may

have the strongest interactive relationships with TFs. KEGG and GO
FIGURE 15

Subpopulation identification of endothelial cells based on the GSE146637 dataset. (A) The 2,244 endothelial cells were divided into two
subpopulations. (B) Dot plots showing the expression levels of the marker genes for the different subpopulations. (C) Proportion of different cell
subsets in the expanded skin and control groups. UMAP plots showing the expression levels of Itgb5 (D), Tpm1 (E), Igfbp2 (F), Sfrp1 (G), and Notch1
(H) in different cell subsets. (I) Heat map showing the top 10 TFs with the highest transcriptional activity for each cell subset. Yellow: upregulation of
transcriptional activity; purple: downregulation of transcriptional activity. UMAP maps showing the transcriptional activity of transcription factors E2f4
(J) and Foxo3 (K) in different cell subsets. Red: high transcriptional activity; gray: low transcriptional activity.
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results showed that the hub genes were primarily enriched in the

Notch, PI3K-AKT, insulin-like growth factor receptor, and thyroid

hormone signaling pathways, which are important in cell

proliferation, ECM remodeling, and cell growth regulation.

Upregulated Ncstn expression reportedly promotes hepatocellular

carcinoma cell growth and metastasis via b-catenin activation in a

Notch1-dependent manner (35), while its mutation disrupts the

development of hair follicles (36). Meanwhile, Psen1 functions as a

causative factor for early onset Alzheimer’s disease, and as a part of g-
secretase, impacts Notch signaling and b-cadherin processing (37).

In this study, we first analyzed the functions of the hub genes in

skin growth under mechanical stretching. The results of the
Frontiers in Immunology 21
immune infiltration analysis showed that Ctnnb1, Psen1, and Igf2

were significantly correlated with the infiltration of various immune

cells, including a positive correlation between MCs and Itgb5 and

Igfbp2, M0 macrophages and Tpm1, and M2 macrophages and Igf2.

Moreover, a negative correlation was observed between MCs and

Tpm1 and T regulatory (Treg) cells and Tpm1. Number of MC was

significantly higher in the expanded skin group than that in the

control group. In addition, a significant correlation was observed

between the infiltration of various immune cells, including a

positive correlation between MCs and Tregs and negative

correlations between Tregs and M0 macrophages, and MCs and

M0 macrophages. To further explore the heterogeneity and
FIGURE 16

Functional analysis and pseudo-temporal analysis of endothelial cells based on the GSE146637 dataset. (A) Differences in the functional activity of 50
HALLMARK gene sets in the expanded and control groups. (B) Differences in the functional activity of 50 HALLMARK gene sets in different cell
subsets. Purple: upregulation of functional activity; green: downregulation of functional activity. (C) Endothelial cell subpopulation differentiation
trajectory. (D) Pseudo-temporal display of differentiation trajectories of endothelial cell subsets; dark color indicates the start of differentiation and
light color indicates the end of differentiation.
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diversity of the cellular composition, a single-cell sequencing

dataset analysis was conducted. Based on the cell-cell interaction

analysis, the number of interactions between epithelial cells and

stem cells with other cell types was higher in the expanded skin

group than that in the control group, demonstrating the importance

of stem cells and epithelial cells in expanded skin. Stem cells retain

remarkable plasticity and self-renewal capabilities, enabling them to

replenish expanded skin and maintain skin homeostasis.

MCs that are widely distributed around the vessels and sensory

nerves of the skin and visceral mucosa secrete myriad cytokines that

modulate angiogenesis and fibrosis and participate in immune

regulation by inducing vasodilation, promoting vascular

permeability, and recruiting inflammatory cells (38). MCs and the

mediators derived from MCs participate in angiogenesis and all

stages of skin regeneration during wound healing. Furthermore,

mechanical stretch promotes MC degranulation, which activates the

TGF-b1 pathway for the EMT process and fibroblast activation

(39). Thus, MCs may play a vital role in the immune response to

mechanical stretching in the expanded skin model, which is

consistent with the immune infiltration analysis performed in this

study. Recruited immune cells, such as DCs, macrophages, and T

cells, interact with MCs. MC-derived soluble proteins promote DC

activation; direct synaptic connections between MCs and DCs

exchange internalized antigens that are presented to T cells to

induce activation (38). MC-derived IL-10 can reduce DC migration

and activation and enhance the ability of DCs to reduce T-cell

proliferation and cytokine production. Furthermore, IL-10

suppresses proinflammatory cytokine production by monocytes,

macrophages, and neutrophils (40). This study suggested a potential

upregulation of IL-10 expression of MCs in expanded skin.

Nonetheless, additional experiments are required to validate this

observation. Moreover, TNF-a and IL-6 derived from MCs are

involved in local recruitment of neutrophils and macrophage

activation (41). In addition, TGF-b derived from MCs

participates in Treg generation. IL-10 and TGF-b secreted by

Tregs may reciprocally influence MC function (42). Collectively,

these data may explain the negative correlation between MCs and

macrophages, and the positive correlation between MCs and Tregs

in this study.

Intriguingly, macrophages, as a vital immune cell group

mediating tissue regeneration in expanded skin, exhibited minor

differences in tissue infiltration between the expanded skin and

control groups. The function of macrophages varies significantly

depending on the stretch intensity and temporal and spatial

distribution (39, 43). Thus, the function, temporal and

spatial variation of macrophages during skin expansion

and their relationship with the surrounding cells warrants

further exploration.

The diagnostic marker Igfbp2 was specifically expressed in

fibroblasts. Except for Itgb5 and Igfbp2, all diagnostic markers

were clearly expressed in the different cell populations. Further

analysis showed that in the expanded skin group, most functional

activities of endothelial cells, DCs, stem cells, and epithelial cells

were upregulated, while fibroblasts and neutrophils exhibited
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downregulation of many functions. We also identified

hematopoietic and epidermal stem cells among the stem cell

subsets and found that the amount of hematopoietic stem cells

was significantly high in both expanded and control groups.

Meanwhile, low expression of Itgb5 and Igfbp2 and high

expression of Tpm1, Sfrp1, and Notch1 were observed in the stem

cell subsets. The GSVA results further revealed that the Wnt-b-
catenin signaling pathway was significantly upregulated in stem

cells in the expanded skin group. We also identified three epithelial

cell subsets: spinous, proliferating basal, and basal cells. The

proportions of basal and spinous cells were significantly higher in

the expanded group than that in the control group. Itgb5 and Igfbp2

were expressed at low levels in all epithelial cell subgroups, whereas

Tpm1, Sfrp1, and Notch1 were expressed at high levels in all

subgroups. By constructing pseudotemporal differentiation

trajectories of epithelial cell subsets, we found that basal cells

appeared at the beginning of the differentiation trajectories and

differentiated into spinous cells following an intermediate state as

proliferating basal cells. The GSVA results further revealed that the

Wnt-b-catenin signaling pathway was significantly upregulated in

the fibroblasts of the expanded group. Moreover, two endothelial

cell subsets, immature and vascular endothelial cells, were identified

in the data set. Igfbp2 and Sfrp1 were downregulated in all subsets,

whereas Itgb5, Tpm1, and Notch1 were upregulated across all

endothelial cell subsets. GSVA results showed that TNFa via the

NF-kB signaling pathway was significantly upregulated in

endothelial cells in the expanded skin group. According to the

single-cell data, Tpm1, Sfrp1, and Notch1, which were highly

expressed in all subgroups of epithelial cells and stem cells, may

be vital indicators of skin growth in the skin expansion model.

Skin regeneration and the constant turnover of cells in the

expanded skin model upon mechanical stretching necessitate

the renewal and differentiation of stem cells. Interactions between

stem cells and their niches vary during exposure to different

environments (44). In particular, the epidermis acts as a

protective barrier, and stem cells located in the basal layer

maintain epidermal renewal and initiate skin regeneration in the

expanded skin model. Consistent with previous studies, increased

stem cell renewal and basal populations were observed in the

expanded skin group. However, in contrast to a previous study by

Sun et al. (4) the renewal of proliferative cells showed an increasing

trend, and spinous cells as non-proliferative cells also increased,

which may contribute to the differences between rapid skin

expansion models and clinical moderate constant-volume skin

expansion paradigm processes. Meanwhile, dermal fibroblasts are

a rich source of mitogens that facilitate the proliferation of

epidermal cells and may account for the upregulation of TFs,

such as E2F1 and KLF4, in the epithelial subgroups (45).

Capillary networks supply the skin with oxygen, nutrients, and

hormones, and facilitate immune cell infiltration upon stimulations

(46). Immature endothelial cells, which participate in postnatal

neovascularization, were upregulated in the expanded skin group,

indicating that neovascularization is necessary for skin growth in

the early stage of skin expansion (47). The increased expression of
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the TNFa NF-kB signaling pathway may further promote the EMT

process to generate a positive feedback loop during skin growth

under mechanical stretch stimulation (6). A previous histological

analysis also found angiogenesis in expanded tissues (48).

Endothelial cells also function as a barrier between resident

dermal cells and circulating immune cells, while cytokines may

have essential immunomodulatory roles in expanded tissue, which

requires further exploration.

The hub gene, Notch1, as part of Notch signaling, activates

epidermal stratification and participates in the EMT and Wnt

signaling pathways (49). In the Wnt pathway, Notch1 represses

Wnt signaling and restricts its activation to the basal layer (50).

Hence, Notch1 may function as a factor to balance epidermal

proliferation and differentiation in expanded skin. Meanwhile,

Tpm1, which promotes cell movement during wound healing,

enables actin filament-binding activity and functions as an

immune-related molecule (51).

Ctnnb1 had higher connectivity than the other hub genes, and

Rbpj exhibited strong connections with TFs. Ctnnb1, a component

of adherent junctions in epithelial cells, also functions as a key

signaling molecule in canonical Wnt signaling, which could explain

its high connectivity with other hub genes in the expanded skin

group (52). Further, RBP-Jk encoded by Rbpj is endowed with

intrinsic transcription repressive function and can be converted by

Notch and other cofactors into an activator. Upregulated RBP-Jk
expression enhances keratinocyte proliferation and is inversely

correlated with keratinocyte differentiation. Hence, the

relationship between RBP-Jk and Notch may indicate a balance

between differentiation and proliferation in the epithelial tissue of

expanded skin, which requires further investigation (53). Tpm1

elicits inflammation by phosphorylating protein kinase and

regulating NF-kB signaling (54) and participates in TGF-b-
induced actin fiber and matrix adhesion (55), suggesting that

Tpm1 may modulate cell movement and the immune response in

expanded skin. Furthermore, Sfrp1 enables Wnt protein binding

and acts as an antagonist of the Wnt signaling pathway (56). In this

study, all stem cell and fibroblast groups showed upregulated Wnt

signaling and Sfrp1 expression, and the epithelial groups also

exhibited upregulated Sfrp1 expression. Proliferating basal cells

also upregulated Wnt, while other epithelial subgroups did not,

implying that SFRP1 functions as an inhibitor of Wnt signaling in

these cells and may have a dominant role in Wnt signaling-induced

epithelial differentiation after differentiation into spinous cells.

Although the results of this study could inspire further

exploration of expanded skin and help identify skin growth in

expanded models, several limitations should be considered. First,

based on the analysis of chip and single-cell data acquired from a

rapid-expansion mouse model, there may be differences between

experimental and clinical expansion treatments at the gene and

protein levels. Second, the rapid expansion model reflects the early

response of skin expansion, while the late stage of expanded skin

under long-term serial stretching requires further exploration. This

study suggests the potential correlation between the expression of
Frontiers in Immunology 23
hub genes and the outcome of skin expansion, and further

investigations are needed to verify the correlation in order to

improve the outcomes of expansion therapies.

In conclusion, our study provides a reference for predicting

early-stage skin growth in a skin expansion model and implicates

the significance of immune cells, in particular, that of MCs.

According to the expression of hub genes and cell-cell

relationships, stem cell and epithelial cell groups showed higher

expression of hub genes and cell-cell interactions than fibroblasts

and endothelial cells, indicating that stem cells and epithelial cells

may have predominant roles in skin regeneration under mechanical

expansion. Furthermore, the hub genes Notch1, Tpm1, and Sfrp1

serve as key effectors in modulating epithelial cells, fibroblast, stem

cells, and endothelial cells in expanded skin, with strong association

with the Notch and Wnt signaling pathways, suggesting potential

therapeutic strategies for skin growth enhancement under

mechanical expansion.
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