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HCV-induced autophagy and
innate immunity
Jiyoung Lee and J.-H. James Ou*

Department of Molecular Microbiology and Immunology, University of Southern California, Keck
School of Medicine, Los Angeles, CA, United States
The interplay between autophagy and host innate immunity has been of great

interest. Hepatitis C virus (HCV) impedes signaling pathways initiated by pattern-

recognition receptors (PRRs) that recognize pathogens-associated molecular

patterns (PAMPs). Autophagy, a cellular catabolic process, delivers damaged

organelles and protein aggregates to lysosomes for degradation and recycling.

Autophagy is also an innate immune response of cells to trap pathogens in

membrane vesicles for removal. However, HCV controls the autophagic pathway

and uses autophagic membranes to enhance its replication. Mitophagy, a

selective autophagy targeting mitochondria, alters the dynamics and

metabolism of mitochondria, which play important roles in host antiviral

responses. HCV also alters mitochondrial dynamics and promotes mitophagy

to prevent premature cell death and attenuate the interferon (IFN) response. In

addition, the dysregulation of the inflammasomal response by HCV leads to IFN

resistance and immune tolerance. These immune evasion properties of HCV

allow HCV to successfully replicate and persist in its host cells. In this article, we

discuss HCV-induced autophagy/mitophagy and its associated immunological

responses and provide a review of our current understanding of how these

processes are regulated in HCV-infected cells.
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Introduction

Despite significant advances in its treatment and the availability of efficacious direct-

acting antiviral drugs (DAAs), hepatitis C virus (HCV) remains prevalent around the world

with approximately 58 million chronic HCV carriers and 1.5 million new infections every

year. Chronic HCV infection can lead to severe liver diseases including steatosis, cirrhosis and

hepatocellular carcinoma (HCC). HCV is a positive-stranded RNA virus with a genome size

of approximately 9600 nucleotides. Its RNA genome is packaged in an icosahedral capsid,

which is further surrounded by a lipid envelope (1). HCV infection of hepatocytes is initiated

by receptor-mediated endocytosis followed by the fusion of the viral envelope with the

endocytic membrane and the release of its RNA genome into the cytosol. The RNA genome

of HCV then directs the synthesis of viral proteins using the internal ribosome entry site

(IRES) located near its 5’-end, producing a polyprotein that is roughly 3000 amino acids in
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length. Viral and host proteases proteolytically cleave the HCV

polyprotein, giving rise to ten viral proteins, which are the core

protein, E1 and E2 envelope proteins, the p7 viroporin, and

nonstructural proteins NS2, NS3, NS4A, NS4B, NS5A and NS5B.

Although cells in response to HCV infection can generate

antiviral responses, HCV has developed means to evade these

antiviral responses to establish persistent infection. Approximately

75-85% of patients infected by HCV fail to clear the virus and become

chronically infected. Autophagy can remove intracellular microbial

pathogens and is a part of the antiviral responses. However, HCV

exploits autophagy to overcome this host antiviral response. In this

article, we will discuss the interaction between HCV-induced

autophagy and the host innate immune responses. We hope this

article will provide not only the information for understanding the

HCV-host interaction to assist the development of HCV vaccines,

which are not yet available, but also the information for

understanding how cells may respond to other viral infections.
Evasion of host innate immune
response by HCV

Pattern-recognition receptors (PRRs)

PRRs play important roles in triggering anti-microbial

responses. They recognize pathogen-associated molecular patterns

(PAMPs) and, upon binding to PAMPs, will trigger anti-microbial

responses. There are three classes of PRRs, which are the retinoic

acid-inducible gene-I (RIG-I)-like receptors (RLRs), toll-like

receptors (TLRs) and nucleotide-binding oligomerization domain

(NOD)-like receptors (NLRs). RLRs, including RIG-I, melanoma

differentiation antigen 5 (MDA5) and the laboratory of genetics and

physiology 2 (LGP2), are RNA helicases that recognize RNA

PAMPs (2). RIG-I and MDA5 recognize double-stranded RNA

(dsRNA). Although the specific PAMPs that they detect are

different, their activation by HCV RNA can both lead to the

production of interferons (IFNs) (3, 4). RIG-I recognizes the 5’-

PPP and the 3’ poly U/UC sequence of the HCV genomic RNA (5).

Once activated, the caspase activation and recruitment domain

(CARD) of RIG-I interacts with the mitochondrial adaptor protein

MAVS (also known as IPS-1, VISA or Cardif) on mitochondrial

outer membranes. MAVS then further recruits TRAF3 and TRAF6

and subsequently activates the downstream TANK-binding kinase 1

(TBK1). TBK1 phosphorylates and activates Interferon Regulatory

Factor 3 (IRF3), whose homodimerization and translocation to the

nucleus activates the IFN genes. LGP2, which lacks the CARD

domain, binds to the foreign RNA and synergizes with MDA5 to

induce innate immune signaling (2).
HCV proteins and their effects on
interferon signaling pathways

Hepatocytes infected by HCV produce type I and type III IFNs

and upregulate the expression of IFN-stimulated genes (ISGs). Type
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I IFN-a and IFN-b bind to the heterodimer of IFN-a receptor

(IFNAR) 1 and 2, type II IFN-g binds to the heterodimeric complex

of IFN-g receptor (IFNGR) 1 and 2 and type III IFN-l binds to the

heterodimeric complex of IFN-l receptor (IFNLR) and IL-10Rb.
Type I and III IFN signaling is mediated by Janus kinases (JAKs)

and STAT proteins and induces the expression of ISGs including

ISG15, 2’,5’-oligoA synthase (OAS), protein kinase RNA-activated

(PKR), the GTPase myxovirus resistance 1 (Mx1) and ribonuclease

L (RNase L), to name a few (6). Nonetheless, HCV proteins can

dampen the host IFN response to enhance its replication (Figure 1).

NS3/4A, the viral serine protease complex of HCV, plays a crucial

role in hampering the antiviral signaling of IFNs. NS3/4A cleaves

MAVS, the adaptor protein of the RIG-I signaling (7, 8). The

introduction of a point mutation at cysteine-508 (Cys-508) to

prevent MAVS from being cleaved by NS3/4A restored the IFN

production in HCV-infected cells or cells containing an HCV

subgenomic RNA replicon (4, 9). The mitochondria-associated

membranes (MAMs) at the endoplasmic reticulum (ER)-

mitochondria contact site serve as the site for MAVS signaling

(Figure 1) (8). Also, NS3/4A can cleave peroxisome-associated

MAVS and disrupt RIG-I signaling initiated from peroxisomes

(10). In addition, NS3/4A can cleave the TIR-domain containing

adapter-inducing IFN-b (TRIF), an adaptor protein of the TLR3

signaling pathway (Figure 1) (10, 11). HCV protein NS4B was also

reported to induce the degradation of TRIF via caspase-8 (12).

Other HCV proteins like core, E2, NS4B, and NS5A had also been

shown to be involved in the resistance to IFNs by inducing the

suppressor of the cytokine signaling proteins 1 and 3 (SOCS1 and

3), sequestering STING to inhibit the activation of TBK1 and

sequestering MyD88 to inhibit TLR signaling [for more details,

see reviews (13–15)]. In 293T cells, NS3/4A bound to TBK1 and

interfered with its association with IRF3 (16). PKR, a dsRNA-

activated kinase, is an antiviral protein that is also induced by IFNs.

HCV NS5B has been shown to induce the activation of PKR and the

phosphorylation and inactivation of its downstream effector eIF2a,
a protein translation initiation factor, to suppress the production of

IFNs, ISGs and MHC class I (Figure 1) (17–20).
HCV-induced autophagy and innate
immune response

HCV-induced autophagy

Autophagy is a catabolic process by which cells deliver damaged

organelles and dysfunctional cellular components to lysosomes for

degradation. In the early stage of autophagy, a crescent membrane

structure termed phagophore appears in the cytoplasm. The

subsequent expansion of the membranes of phagophores leads to

the formation of an enclosed double-membrane structure termed

autophagosomes. Autophagosomes fuse with lysosomes to form

autolysosomes. The cargoes of autophagosomes are then digested

by lysosomal enzymes in autolysosomes for recycling. Autophagy is

important for maintaining cellular homeostasis. It is closely
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associated with the growth and energy state of the cell, and the

activation of mTOR suppresses the initiation of autophagy. mTOR

regulates cell growth and metabolism, integrates the cellular

nutrient state with environmental signals and controls the

initiation of autophagy by regulating the activation of AMPK, the

AMP sensor. HCV induces autophagy via multiple pathways,

including the expression of viral proteins, nutrient exploitation,

alteration of cellular metabolism and production of reactive oxygen

species (ROS). Interaction of HCV NS3 with immunity-related

GTPase family M protein (IRGM) is sufficient to induce autophagy

(21). HCV triggers the activation of both IRGM and early

autophagy initiator Unc-51-like kinase 1 (ULK1), which are

required for membrane remodeling and Golgi fragmentation, to

initiate autophagy (22). NS4B can also bind to Beclin-1, hVps34 and

Rab5 to initiate autophagy [for a detailed review, see (23)].

As mentioned above, intracellular events like the ER stress and

the generation of ROS from mitochondria in response to HCV

infection can also induce autophagy. HCV-induced ER stress

stimulates the unfolded protein response (UPR), which is

triggered by the activation of the inositol-requiring enzyme 1

(IRE1), the activating transcription factor 6 (ATF6) and the

double-stranded RNA-activated protein kinase-like ER kinase

(PERK) (24). The UPR attenuates protein synthesis, promotes
Frontiers in Immunology 03
chaperone-mediated protein folding and facilitates the

degradation of misfolded proteins to alleviate the ER stress (23).

The silencing of IRE1, ATF6 or PERK to disrupt the UPR, which

also disrupts HCV-induced autophagy, or the silencing of

autophagy-related proteins Atg5, Atg7 and Atg12 suppressed the

replication of HCV, indicating that the UPR and autophagy benefit

HCV replication (24–27) (Figure 1). The importance of autophagy

in HCV infection can be partially attributed to the fact that

autophagic membranes, where lipid rafts rich in cholesterol and

sphingolipids are also localized, can serve as the sites for the

assembly of the HCV RNA replication complex (24, 28–30). ROS

is a byproduct of mitochondrial aerobic respiration. The enhanced

generation of ROS or oxidative stress was observed in cell cultures

infected by HCV and in the liver of chronic hepatitis C patients (31–

33). The elevation of ROS prompted the phosphorylation of the

sequestosome protein p62 at Ser349, which is implicated in the

initiation of autophagy (33). p62 binds to poly-ubiquitinated

proteins for their sequestration in autophagosomes for autophagic

degradation. Although ROS has antiviral potential as demonstrated

in the studies of different viruses, HCV as well as human

immunodeficiency virus type 1 (HIV-1), influenza virus and

dengue virus exploits ROS-induced autophagy for their genome

replication and immune suppression (33–35).
FIGURE 1

HCV inhibits the innate immune response. HCV proteins can directly inhibit the innate immune response. NS3/4A plays multiple roles in blocking the
host innate immune response. It cleaves MAVS on MAM to block the RIG-I signaling pathway and TRIF to inhibit the TLR3 signaling pathway. NS4B
can also disrupt TLR3-mediated IFN signaling by inducing the degradation of TRIF via caspase-8. Other HCV proteins had also been shown to
regulate and restrict the production of IFNs and their antiviral signaling: E2 induces SOCS1 and SOCS3; NS3/4A sequesters STING to inhibit the
activation of TBK1; NS5A sequesters MyD88 to inhibit TLR signaling; and NS5B induces and activates PKR to inhibit the expression of IFNs and ISGs.
HCV also usurps the antiviral activity of autophagy and uses it for its own replication. It not only utilizes the autophagic membranes as the sites for
its RNA replication and the production of infectious HCV particles, but also manipulates autophagy to regulate type I IFN response by promoting the
autophagic degradation of IFNAR1, TNFR1, and TRAF6, important signal transducers for the activation of NF-kB and the expression of pro-
inflammatory cytokines. HCV-induced mitophagy also regulates innate immune response by clearing mitochondrial DAMPs, namely mtROS and
mtDNA, and damaged mitochondria themselves, which otherwise would activate the cGAS/STING/TBK1 pathway to induce the expression of IFNs.
Mitophagy also inhibits premature apoptotic cell death and promotes HCV persistence. RC: HCV RNA replication complex. The mitochondria-
associated membrane (MAM) is boxed and enlarged in the inset to reveal the Ca2+ transporter IP3R.
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The term xenophagy depicts the process by which intracellular

microbial pathogens are removed by autophagy. The removal of

viruses by autophagy is termed virophagy (36, 37). These terms

describe autophagy as a host antiviral response that clears

intracellular viral particles (37). However, HCV can usurp the

antiviral activity of autophagy and use it to benefit its own

replication (24, 38) (Figure 1). First, HCV can use autophagic

membranes as the sites for its RNA replication (24, 27, 30).

Second, HCV induces Rubicon to delay the maturation of

autophagosomes to maximize its RNA replication (24, 39) (see

below). Third, HCV promotes the interaction between its envelope

protein E2 and apolipoprotein E (ApoE), which is important for

enhancing the infectivity of HCV, using autophagic membranes (29,

40). Fourth, autophagy suppresses type I IFN response (for detailed

reviews, see (41, 42)), and the silencing of UPR- or autophagy-related

genes increased the expression of ISGs and reduced HCV replication

(25). Finally, HCV dampens the innate immune response by

stimulating the autophagic degradation of TRAF6, an adaptor

protein important for the activation of nuclear factor-kB (NF-kB)
and the expression of pro-inflammatory cytokines (24, 34, 42), as well

as the autophagic degradation of TNFR1 and IFNAR1, which are

important for the IFN response (43, 44).
HCV-induced autophagy and IFN response

The interplay between HCV-induced autophagy and the host

immune response has attracted a lot of attention (45, 46). Under

normal conditions, cells maintain a basal autophagy activity to

regulate energy and nutrient states and remove damaged organelles

and protein aggregates to maintain cellular homeostasis. Numerous

disorders like heart diseases, neurodegenerative diseases and tumors

are associated with the impairment of autophagy, which leads to

disruption of many intracellular processes. Among them is innate

immune responses (47). Autophagy also regulates innate immune

responses in HCV-infected cells. Although there were conflicting

results regarding whether the inhibition of autophagic initiation

affected the type 1 IFN pathway in HCV-infected cells (25, 46), the

silencing of RUN Domain Beclin-1-interacting and cysteine-rich

domain-containing protein (Rubicon) stimulated the IFN response.

Rubicon plays a critical role in the control of maturation of

autophagosomes (48, 49). It can bind to the complex of UV

radiation resistance-associated gene (UVRAG) and class III

phosphatidylinositol-3-kinase (PI3KC3) to suppress the maturation

of autophagosomes (48). It can also sequester UVRAG from class C

vacuolar protein sorting (C-Vps)-homotypic fusion and protein

sorting (HOPS) complex to inhibit the activation of Rab7 and the

fusion between autophagosomes and lysosomes (49). HCV induces

the expression of Rubicon in the early stage of infection to prevent the

maturation of autophagosomes, leading to the accumulation of

autophagosomes to enhance HCV RNA replication (39, 46).

However, the inhibition of this late-stage of autophagy, which

prevents the autophagic protein degradation, also activates the

innate immune response (46) (Figure 2). The silencing of

autophagic proteins like LC3B to prevent the formation of

autophagosomes or the treatment with chloroquine to inhibit
Frontiers in Immunology 04
autophagic protein degradation enhances IFN-b production and

IFN signaling in HCV-infected cells (25). In addition, Chandra

et al. showed that IFNAR1 was degraded by autophagy induced by

HCV infection (43). The use of thapsigargin (TG) to induce ER stress

or the inhibition of mTOR downregulated IFNAR1, and the

inhibition of autophagy by silencing Atg7 or PERK upregulated the

expression of IFNAR1 in the presence of HCV. As a result, the

alleviation of the ER stress or the inhibition of autophagy using

chemical inhibitors or siRNA enhanced viral clearance in cell cultures

treated with both IFN-a and ribavirin (RBV) (43). These results

demonstrated an important role of autophagic protein degradation,

the late stage of autophagy, in the control of IFN response in HCV-

infected cells. In contrast to HCV, it was shown that the silencing of

Rubicon with shRNA, which promoted the maturation of

autophagosomes, enhanced IFN-b and IL-6 production and

inhibited the replication of H1N1 influenza virus and vesicular

stomatitis virus (VSV) (50).
HCV-induced autophagy and
antioxidant response

NF-E2-related factor 2 (Nrf2) activates antioxidant gene

expression in response to oxidative stress. The E3 ubiquitin ligase

Kelch-like ECH-associated protein 1 (Keap1) associates with Nrf2

to keep it in an inactive state. The killer inhibitory receptor (KIR)

domain of p62 allows p62 to bind to Keap1 to free Nrf2. This allows

Nrf2 to move into the nucleus to bind to the antioxidant response

element (ARE) to induce the expression of antioxidant genes (51).

Since the p62 promoter contains the ARE, the activated Nrf2, in

turn, induces the expression of p62 (52). On the other way around,

Keap1, by binding to p62, prevents p62 from interacting with LC3

and delivering cargoes to autophagosomes for autophagic

degradation. This can impede the autophagic removal of

dysfunctional mitochondria under oxidative stress and activate

the cGAS/STING pathway to lead to the production of IFN

(more details below). In the meantime, p62 can associate with

Raptor to activate mTOR complex 1 (mTORC1) and promote the

pro-survival pathway (53). The activation of Nrf2 in response to

HCV infection is mediated by the mitogen-activated protein kinase

(MAPK) p38 and JAK, and the knockdown of Nrf2 inhibits the

phosphorylation of the kinase Akt and its downstream effector Bad,

suggesting a role of Nrf2 in the survival of HCV-infected cells and

their possible oncogenic transformation (54). Indeed, the

accumulation of p62 was observed in multiple cancers including

tumor tissues positive for HCV (55, 56).
HCV-induced autophagy
and inflammasome

Inflammasome is a multiprotein complex composed of an NLR

such as NLRP3, the adaptor protein apoptosis-associated speck-like

protein containing a CARD (ASC) and the effector protease

caspase-1. It can be activated by PAMPs, damage-associated

molecular patterns (DAMPs), and toxins (57). The assembly of
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inflammasomes leads to the activation of caspase-1, which then

cleaves IL-1b and IL-18 to produce their mature form for release

from cells. The formation of inflammasomes also triggers

pyroptosis, a regulated form of cell death associated with a high

inflammation state. Caspase-1 also cleaves Gasdermin D (GSDMD)

to produce GSDMD-C and GSDMD-N. GSDMD-N oligomerizes to

form membrane pores on the plasma membrane for the release of

IL-1b and IL-18 and eventually leads to pyroptosis (57, 58).

In response to HCV infection, the NLRP3 inflammasome is

activated in hepatocytes and macrophages, leading to the release of

IL-1b (59, 60). Elevated serum level of IL-1b was observed in chronic

HCV patients as well (61). HCV can also enter Kupffer cells, the

resident macrophages of the liver, and trigger the TLR7-mediated

inflammasome activation and the release of IL-1b (61). The

expression of HCV proteins, the increase of ROS, the induction of

ER stress and other organelle stresses caused by HCV infection may

exacerbate the inflammasome response (59). Lipid accumulation was

shown to activate the NLRP3 inflammasome as well (59, 62, 63). The

HCV core protein can also stimulate IL-1b production from

macrophages, and this process requires HCV core-induced Ca2+

mobilization and phospholipase C activation (59, 61).

Autophagy, via lysosomal degradation, eliminates the activators

of inflammasomes, such as inflammasome components, cytokines,

mitochondrial ROS (mtROS), mitochondrial DNA (mtDNA) and

damaged mitochondria. Thus, autophagy negatively regulates the
Frontiers in Immunology 05
NLRP3 inflammasome to prevent excessive inflammation, which

can lead to the development of cancer (64). HCV induces the

expression of Rubicon to inhibit the maturation of autophagosomes

and disrupt the autophagic flux at as early as 6 hours post-infection

in cell cultures (39). It is conceivable that this disruption of

autophagic flux plays a role in the induction of inflammasomes

and pyroptosis, which are detected in cells 2-3 days after HCV

infection (60). HCV also induces the expression of NLRP3, an

important component of inflammasomes, and the silencing of

NLRP3 inhibits HCV-induced Golgi fragmentation, which is a

possible source of autophagosomal membranes in HCV-infected

cells (65). Thus, there appears to be a two-way crosstalk between

autophagy and inflammasomes in HCV-infected cells.
HCV-induced inflammasome and innate
immune response

The prompt removal of cytotoxic agents by autophagy protects

cells from dangers, and the insufficient induction of autophagy or

delay in autophagic degradation can cause hyperinflammatory

responses (66). HCV delays the maturation of autophagosomes

for autophagosomal membranes to accumulate to support the

replication of its genome. However, the inflammation may arise

due to the delay in the autophagic clearing of DAMPs. Aarreberg
FIGURE 2

Interplay between HCV-induced autophagy and host innate immune response. HCV-induced autophagy removes DAMPs to inhibit the formation of
inflammasomes and hence pyroptosis. HCV-induced autophagic degradation of TNFR1 also inhibits the activation of caspase-8 and apoptosis.
However, host cells in response to HCV infection also express TNF-a and IFNAR2 (also see Figure 1). TNF-a at a low concentration causes the
generation of ROS to initiate autophagy. However, it, at a high concentration, can also put a halt on the completion of autophagy via caspase-8-
mediated cleavage of p62, ultimately activating the cGAS/STING/TBK1 pathway and apoptosis. TNF-a-induced cleavage of p62 also disrupts Nrf2
signaling, which is activated by HCV to induce the expression of antioxidant genes to alleviate oxidative stress. HCV also delays the maturation of
autophagosomes by inducing the expression of Rubicon for the accumulation of autophagosomes to support its RNA replication, which can also
lead to the accumulation of DAMPs. Mitochondrial dynamics are closely related to the regulation of innate immune response. On the other hand,
mitochondrial fusion supports inflammasome activation and pro-survival pathways that, if prolonged, can contribute to tumorigenesis. On the other
hand, mitochondrial fission, which is coupled with mitophagy and promoted by HCV, supports the formation of MAM which can serve as the
platform to mediate IFN response. RC: HCV replication complex.
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et al. found that IL-1b could induce the release of mtDNA into the

cytosol to activate cyclic GMP-AMP synthase (cGAS), a cytosolic

DNA sensor (Figure 2). This led to the production of the second

messenger cyclic GMP-AMP (cGAMP) and the activation of

STING followed by the activation of IRF3 and NF-kB to induce

the expression of IFNs and proinflammatory cytokines (67). Type I

IFNs, in turn, can repress the NLRP1- and NLRP3-dependent IL-1b
production via the STAT1 transcription factor, which can also

induce the expression of IL-10 to activate STAT3 through an

autocrine mechanism to suppress the expression of pro-IL-1a
and pro-IL-1b (68). Nitric Oxide (NO) induction or inducible

nitric oxide synthase (iNOS) deficiency induced by TNF-a or

IFN-g suppresses inflammasome activation, preventing prolonged

inflammation (69, 70). The mutually exclusive relationship between

inflammasome and IFN production is well depicted by Banerjee

et al. (71). They showed that inflammasome- and caspase-1-

mediated cleavage of GSDMD and the subsequent formation of

GSDMD pores led to K+ efflux and negatively regulated the IFN-b
production, and GSDMD knockout enhanced the activation of

TBK1 and IRF3 in response to intracellular poly(dA:dT) or

Francisella novicida infection (71). In HCV-infected cells, Wallace

et al. observed that pyroptosis preceded apoptosis, and the depletion

of NLRP3 increased the activation of caspase-3, an executioner

caspase of apoptosis (60) (Figure 2), most likely due to the increase

in innate immune signaling (72). Interestingly, caspase-3 knockout

also decreased the activation of caspase-1, suggesting a possible role

of caspase-3 in the initiation of pyroptosis (60). The continuous

interplays between IL-1b and IFN in the microenvironment of

HCV-infected cells may contribute to immune tolerance, IFN

resistance, an extended inflammation state and the development

of liver cirrhosis and HCC (73, 74) (Figure 2). This may also be the

reason why the interferon therapy does not generate sustained

virological response in the great majority of HCV patients (75).
HCV-induced mitophagy and innate
immune response

HCV-induced mitophagy and
immune response

Maintaining a healthy pool of mitochondria is critical for

cellular function and survival. Mitochondria undergo constant

fusion and fission via guanosine triphosphatases (GTPases)-

dependent activities. Mitofusins (Mfn1 and Mfn2), fusogenic

transmembrane GTPases located on the mitochondrial outer

membrane, bridge two adjacent mitochondria to promote

mitochondrial fusion. Dynamin-related protein 1 (Drp1) and its

receptor mitochondrial fission factor (Mff) promote mitochondrial

fission by forming helical oligomers of Drp1 that encircle the

mitochondrial outer membrane. Healthy mitochondria maintain a

low Ca2+ level in their matrix where matrix dehydrogenases and

oxidative phosphorylation produce ATP. Mitochondrial

dysfunction can cause a reduction in the mitochondrial

membrane potential (DYm) due to uncontrolled production of
Frontiers in Immunology 06
ROS or the mitochondrial Ca2+ influx. The decrease in DYm leads

to the opening of the mitochondrial permeability transition pore

(MPTP), through which mtDNA and cytochrome c are released

(76). Dysfunctional mitochondria and the accumulation of DAMPs

eventually lead to the disruption of ATP production and promote

anaerobic glycolysis (77). Ca2+ overload can also lead to

mitochondrial fragmentation, the disruption of ATP synthesis,

and apoptosis (78, 79).

Mitochondria-associated membranes (MAMs), the contact sites

of ER and mitochondria, create microdomains with high flux of

Ca2+ where the transportation of Ca2+ occurs (Figure 1). Ca2+ goes

through ER-resident calcium transporters (RyR/IP3R) and

mitochondrial voltage-dependent anion channel type 1 (VDAC 1)

on the outer membrane of mitochondria (OMM) and the calcium

uniporter (MCU) on the inner membrane of mitochondria (IMM).

Mitochondrial fusion leads to the loss of MAMs where MAVS

relays the RIG-I signaling, and failure in maintaining MAMs can

compromise innate immunity. Instead, the fusion of dysfunctional

mitochondria can lead to the activation of inflammasome (80) via

the accumulation of mtROS and mtDNA within the prolonged

network of damaged mitochondria (77). Ichinohe et al. showed that

endogenous NLRP3 was associated with Mfns after the infection of

influenza virus or encephalomyocarditis virus (EMCV) in the LPS-

primed bone marrow-derived macrophages (BMMs) (80). The

treatment with carbonyl cyanide m-chlorophenyl hydrazone

(CCCP), a protonophore that dissipates DYm, or the knockdown

of Mfn2 decreased the secretion of IL-1b (80).

Mitochondrial fission precedes mitophagy, a selective

autophagy that removes damaged mitochondria for degradation

(77). Failure in clearance of damaged mitochondria will lead to the

accumulation of DAMPs, particularly mtDNA, to trigger the

transcription and translation of inflammatory cytokines (77). The

immune-evoking signals like cytochrome c, ROS and mtDNA from

damaged mitochondria can also stimulate host responses. During

HCV infection, MAMs can provide a site for the replication of the

viral genome (81). HCV proteins present in the MAMs cause

mitochondrial Ca2+ overload followed by local production of ROS

and trigger the collapse of DYm that leads to apoptosis, eliminating

HCV-infected cells (82). Although it was noted that HCV-induced

ROS can play a role in restricting the replication of HCV (83–85),

mitochondrial fission and mitophagy induced by HCV infection in

cell cultures or in patients or by the expression of HCV protein

NS5A alone can overcome the antiviral effect of ROS and ROS-

induced apoptosis (86–89). By removing damaged mitochondria

along with mitochondrial DAMPs, mitophagy plays a critical role in

preventing cell death caused by damaged mitochondria and mtROS.

Evidence showed that HCV could upregulate mitophagy-related

proteins including Drp1, the Drp1 receptor Mff, Parkin and PINK1

(86, 87), and the inhibition of PINK1 or Parkin decreased HCV

replication, suggesting a positive role of mitophagy in HCV

infection (86). PINK1 is a protein kinase that phosphorylates and

recruits Parkin, an E3 ubiquitin ligase, to the outer membrane of

mitochondria. Parkin can then ubiquitinate mitochondrial outer

membrane proteins to trigger mitophagy.

MAMs also serve as the sites where immune signaling

complexes form to control the viral infection. In the case of
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influenza virus, the fusion state of mitochondria in A549 cells, a

human lung cancer cell line, was associated with the translocation of

Drp1 from the mitochondria to the cytosol after viral infection (90).

MAMs restored after the fragmentation of mitochondria by Mito-C,

a pro-fission compound, increased IFN production for viral

clearance (90). Similarly, the silencing of MFN2 enhanced the

IFN-b promoter activity and reduced the permissiveness of cells

to HCV infection (8). It is of note that the depletion of Drp1

suppressed HCV release with an increase in innate immune

response and apoptosis (87).

The antagonistic relationship between mitophagy and apoptosis

in the context of immune response was recently confirmed by Kim

et al. who found that HCV-induced mitochondrial fission coincided

with the attenuation of apoptosis (87). The authors added that the

increase in caspase-3 activation and mitochondria-mediated

apoptosis was linked to the increase in innate immune signaling

(87). The pro-survival and proliferation nature of mitophagy was

established as Drp1-mediated mitochondrial fission was shown to

deplete the tumor suppressor p53 and increase the phosphorylation

of the retinoblastoma (Rb) protein, resulting in the G1/S cell cycle

progression and tumorigenesis (91–93). Plus, under the hypoxic

condition, nuclear p53 represses the expression of Bcl-2 interacting

protein 3 (BNIP3) thereby attenuating mitophagy (94). BNIP3

induces mitophagy by triggering mitochondrial membrane

depolarization (94).

Intriguingly, evidence showed that the delay in autophagy could

prime cells for apoptosis. In CD14+ cells, IFN-a impaired autophagic

degradation of mitochondria, resulting in the accumulation of

mtDNA and ultimately the STING-mediated immune response

(95). In HCV-infected cells, the inhibition of autophagosomal

maturation by the upregulation of Rubicon also resulted in the

accumulation of damaged mitochondria (39), which then activated

the IFN pathway (46), and led to both apoptosis and pyroptosis (96).
TNF alpha-induced mitophagy and innate
immune response

TLR7 and TLR8 can sense HCV RNA in the endosome and

induce the expression of tumor necrosis factor-a (TNF-a) to

suppress HCV replication (44, 97). TNF-a signaling can activate

NF-kB and IRFs, leading to the production of pro-inflammatory

cytokines and IFNs, respectively. TNF-a induced by HCV is

necessary for type I IFN signaling in HCV-infected cells, as the

silencing of TNF-a or its receptor TNFR1 abrogates the expression of

IFNAR2 and desensitizes HCV-infected cells to type I IFNs (44, 98).

TNFR1 exists in two temporally and spatially distinct signaling

complexes: TNFR1 complex I (TNFR1-CI) and II (TNFR1-CII) (99,

100). TNFR1-CI, formed on the plasma membrane, recruits RIPK1,

TRADD, TRAF2 and the cellular inhibitor of apoptosis protein

(cIAP) 1 and 2. cIAP proteins add K63, K11 and K48 poly-ubiquitin

chains to themselves and RIPK1. This further recruits linear

ubiquitin chain assembly complex (LUBAC) to add M1 linear

polyubiquitin chain to RIPK1 and fully activates TNFR1-CI and

NF-kB. TNFR1-CII is formed when RIPK1 becomes

deubiquitinated and released from TNFR1-CI. TNFR1-CII,
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assembled after the internalization of TNFR1, recruits FADD,

caspase-8 and FLICE-like inhibitory protein (FLIP). The

degradation of cIAPs and the activation of caspase-8 initiate the

apoptotic pathway. In the case of caspase inhibition, RIPK3

associates with RIPK1 to induce necroptosis. Zhao et al. reported

that the cleavage of p62 by caspase-8, a key protease in extrinsic

apoptotic signaling initiated from death receptors including

TNFR1, prevented p62 from participating in autophagy (101)

(Figure 2). The mutation of D329, the caspase-8 cleavage site in

p62, to histidine (D329H) or glycine (D329G) rendered p62

resistant to caspase-8 and inhibited caspase-8-induced apoptosis.

This cleaved p62 lacks the KIR domain and can no longer bind to

Keap1, which associates with Nrf2 to inhibit its activity (101). Thus,

the activity of caspase-8 on p62 shuts off the oxidative stress

response and at the same time inhibits further expression of p62

and autophagic degradation. As mentioned above, the association

of Keap1 with p62 attenuates autophagic degradation and in the

meantime activates Nrf2-mediated oxidative stress response (51).

An interesting biphasic effect of TNF-a on the Keap1/Nrf2 pathway

had been observed, with TNF-a activating and promoting the

nuclear localization of Nrf2 at low concentrations and impairing

the antioxidant signaling of Nrf2 to result in severe oxidative stress

and cell death at high concentrations (102). The activation of Nrf2

in response to HCV was mediated by the p38 MAPK and JAK, and

the silencing of Nrf2 inhibited the phosphorylation of Akt and its

downstream effector Bad, implicating Nrf2 in the survival of HCV-

infected cells and their potential oncogenic transformation (54). As

discussed above, the inhibition of autophagic degradation of

mitochondria under oxidative stress can activate the cGAS/

STING pathway to induce the expression of IFNs. Oroxylin A is a

flavonoid compound isolated from Scutellaria baicalensis. It has

antioxidant, anti-inflammatory and anti-tumor activities (101). The

apoptosis of liver tumor cells induced by oroxylin A is dependent on

p62-mediated activation of caspase-8, which cleaves p62 at D329 to

remove its KIR domain (101). The cleavage of p62 by caspase-8

down-regulated Nrf2 and reduced the oxidative stress response

(Figure 2). However, it is noteworthy that HCV fights the action of

TNF-a and TNFR1 signaling by inducing the autophagic

degradation of TNFR1 (44). It should be noted as well that TNF-

a had also been shown, through a paracrine mechanism, to disrupt

the tight junctions and promote the entry of HCV into polarized

hepatocytes, hence promoting HCV infection (103). In Huh 7.5

cells, HCV-induced autophagic degradation of IFN-a receptor,

IFNAR1 rendered the infected cells resistant to IFN treatment (43).
Concluding remarks

Autophagy, a process used by the cell to maintain its

homeostasis, also plays important roles in antiviral responses.

Besides its role in virophagy, autophagy influences other innate

immune pathways including PRR signaling, the formation of

inflammasomes, and the expression of pro-inflammatory

cytokines and IFNs. HCV-induced autophagy affects all these

intracellular antiviral responses.
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HCV induces autophagy/mitophagy to promote its replication.

Mitophagy is a quality control mechanism used by the cell to maintain

a healthy pool of mitochondria, which, if damaged, can trigger cell

death. To cope with the HCV-associated damage in mitochondria,

HCV induces mitophagy to remove dysfunctional mitochondria to

prevent premature cell death. Rubicon is induced by HCV to delay the

maturation of autophagosomes, causing the accumulation of

autophagosomal membranes, which support the HCV genome

replication (23). This delay in autophagic degradation can also

actuate type I IFN signaling (46). In this regard, TNF-a-induced
cleavage of p62 by caspase-8 may have the same effect as Rubicon in

delaying autophagosome maturation and on IFN signaling.

Mitochondrial fission and fusion (i.e., mitochondrial dynamics)

also affect HCV replication. Mitophagy is often coupled with

mitochondrial fission. HCV-induced mitochondrial fission

correlates with the attenuation of apoptosis (87). Interestingly, the

inhibition of mitochondrial fission affected the secretion of progeny

viruses (87), indicating a possible role of mitophagy in the release of

infectious viral particles. The perturbation of mitochondrial

metabolism can desensitize HCV-infected cells to IFN-a. These
immune-antagonizing activities of HCV explain why most HCV

patients fail to eradicate this virus and eventually develop severe

liver diseases and why IFN therapies did not generate sustained

response in the majority of patients infected by HCV.

In patients, HCV can induce inflammasomes to produce

mature IL-1b, mainly by Kupffer cells. IL-1b induces the release

of mtDNA that can activate cGAS/STING pathway to produce

IFNs. This expression of IFNs in turn inhibits the formation of

inflammasomes to repress further generation of the mature IL-1b.
By inducing autophagic degradation of the components of

inflammasomes, HCV hampers the inflammasome formation.

This interplay between IL-1b and IFN likely plays an important

role in HCV persistence and pathogenesis.

HCV-induced mitochondrial oxidative stress triggers Nrf2

activation. p62, an adaptor molecule important for autophagic/

mitophagic protein degradation, binds to Keap1 to activate the

Nrf2-mediated antioxidant response (56). The Nrf2 activation in

turn promotes the expression of p62, thereby enforcing the

antioxidant response and mitophagy, which helps to remove

immune-evoking DAMPs and promote the survival of infected

cells, potentially inducing tumorigenesis.

There is a constant battle between viruses and their host cells for

survival. One such battleground is the control of the autophagic
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pathway. HCV has developed remarkable mechanisms to control

this pathway not only to promote its replication but also to

attenuate the host innate immune response. The successful

suppression of expression of cytokines and IFNs and their

signaling pathways plays a critical role for HCV to establish

chronic infection in the great majority of patients that it infects.

The prolonged perturbation of the autophagic pathway by HCV

likely plays an important role in HCV pathogenesis. The current

DAAs, which target HCV NS3 protease, NS5A and/or NS5B

polymerase to inhibit HCV replication, can also alleviate the

long-term effect of HCV on this important cellular pathway to

restore the health of hepatocytes.
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