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The causal relationship between
gut microbiota and nine
infectious diseases: a two-
sample Mendelian
randomization analysis
Song Wang1†, Fangxu Yin1†, Wei Sun1†, Rui Li 1, Zheng Guo1,
Yuchao Wang1, Yiyuan Zhang2, Chao Sun3 and Daqing Sun1*

1Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China,
2Department of Reproductive Endocrinology, Second Hospital of Shandong University, Jinan, China,
3Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
Background: Evidence from observational studies and clinical trials has

associated gut microbiota with infectious diseases. However, the causal

relationship between gut microbiota and infectious diseases remains unclear.

Methods:We identified gut microbiota based on phylum, class, order, family, and

genus classifications, and obtained infectious disease datasets from the IEU

OpenGWAS database. The two-sample Mendelian Randomization (MR) analysis

was then performed to determine whether the gut microbiota were causally

associated with different infectious diseases. In addition, we performed reverse

MR analysis to test for causality.

Results: Herein, we characterized causal relationships between genetic

predispositions in the gut microbiota and nine infectious diseases. Eight strong

associations were found between genetic predisposition in the gut microbiota

and infectious diseases. Specifically, the abundance of class Coriobacteriia, order

Coriobacteriales, and family Coriobacteriaceae was found to be positively

associated with the risk of lower respiratory tract infections (LRTIs). On the

other hand, family Acidaminococcaceae, genus Clostridiumsensustricto1, and

class Bacilli were positively associated with the risk of endocarditis, cellulitis, and

osteomyelitis, respectively. We also discovered that the abundance of class

Lentisphaeria and order Victivallales lowered the risk of sepsis.

Conclusion: Through MR analysis, we found that gut microbiota were causally

associated with infectious diseases. This finding offers new insights into the

microbe-mediated infection mechanisms for further clinical research.
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1 Introduction

Infections such as pneumonia and gastrointestinal infections

are the most common infections in hospitalized patients (1).

Statistically, these infections account for more than 20% of deaths

globally, with 245,000 sepsis cases occurring in the United Kingdom

(UK) alone annually (2, 3). Owing to antibiotic resistance, an aging

population, and emerging pathogens, the infection-induced disease

burden is expected to rise, making the identification of the factors

that can modify these illnesses essential (4–6). Generally, severe

bacterial infections are believed to be caused by the invasion of the

blood and tissues by pathogenic microorganisms, resulting in tissue

necrosis and even host death (7). Furthermore, with advancements

in sepsis research in recent years, it has been found that

uncontrolled infection may lead to dysregulation of the host’s

immune response. At the same time, excessive immune response

results in the secretion of a multitude of cytokines, leading to organ

dysfunction and, ultimately, host death (8–10). Therefore, effective

prevention and treatment of serious infectious diseases has

become critical.

In a healthy host, the gut microbiota regulate various

homeostasis mechanisms, including immune function and gut

barrier protection (11, 12). Mechanisms of gut microbiota leading

to infectious diseases, including allowing the expansion of

pathogenic gut bacteria, primes the immune system to produce a

robust pro-inflammatory response, thus reducing the production of

beneficial microbial products, such as short-chain fatty acids (13–

15). Furthermore, gut microbiota interact with infectious diseases.

On the one hand, susceptibility to infectious diseases may be

aggravated by intestinal micro-ecological disorders. Under certain

conditions, intestinal bacteria can directly invade peripheral blood

through intestinal mucosa. They could also enter distant organs

via the “gut–organ” axis, causing bacterial translocation and

eliciting systemic inflammatory responses. Further illness

progression can lead to organ dysfunction (16). On the other

hand, severe infection could also cause alterations in the human

intestinal microenvironment, resulting in the imbalance of

intestinal flora and the release of inflammatory factors, damaging

the intestinal mucosal barrier and further aggravating the disease

(17). Although an increasing number of studies has associated gut

microbiota with infectious diseases, the causal relationship between

the two remains unclear.

In recent years, Mendelian randomization (MR) analysis, a

statistical approach for investigating causal relationships, has been

mainly applied to the causal inference of epidemiological diseases.

Since alleles follow the random allocation principle, this impact is

not affected by confounding factors and reverse causation in

traditional epidemiological research (18). The publication of

large-scale genome-wide association study (GWAS) data has

resulted in the availability of a substantial number of reliable

genetic variants for MR studies (19). As a result, this study

analyzed the causal relationship between gut microbiota and

infectious diseases through the MR analysis, providing useful

insights into the clinical treatment of infectious diseases.
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2 Materials and methods

2.1 Study population

As shown in Figure 1, we used a two-sample MR (TSMR)

approach to characterize the causal relationship between the

intestinal microbiome and infectious diseases and finally

conducted quality control tests, including the heterogeneity and

gene pleiotropy tests, to verify the reliability of the results.

The gut microbiota, which is investigated in the context of

human genetics by MiBioGen, an international consortium, was the

primary exposure factor for our study (20). Herein, the human gut

microbiota GWAS data, encompassing 18,340 individuals from 24

population cohorts, was used. A total of 196 bacterial groups

(including 9 phyla, 16 classes, 20 orders, 32 families, and 119

genera) were included after excluding 15 genera with no specific

species names.

Our primary outcomes were various infectious diseases with

GWAS datasets from the UK Biobank project (21), a prospective

cohort study that collected deep genetic and phenotypic data on

approximately 500,000 individuals across the UK. Each participant

had a wealth of phenotypic and health-related information. Genome-

wide genotype data were collected from all participants by linking

health and medical records to provide follow-up information.

Pneumonia, upper respiratory tract infections (URTIs),

lower respiratory tract infections (LRTIs), endocarditis, urinary
FIGURE 1

The study design of the present MR study of the associations of gut
microbiota and sepsis. LD, linkage disequilibrium, which used to
measure the correlations between SNPs; IVW, inverse-variance-
weighted, the main analyses to evaluate the relationship between
exposure and outcome; MR-PRESSO, Mendelian Randomization
Pleiotropy RESidual Sum and Outlier, a method test the pleiotropic
biases in the SNPs and correct the pleiotropic effects; MR,
Mendelian randomization; SNPs, single-nucleotide polymorphisms,
as instrumental variables for the exposures and outcomes.
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tract infections (UTIs), appendicitis, cellulitis, osteomyelitis,

and sepsis were among the infectious diseases evaluated.

Information on exposure and outcome factor data is presented in

Supplementary Table 1.
2.2 Single-nucleotide
polymorphisms selection

Here, single-nucleotide polymorphisms (SNPs) significantly

associated with the relative abundance of 196 gut microbiota were

selected as available instrumental variables (IVs). According to

previous research, including multiple IVs can enhance the

interpretation of exposure variation and improve the accuracy

and reliability of analysis results. As a result, to ensure the

independence of the included SNPSs, this study selected IVs

based on the results of association analysis (with p < 1×10-5 as

the significance threshold), set the linkage disequilibrium criteria

(with R2 < 0.001) and genetic distance (with 10,000 kb), and

excluded highly correlated SNPs (22). Finally, SNPs associated

with the relative abundance of gut microbiota were projected into

the GWAS data on infectious diseases and the corresponding

statistical parameters were retrieved. To align the effect exposure

and outcome values with the same effect allele, the data were unified

based on the statistical parameters of the same site in the relative

abundance of gut microbiota and GWAS resu l t s of

infectious diseases.
2.3 Research design

When using SNPs as IVs in MR analysis, three key assumptions

should be met to better estimate the causal effects: (1) The IVs must

be closely related to exposure factors; (2) the IVs should not be

related to confounding factors; and (3) the IVs should only affect

the results through exposure and not by any other means.
2.4 Statistical analysis

In this study, Inverse variance weighted (IVW), MR-Egger,

Weighted Median (WME), Simple Mode (SM), and Weighted

Mode (WM) were used to estimate the causal effect. The IVW

method presumes that all genetic variants are valid. The IVW

approach employs the ratio method to calculate the causal effect

size of individual IVs and obtains the total effect size by aggregating

each estimate for weighted linear regression (23). The primary

distinction between the MR-Egger and the IVWmethods is that the

former considers the existence of the intercept term in regression

analysis (24). The WME approach takes advantage of all available

genetic variants’ intermediate effects. An estimate (25) was obtained

by weighting the inverse variance of each SNP’s correlation with the

outcome. The SM and WM methods are modality-based

approaches, and modality-based estimation models aggregate

SNPs with similar causal effects and return the estimates of causal

effects for most cluster SNPs. The influence of each SNP on the
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cluster was weighted by WM per the inverse variance of its

resulting effect.

Given that the IVW approach is more efficient than the other

four MR methods, it was used herein as the preferred causal effect

estimation method. Additionally, the beta values obtained in the

results were converted into odds ratios (OR), and the 95%

confidence interval (CI) was calculated to better explain the

results. To verify whether the results were “false positives” due to

multiple tests, we used the Benjamini–Hochberg (BH) method

under the false discovery rate (FDR) standard to correct the MR

results for different classifications of gut microbiome (phyla, class,

order, family, and genus); the calculation formula is FDR(i) = p(i)

*m/i, specifically, all p-values are arranged in ascending order,

where p-values are denoted as p, the serial number of p-values is

denoted as i, and the total number of p-values is denoted as m (26).

Using the F statistic to test IV strength, the association of effect

estimates that test causation may be affected by weak instrumental

bias. The F statistic is calculated as follows: F = R2 (N−K−1)/k

(1−R2), where R2 = variance (per gut microbiome) interpreted by

IV, and n = sample size. The R2 is estimated from the minor allele

frequency (MAF) and B-value using the following equation: R2 = 2

× MAF × (1−MAF) × b2 (27).

Additionally, we included sensitivity analysis, heterogeneity level

test, and gene pleiotropy test in quality control to further test the

stability and reliability of the results. For sensitivity analysis, the

residual one method was used, and the combined effect value of the

remaining SNPs was determined by sequentially deleting single SNP

to evaluate the impact of each SNP on the results. The heterogeneity

test was performed to assess the heterogeneity of SNPs. The SNP

measurement error caused by experimental conditions and

population analysis, among other factors, could lead to bias in

estimating causal effects (28). Using the intercept term of the MR-

Egger regression, the horizontal gene pleiotropy test assesses whether

IVs affect outcomes by other means apart from exposure (29).

Potentially abnormal SNPs were identified through the Mendelian

Randomization Multi-Effect Residual and Outlier (MR-PRESSO)

(30) and leave-one-out methods (31). Finally, we performed reverse

MR to analyze whether there was a reverse causality between

infectious diseases and meaningful gut microbiota. The MR

Analysis and quality control for this study were analyzed using

version 4.0.3 R and version 0.5.6 TwoSampleMR packages.
3 Results

3.1 TSMR analysis

The results of the 196 gut microbiota examined in relation to

infectious disease are presented in Supplementary Table S2. The F-

statistics for the gut flora ranged between 14.58 and 88.42 (all

meeting the >10 threshold), implying that they are unlikely to be

impacted by weak instrumental bias (Supplementary Table S3).

Briefly, we identified 72 genera associated with infectious disease

risk (Figure 2). However, after rigorous BH correction, only eight

gut microbiota showed stability in their association with infectious

diseases (Table 1).
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3.2 Gut microbiota and pneumonia

Overall, nine gut microbiota were associated with the risk of

respiratory infections in the primary MR analysis, suggesting that

these gut microbiota may have an impact on the development of

pneumonia. Among them, genus Holdemanella [OR:1.10, 95%

confidence interval (CI): 1.03–1.19, p = 0.006] and genus

Oxalobacter (OR: 1.09, 95% CI: 1.02–1.1.15, p = 0.005) were

positively correlated with the risk of developing pneumonia. Class

Verrucomicrobiae (OR: 0.88, 95% CI: 0.80–0.97, p = 0.009), order

Verrucomicrobiales (OR: 0.88, 95% CI. 0.80–0.97, p = 0.009), family

Verrucomicrobiaceae (OR: 0.88, 95% CI. 0.80–0.97, p = 0.009),

genus Akkermansi (OR: 0.88, 95% CI: 0.80–0.97, p = 0.009), genus
Frontiers in Immunology 04
ChristensenellaceaeR.7group (OR: 0.83, 95% CI: 0.73–0.94,

p = 0.005), genus Coprococcus1 (OR: 0.89, 95% CI: 0.81–0.98,

p = 0.020), and genus RuminococcaceaeUCG002 (OR: 0.90, 95%

CI: 0.83–0.98, p = 0.020) were negatively correlated with pneumonia

(Figure 2). However, after BH correction, these genera were not

associated with pneumonia.
3.3 Gut microbiota and URTI

In the primary MR analysis, seven gut microbiota were found to

be associated with the risk of URTI. Among them, family

Defluviitaleaceae (OR: 1.41, 95% CI:1.07–1.85, p = 0.014), genus
FIGURE 2

Effect estimates of the association between meaningful gut microbiota and infectious disease risk in IVW analysis. SNPs, single-nucleotide
polymorphisms, as instrumental variables for the exposures and outcomes; OR, odds ratio; CI, confidence interval; URTI, upper respiratory tract
infection; LRTI, lower respiratory tract infection; UTI, urinary tract infection.
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TABLE 1 Effect estimates of the association between meaningful gut microbiota and infectious disease risk in MR analysis.

Gut microbiota Outcome SNPs Methods OR (95% CI) p-value pFDR

Class Coriobacteriia LRTI

13 MR-Egger 1.28 (0.74–2.22) 0.401

13 Weighted median 1.28 (1.05–1.55) 0.012

13 IVW 1.29 (1.12–1.48) 3.32E-04 0.005

13 Simple mode 1.26 (0.91–1.73) 0.187

13 Weighted mode 1.26 (0.92–1.71) 0.176

Order Coriobacteriales LRTI

13 MR-Egger 1.28 (0.74–2.22) 0.401

13 Weighted median 1.28 (1.06–1.54) 0.010

13 IVW 1.29 (1.12–1.48) 3.32E-04 0.007

13 Simple mode 1.26 (0.94–1.67) 0.147

13 Weighted mode 1.26 (0.92–1.71) 0.177

Family Coriobacteriaceae LRTI

13 MR-Egger 1.28 (0.74–2.22) 0.401

13 Weighted median 1.28 (1.07–1.53) 0.007

13 IVW 1.29 (1.12–1.48) 3.32E-04 0.011

13 Simple mode 1.26 (0.93–1.69) 0.160

13 Weighted mode 1.26 (0.92–1.72) 0.184

Family Acidaminococcaceae Endocarditis

7 MR-Egger 0.73 (0.14–3.77) 0.719

7 Weighted median 1.67 (0.82–3.42) 0.159

7 IVW 2.70 (1.47–4.97) 0.001 0.045

7 Simple mode 1.58 (0.61–4.05) 0.382

7 Weighted mode 1.60 (0.66–3.88) 0.341

Genus Clostridiumsensustricto1 Cellulitis

7 MR-Egger 1.34 (0.96–1.87) 0.145

7 Weighted median 1.25 (1.01–1.54) 0.036

7 IVW 1.30 (1.13–1.51) 3.88E-04 0.046

7 Simple mode 1.25 (0.94–1.65) 0.173

7 Weighted mode 1.24 (0.97–1.57) 0.132

Class Bacilli Osteomyelitis

18 MR-Egger 0.93 (0.57–1.53) 0.775

18 Weighted median 1.22 (0.93–1.61) 0.151

18 IVW 1.36 (1.13–1.64) 0.001 0.022

18 Simple mode 2.02 (1.15–3.55) 0.025

18 Weighted mode 1.05 (0.68–1.64) 0.823

Class Lentisphaeria Sepsis

8 MR-Egger 0.79 (0.57–1.10) 0.211

8 Weighted median 0.85 (0.75–0.97) 0.016

(Continued)
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DefluviitaleaceaeUCG011 (OR: 1.44, 95% CI: 1.04–2.00, p = 0.027),

genus Erysipelatoclostridium (OR: 1.28, 95% CI: 1.02–1.59,

p = 0.030), and genus Veillonella (OR: 1.51, 95% CI: 1.03–2.23,

p = 0.036) were positively associated with the risk of URTI, while

class Clostridia (OR: 0.62, 95% CI: 0.44–0.86, p = 0.004), genus

Alistipes (OR: 0.69, 95% CI: 0.51–0.93, p = 0.015), and genus

Streptococcus (OR: 0.75, 95% CI: 0.57–0.98, p = 0.038) were

negatively associated with the risk of URTI (Figure 2). None of

these seven gut microbiota were associated with significance in

URTI after BH correction.
3.4 Gut microbiota and LRTI

Nine gut microbiota were associated with the risk of LRTI

(Figure 2). However, only three gut microbiota were associated

with significance in LRTI after strict BH correction (Table 1).

Specifically, we observed that the abundance of class Coriobacteriia

(OR: 1.29, 95% CI: 1.12–1.48, pFDR = 0.005), order Coriobacteriales

(OR: 1.29, 95% CI: 1.12–1.48, pFDR = 0.007), and family

Coriobacteriaceae (OR: 1.29, 95% CI = 1.12–1.48, pFDR = 0.011)

were associated with a higher risk of LRTI.

In sensitivity analyses, the WME results were comparable to

those of the IVW approach (OR: 1.28, 95% CI: 1.05–1.55, p = 0.012

for class Coriobacteria; OR: 1.28, 95% CI: 1.06–1.54, p = 0.010 for

order Coriobacteriales; and OR: 1.28, 95% CI = 1.07–1.53, p = 0.007

for family Coriobacteriaceae), but with wider confidence intervals

(Figure 3). Furthermore, the MR-Egger regression intercepts

showed no evidence of pleiotropy of these gut microbiota with

LRTI (intercept p = 0.977 for class Coriobacteriia; intercept

p = 0.977 for order Coriobacteriales; and intercept p = 0.977 for

family Coriobacteriaceae) (Table 2 and Supplementary Table S4).

No outliers were detected in the MRPRESSO regression.

Heterogeneity analysis confirmed the accuracy of the results

(Table 2 and Supplementary Table S5). Data robustness was

further validated by the leave-one-out results, showing a

consistent positive association between gut flora and LRTI risk

(Supplementary Table S6).
Frontiers in Immunology 06
3.5 Gut microbiota and endocarditis

In the primary MR analysis, nine gut microbiota were

associated with the risk of endocarditis (Figure 2). After BH

correction, it was found that family Acidaminococcaceae

abundance was positively associated with the risk of endocarditis

(OR: 2.70, 95% CI: 1.47–4.97, pFDR = 0.045) (Table 1).

In the sensitivity analysis, the WME method did not show

statistical significance (OR: 1.67, 95% CI: 0.82–3.42, p = 0.159)

(Figure 3). However, the MR-Egger regression intercept did not

show evidence of multiplicity of family Acidaminococcaceae with

endocarditis (Intercept p = 0.159) (Table 2 and Supplementary Table

S4). MRPRESSO regression did not detect outliers, too. The results of

heterogeneity analysis confirmed the accuracy of the results (Table 2

and Supplementary Table S5). The leave-one-out method further

validated the data robustness (Supplementary Table S6).
3.6 Gut microbiota and UTI

Seven gut microbiota were confirmed to be associated with the

risk of UTI after primary MR analysis. Among them, phylum

Euryarchaeota (OR. 1.07, 95% CI: 1.02–1.13, p = 0.011), class

Bacteroidia (OR: 1.11, 95% CI: 1.00–1.22, p = 0.044), order

Bacteroidales (OR: 1.11, 95% CI: 1.00–1.22, p = 0.044), genus

Intestinibacter (OR: 1.10, 95% CI: 1.00–1.20, p = 0.047), and genus

RuminococcaceaeUCG005 (OR: 1.12, 95% CI: 1.01–1.24, p = 0.025)

were positively associated with the risk of UTI, while family

Defluviitaleaceae (OR: 0.92, 95% CI: 0.84–1.00, p = 0.038) and

genus Defluviitaleaceae UCG011 (OR: 0.90, 95% CI: 0.82–0.99, p =

0.022) were negatively associated with the risk of UTI (Figure 2). No

gut microbiota was causally associated with UTI after BH correction.
3.7 Gut microbiota and appendicitis

Primary MR analysis identified four gut microbiota

associated with the risk of appendicitis. Among them, genus
TABLE 1 Continued

Gut microbiota Outcome SNPs Methods OR (95% CI) p-value pFDR

8 IVW 0.86 (0.78–0.94) 0.002 0.026

8 Simple mode 0.87 (0.71–1.07) 0.235

8 Weighted mode 0.89 (0.73–1.08) 0.273

Order Victivallales Sepsis

8 MR-Egger 0.79 (0.57–1.10) 0.211

8 Weighted median 0.85 (0.75–0.97) 0.015

8 IVW 0.86 (0.78–0.94) 0.002 0.033

8 Simple mode 0.87 (0.71–1.08) 0.243

8 Weighted mode 0.89 (0.73–1.08) 0.266
frontie
MR, Mendelian randomization; SNPs, number of single-nucleotide polymorphism. CI, confidence interval; OR, odds ratio; pFDR, p-value was calculated by the Benjamini–Hochberg method;
LRTI, lower respiratory tract infection; IVW, inverse variance weighted.
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LachnospiraceaeFCS020group (OR: 1.32, 95% CI:1.09–1.61,

p = 0.005) and genus Turicibactera (OR: 1.23, 95% CI: 1.01–1.50,

p = 0.043) were positively associated with the risk of developing

appendicitis, while family Acidaminococcaceae (OR: 0.73, 95% CI:

0.57–0.95, p = 0.017) and genus Eisenbergiella (OR: 0.86, 95% CI:

0.74–1.00, p = 0.045) were negatively associated with the risk of

developing appendicitis (Figure 2). No gut microbiota was causally

associated with appendicitis after BH correction.
3.8 Gut microbiota and cellulitis

Although 10 gut microbiota were associated with the risk of

cellulitis (Figure 2), only genus Clostridiumsensustricto1 was

positively associated with cellulitis after BH correction (OR: 1.30,

95% CI: 1.13–1.55, pFDR = 0.046) (Table 1).

In sensitivity analyses, the WME method showed similar results

to IVW (OR: 1.25, 95% CI: 1.01–1.54, p = 0.036) (Figure 3). The MR-
Frontiers in Immunology 07
Egger regression intercept did not show evidence of multiplicity of

genus Clostridiumsensustricto1 with cellulitis (Intercept p = 0.856)

(Table 2 and Supplementary Table S3). MRPRESSO regression did

not detect outliers. The results of heterogeneity analysis confirmed

the accuracy of the results (Table 2 and Supplementary Table S5).

Meanwhile, leave-one-out results further validated the data

robustness (Supplementary Table S6).
3.9 Gut microbiota and osteomyelitis

Seven gut microbiota were associated with the risk of

osteomyelitis (Figure 2). However, only class Bacilliidae was

positively causally associated with osteomyelitis after BH

correction (OR: 1.36, 95% CI: 1.13–1.64, pFDR = 0.022) (Table 1).

In sensitivity analyses, the WME method showed similar results

to IVW (OR: 1.22, 95% CI: 0.93–1.61, p = 0.151) (Figure 3). The

MR-Egger regression intercept did not show evidence of
B C

D E F

G H

A

FIGURE 3

Scatter plots for the causal association between gut microbiota and infectious diseases. (A) Class Coriobacteriia and LRTI. (B) Order Coriobacteriales
and LRTI. (C) Family Coriobacteriaceae and LRTI. (D) Family Acidaminococcaceae and endocarditis. (E) Genus Clostridiumsensustricto1 and cellulitis.
(F) Class Bacilli and osteomyelitis. (G) Class Lentisphaeria and sepsis. (H) Order Victivallales and sepsis. LRTI, lower respiratory tract infection.
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multiplicity of class Bacilliidae with cellulitis (Intercept p = 0.125)

(Table 2 and Supplementary Table S3). The MRPRESSO regression

did not detect outliers. The results of heterogeneity analysis

confirmed the accuracy of the results (Table 2 and Supplementary

Table S5). Meanwhile, leave-one-out results further validated the

data robustness (Supplementary Table S6).
3.10 Gut microbiota and sepsis

We identified a total of 10 gut microbiota associated with sepsis

(Figure 2); only 2 gut microbiota were associated with sepsis after

BH correction (Table 1). Notably, class Lentisphaeria (OR: 0.86,

95% CI: 0.78–0.94, pFDR = 0.026) and order Victivallales (OR: 0.86,

95% CI: 0.78–0.94, pFDR = 0.033) abundance were negatively

correlated with the risk of developing sepsis.

In the sensitivity analysis, theWMEmethod showed similar results

to IVW (OR: 0.85, 95% CI: 0.75–0.97, p = 0.016 for class Lentisphaeria

and OR: 0.85, 95% CI: 0.75–0.97, p = 0.015 for order Victivallales)

(Figure 3), and the MR-Egger regression intercept showed no evidence
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of pleiotropy (intercept p = 0.125 for class Lentisphaeria and intercept

p = 0.944 for order Victivallales) (Supplementary Table S3).

Heterogeneity analysis confirmed the accuracy of the results (Table 2

and Supplementary Table S5). Leave-one-out results verified data

robustness (Supplementary Table S6).
3.11 Inverse MR analysis

In the reverse MR, infectious disease was used as an exposure

factor, and gut microbiota, which has been associated with

infectious disease, was the outcome factor. The IVW results did

not support a causal relationship between infectious disease and

altered gut microbiota (Supplementary Table 7).
4 Discussion

In this study, TSMR was used to investigate the causal

relationship between the relative abundance of gut microbiota
TABLE 2 Heterogeneity and sensitivity analysis between meaningful gut microbiota and infectious diseases.

Gut microbiota Outcome Methods Q p Intercept p MR-PRESSO

Class Coriobacteriia LRTI

IVW 7.998 0.785 0.001 0.977 0.927

MR-Egger 7.997 0.714

Order Coriobacteriales LRTI

IVW 7.998 0.785 0.001 0.977 0.923

MR-Egger 7.997 0.714

Family Coriobacteriaceae LRTI

IVW 7.998 0.785 0.001 0.977 0.929

MR-Egger 7.997 0.714

Family Acidaminococcaceae Endocarditis

IVW 8.185 0.225 0.130 0.159 0.302

MR-Egger 5.290 0.382

Genus Clostridium sensustricto1 Cellulitis

IVW 5.574 0.473 -0.004 0.856 0.299

MR-Egger 5.534 0.354

Class Bacilli Osteomyelitis

IVW 18.370 0.366 0.030 0.125 0.416

MR-Egger 15.746 0.471

Class Lentisphaeria Sepsis

IVW 5.159 0.641 0.012 0.628 0.403

MR-Egger 4.899 0.557

Order Victivallales Sepsis

IVW 5.159 0.641 0.012 0.628 0.394

MR-Egger 4.899 0.557
MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier; IVW, inverse variance weighted; LRTI, lower respiratory tract infection.
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and infectious diseases. It is currently believed that gut microbiota

influences host metabolic health by producing a range of

metabolites and molecules, including SCFA, bile acids, TMAO,

and LPS. For instance, enterogenic SCFAs can affect the pulmonary

immune environment in the respiratory system. Bacterial

transmission, inflammation, and mortality increased when mice

whose gut microbiota was disrupted by antibiotics developed

pulmonary streptococcal infections. Furthermore, in mice with

disrupted gut microbes, the alveolar macrophage metabolic

pathway was upregulated, and the cellular response was altered,

resulting in a reduced ability to phagocytize S. pneumoniae, causing

a less pronounced immunomodulatory response (32). An

imbalance of gut microbes can lead to damage to the intestinal

wall, or “leaky gut.” A large number of toxins and bacteria enter the

bloodstream through intestinal leakage to specific organs and

tissues, thus triggering a series of inflammatory immune

responses. Acute appendicitis is an intestinal infectious illness.

Pathogenic bacteria multiply and secrete endotoxins and

exotoxins, damaging the mucosal epithelium, forming ulcers, and

allowing bacterial entry into the muscle layer of the appendix via the

ulcerative surface. Increased interstitial pressure in the appendix

wall affects arterial blood flow, resulting in appendicular ischemia

and, in severe cases, infarction and gangrene (33). Infective

endocarditis refers to the inflammation of the inner lining of the

heart valve or ventricle caused by direct infection by bacteria, fungi,

and other microorganisms. Studies have shown that intestinal flora

destroys the intestinal mucosal barrier, and Enterococcus faecalis are

released into the blood to attach to the normal valve and cause

endocarditis (34). The main pathogen of cellulitis is hemolytic

streptococcus, which is caused by external invasion of

subcutaneous tissue or caused by lymphatic and hematologic

infection (35). The interaction between intestinal flora and

susceptibility to recurrent urinary tract infections (rUTI) may

promote intestinal colonization of uropathogenic Escherichia coli

(UPEC) through intestinal flora dysregulation and increase the risk

of bladder infection. Furthermore, intestinal flora has been reported

as an instigator, and its imbalance may cause systemic

inflammation, further worsening the inflammation and symptoms

after bladder infection (36). Gut microbiota can release pro-

inflammatory or anti-inflammatory mediators and cytokines to

regulate systemic bone metabolism through blood circulation.

Studies have shown that gut microbiota disturbances that

upregulate pro-IL1blevels indirectly affect osteomyelitis (37).The

occurrence and development of sepsis are closely related to the

imbalance of gut microbiota. The disturbance of gut microbiota can

induce sepsis through the destruction of intestinal mucosal barrier

function, mucosal immune function, and bacterial translocation. At

the same time, sepsis can also aggravate the imbalance of intestinal

flora, resulting in multiple organ dysfunction (38).

Our study identifies a causal link between gut microbiota and

infectious diseases, particularly that the abundance of class

Coriobacteriia, order Coriobacteriales, and family Coriobacteriaceae

are positively associated with the risk of LRTI. Coriobacteriia can be

found in the mouth, respiratory tract, gastrointestinal tract, and

reproductive tract. In the gut, class Coriobacteriia performs

important functions such as the conversion of bile salts and steroids
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and the activation of dietary polyphenols. However, they can also be

regarded as pathological diseases. According to previous research, the

abundance of class Coriobacteriia can increase the incidence of diseases

such as allergic rhinitis and endometriosis (39, 40). Family

Acidaminococcaceae, genus Clostridiumsensustricto1, and class Bacilli

were positively related to the risk of endocarditis, cellulitis,

and osteomyelitis, respectively. Family Acidaminococcaceae

belongs to strictly anaerobic Gram-negative coccus. Amino acids,

especially glutamate, are a major source of energy (41). Genus

Clostridiumsensustricto1 belongs to Gram-positive bacterium

fusobacterium; in the case of hypoxia, fusobacterium causes serious

infections including tetanus and gas gangrene (42). Class Bacilli can

bind lipopolysaccharide (LPS) and neutralize endotoxin. Therefore, the

microecological preparation prepared by Bacilli has played an

important role in the treatment of intestinal flora disorders and

Candida infection (43). However, Bacillus cereus strains usually

cause local wound and eye infection and systemic diseases (44). At

the same time, the increased abundance of class Lentisphaeria and

order Victivallales decreased the risk of sepsis. Surprisingly,

Lentisphaerae has been reported to be more abundant in cases of

inflammatory bowel disease (45) and less abundant in patients with

sepsis, which is consistent with our conclusions (46). Order

Victivallales has important effects on human infection and immune

development. Specifically, it was found to be positively associated with

clinical response to anti-programmed cell death protein-1 (PD-1)

immunotherapy in patients with advanced cancer (47). In this

regard, we believe that these gut microbiota may play a role in the

occurrence and development of infectious diseases by regulating

immunity. Interestingly, the findings of the reverse MR study do not

support a causal relationship between infectious diseases and changes

in gut microbiota.

One of the strengths of this study is that it established a causal

relationship between alterations in gut microbiota and infectious

diseases, offering candidate gut microbiota for subsequent functional

studies. However, the study also has limitations. First, it only used

European population GWAS data for TSMR analysis, and the

abundance of gut microbiota included herein is limited, GWAS

data of other gut microbiota need to be obtained in the future, to

explore the causal relationship between gut microbiota and infectious

diseases more comprehensively. Second, we did not further validate

these results with public or our own datasets. Third, although TSMR

is an efficient method of causality analysis, animal tests should be

conducted in the future to further verify whether there is a potential

causal relationship between gut microbiota and infectious diseases.

Fourth, there are few studies on these gut flora that have causal

relationship with infectious diseases, and more extensive studies are

needed to support our conclusions in the future. Fifth, the causal

relationship between gut microbiota and infectious diseases is

multifaceted, necessitating the exploration of the etiology and

pathogenesis of infectious diseases from multiple perspectives.

In conclusion, we used TSMR to explore the causal relationship

between gut microbiota and infectious diseases. The results showed

that the abundance of class Coriobacteriia, order Coriobacteriales, and

family Coriobacteriaceae was associated with LRTI risk; family

Acidaminococcaceae, genus Clostridiumsensustricto1, and class Bacilli

were found to be positively related to the risk of endocarditis, cellulitis,
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1304973
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1304973
and osteomyelitis, respectively. At the same time, the increased

abundance of class Lentisphaeria and order Victivallales lowered the

risk of sepsis. These findings elucidate the involvement of gut

microbiota in the development of infectious diseases and offer a

reference value for the treatment of infectious diseases.
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