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ADGRE5-centered Tsurv
model in T cells recognizes
responders to neoadjuvant
cancer immunotherapy
Jian Li †, Zhouwenli Meng †, Zhengqi Cao, Wenqing Lu, Yi Yang,
Ziming Li* and Shun Lu*

Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong University, School of
Medicine, Shanghai, China
Background: Neoadjuvant immunotherapy with anti-programmed death-1

(neo-antiPD1) has revolutionized perioperative methods for improvement of

overall survival (OS), while approaches for major pathologic response patients’

(MPR) recognition along with methods for overcoming non-MPR resistance are

still in urgent need.

Methods: We utilized and integrated publicly-available immune checkpoint

inhibitors regimens (ICIs) single-cell (sc) data as the discovery datasets, and

innovatively developed a cell-communication analysis pipeline, along with a

VIPER-based-SCENIC process, to thoroughly dissect MPR-responding subsets.

Besides, we further employed our own non-small cell lung cancer (NSCLC) ICIs

cohort’s sc data for validation in-silico. Afterward, we resorted to ICIs-resistant

murine models developed by us with multimodal investigation, including bulk-

RNA-sequencing, Chip-sequencing and high-dimensional cytometry by time of

flight (CYTOF) to consolidate our findings in-vivo. To comprehensively explore

mechanisms, we adopted 3D ex-vivo hydrogel models for analysis. Furthermore,

we constructed an ADGRE5-centered Tsurvmodel from our discovery dataset by

machine learning (ML) algorithms for a wide range of tumor types (NSCLC,

melanoma, urothelial cancer, etc.) and verified it in peripheral blood

mononuclear cells (PBMCs) sc datasets.

Results: Through a meta-analysis of multimodal sequential sc sequencing data

from pre-ICIs and post-ICIs, we identified an MPR-expanding T cells meta-

cluster (MPR-E) in the tumor microenvironment (TME), characterized by a stem-

like CD8+ T cluster (survT) with STAT5-ADGRE5 axis enhancement compared to

non-MPR or pre-ICIs TME. Through multi-omics analysis of murine TME, we

further confirmed the existence of survT with silenced function and immune

checkpoints (ICs) in MPR-E. After verification of the STAT5-ADGRE5 axis of survT

in independent ICIs cohorts, an ADGRE5-centered Tsurv model was then

developed through ML for identification of MPR patients pre-ICIs and post-

ICIs, both in TME and PBMCs, which was further verified in pan-cancer

immunotherapy cohorts. Mechanistically, we unveiled ICIs stimulated ADGRE5

upregulation in a STAT5-IL32 dependent manner in a 3D ex-vivo system (3D-
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HYGTIC) developed by us previously, which marked Tsurv with better survival

flexibility, enhanced stemness and potential cytotoxicity within TME.

Conclusion: Our research provides insights into mechanisms underlying MPR in

neo-antiPD1 and a well-performed model for the identification of non-MPR.
KEYWORDS

non-small cell lung cancer, neo-adjuvant immunotherapy therapy, tumor
microenvironment, ScRNA-seq, multimodal
1 Introduction

Sustainable responses to multiple advanced carcinomas

acquired through ICI-based combination therapies have paved

the way toward neo-ICI downstaging for the enlargement of

resectable cancers. Atezolizumab (atezo), nivolumab (nivo) (1),

pembrolizumab (pembro) (2) and durvalumab (durvo) (3) have

all achieved satisfactory MPR rates as monotherapies (4) or in

combination with chemotherapy (chemo) (5) and other

immunotherapies (6). The NEOSTAR trial (1) even demonstrated

MPR rates of up to 50% (11/22) in the nivo plus ipilimumab (ipi)

and CT arms compared to 32.1% (7/22) in the nivo plus

chemotherapy arm. Meanwhile, immunosuppressive macrophages

can potentially lead to resistance to neoadjuvant chemo+ICIs in

recurrent glioblastoma (7). A multicellular community organized

by cDC2 and specific cancer-associated fibroblast (CAF) subtypes

was also associated with Non in neoadjuvant ICIs in pancreatic

ductal adenocarcinoma (PDAC) (8).

Accordingly, distinguishing the MPR from the Non is of clinical

significance, but heterogeneity across the TME in different tumor

types under various treatment regimens has hindered current

investigations considerably, among which the diversity of CD8+

tumor-infiltrating lymphocytes (TILs) might still be the biggest

obstacle. Adrienne et al. demonstrated that tissue-resident memory

CD8+ T cells (CD8+ Trm cells) serve as clonally expanded TILs (T-

E) in response to nivo monotherapy or ipi+nivo combination (2

cycles) in head and neck squamous cell carcinomas (HNSCC) (9),

with hallmark genes ITGAE (CD103) and HOBIT (ZNF683), as

well as ICs such as LAG3, CD223 and TIGIT. In addition, a

signature derived from CD8+ Trm cells predicts a favorable

prognosis in HNSCC patients receiving ICI therapy, the

molecular spectrum of which resembles that of T-E in breast

cancer (BC) patients treated with a 1-cycle pembro (10). In

contrast, precursor-exhausted CD8+ TILs (Tpex) with high

GZMK expression and diminished ICs accumulated within the

responsive (R) TME after chemo+nivo in non-small cell lung cancer

(NSCLC) (11), while the nonresponsive (NR) TME was filled with

exhausted Trm cells instead. Although Caushi et al. investigated

tumor antigen-specific CD8+ TILs in MPRs with resectable early-
02
stage NSCLC after 2 cycles of nivo monotherapy and confirmed a

similar Tpex pattern (12), another study focused on metastatic

NSCLC under chemo+nivo claimed that T-E was dominated by Tex

(13). Such inconsistency could be attributed to the delicate balance

between Tpex and Tex (14), which are intertwined with different

metastatic stages (15), treatment regimens (1), biopsy sampling

timepoints (16) and intrinsic tumor-type features (13).

From another perspective, heterogeneity among CD8+ TILs

responding to ICIs is merely the tip of the iceberg. Correspondingly,

explorations of non-T-cell populations, such as IgG+ plasma B cells

(17), CXCL12+ CAFs (18) and tumor stem cells (CSCs) (19), have

generated various signatures with the potential to predict the ICI

response. However, the sensitivity and accuracy of such models vary

across different tumor types and omics datasets.

Herein, to simplify the research background and control

variables mentioned above, we started with the integration of

longitudinal single-cell transcriptomics sequencing (sc) of NSCLC

CD3+ TILs from patients who underwent 2 cycles of nivo

monotherapy and further leveraged large-scale corroboration

profiling in pan-cancer ICI-sc and bulk RNA sequencing (bulk

RNA-seq) datasets. The MPR-E characterized by survT was found

to be enriched in the MPR cohort compared to the Non or pre,

which was the same as what was observed in the murine TME by

cytometry by time of flight (CYTOF) and bulk-RNA-seq analysis.

We identified adhesion G protein-coupled receptor E5 (ADGRE5)

as a key feature of survT in the MPR by using a cell

communication analysis pipeline that we developed ourselves.

Based on the SCENIC algorithm and Chip-seq analysis, a

STAT5-regulated, IL32-dependent ADGRE5 pathway was

established and verified in our own independent NSCLC neo-

PD1 cohorts. Afterwards, we generated an ADGRE5-centered

Tsurv model with good performance in distinguishing the MPR

from Non among multiple tumor types, pre-ICIs and post-ICIs.

Taking advantage of the 3D hydrogel-based tumor-immune cell

coculture system (3D-HYGTIC) constructed by us (20), we

demonstrated that the PD-1-triggered increase in ADGRE5

expression was dependent upon IL32, which was suppressed by

a STAT5 inhibitor. Finally, concomitant delivery of anti-PD-1 and

ADGRE5+survT rescued the resistance to ICIs to some extent,
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indicating the potential abil i ty of ADGRE5+survT in

clinical settings.
2 Materials and methods

2.1 Datasets

Two NSCLC scRNA-seq cohorts were adopted as discovery sets

(GSE179994 (11) and GSE173351 (12)). All other data, including

PIC-seq (Supplementary Figures S5, 7), validation set for VIPER-

pro, Chip-seq dataset, and datasets for the Tsurv model (section

3.7), are available in Supplementary Table S1, S4.
2.2 Data pre-processing and integration

Seurat R package (v3.2.3) (21) was firstly utilized for pre-

processing of collected datasets as aforementioned, including

filtering, integration, normalization, and Louvain clustering. The

filtering of genes was restricted to mitochondrial genes. Afterward,

“NormalizeData” and “ScaleData” were performed. Then,

“FindVariableFeatures” (method of “vst”) was conducted to select

3,000 highly-variable genes (HVG). HVG went through principal

component analysis (PCA) to identify the top 50 principal

components (PCs). To eliminate batch effects, the calculated PCA

matrix was fed into the ‘RunHarmony’ function (Harmony (v1.0)

(22)) in Seurat using default parameters with patient ID as the batch

key for ten iterations. After Harmony integration, UMAP

visualization and the Shared Nearest Neighbor (SNN) graph

construction were made using PCs 1 to 40 and k=25 nearest

neighbors. Then the Louvain clustering algorithm was used to

cluster cells (function of “FindClusters” with resolution=0.94).

Fixed parameters mentioned above were chosen after the iteration

of a list of an arithmetic progression of parameters to ensure

optimized distinct compartments of sub-clusters.
2.3 Machine-based manual annotation of
cell sub-clusters

scPred combined unbiased feature selection from a reduced-

dimension space with machine learning probability-based

prediction (23). We first built a cell classifier from a dataset with

prior cell type annotation from Zhang et al. Then, we trained it

using the scPred method. Next, we classified cell types using the

scPredict function. SCINA (24) is an algorithm that can

automatically detect and assign cell types. We used prior

knowledge of cell type signatures (25) and set the sensitivity

cutoff to 0.9 while disallowing unknown cell types. According to

these, we first determined the general distribution pattern of naive,

memory, effector, exhausted, proliferated, and regulated cells within

CD4 and CD8; then, a more detailed manual annotation was

performed based on the correlation calculated by the SingleR
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function from SingleR, and we identified subclusters with

reference to the TIL atlas proposed by Zhang et al.
2.4 Genes enrichment analysis

2.4.1 DEGs
scCODE (single-cell Consensus Optimization of Differentially

Expressed gene detection) (26), is an R package to automatically

optimize DE gene detection for each experimental scRNA-seq

dataset proposed by Xin Zou et al. We use two exclusion criteria

to obtain immune-related gene sets (scCODE-irFilter):
1) The gene symbols contain “KRT”, “TMEM”, “HIST”,

“TUB”, “ANK”, “APB”, “BAI”, “BAR”, “BEX”, “BMP”,

“orf”, “FAM”, “LINC”, “MMP”, “MMR”, “RBM”, “SNA”,

“ZNF”, “ZBT”;

2) Biological Process (GO) annotation fromMetascape website

contains “actin”, “nuclea”, “nucleu”, “histone”, “spermine”,

“transport” , “voltage” , “cation” , “development” ,

“transmitter”, “kinetochore”, “wound”, “spermidine”,

“tubulin”, “biological_process”, “synapse”, “micro”,

“DNA”, “RNA”, “neuron”, “axon”, “motor”, “muscle”,

“filament”, “contraction”, “skeletal”, “nerve”, “collagen”,

“vessel”, “rhombomere”, “endothelial”, “embryo”,

“hemidesmosome”, “meiotic”.
Genes differentially expressed in MPR vs Non for cells in MPR-

E were identified using the scCODE package (log2FC>0.2,

FDR<0.05, adjusted by the Benjamini-Hochberg method) and

were filtered with the criteria above, as well as DEGs for Viper.

To identify genes that were differentially expressed among Pre,

Non-MPR, and MPR in mouse CD8T cells, we used the limma,

EdgeR, and Deseq2 methods (log2FC>0.5, FDR<0.05, adjusted by

the Benjamini-Hochberg method). We selected the intersection of

the DEGs identified by all three methods. These DEGs were then

subjected to GO analysis using the clusterProfiler (27) tool. For

constructing a transcriptional regulatory network, we used the up-

regulated DEGs in MPR compared to Non as input into the string

website and visualized the network using the Cytoscape platform.
2.5 Pathway analysis

The pathway activities of C7 and C8 gene sets from MSigDB

were evaluated by irGSEA, a tool having integrated all single cell

rank-based gene set enrichment analysis with “UCell” methods, as

well as the gene sets in section 3.1.

Using the DEGs mentioned above, we executed GO (Gene

Ontology), KEGG (Kyoto Encyclopedia of Genes and Genomes),

and Reactome enrichment analyses using the ‘clusterProfiler’ R

package in section 3.1 and 3.4. We conducted functional annotation

analysis based upon biological processes (BP), molecular function

(MF), and cellular component (CC). Benjamini-Hochberg method
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was used to make adjustments to the p-value, with a p-value <0.05

defined as statistically significant.

To perform gene set enrichment analysis (GSEA), we first

ranked the gene list by log2FC and input it into the pre-ranked

GSEA function in the ‘clusterProfiler’ R package. We used the

DEGs between MPR and Non (section 3.4) and up-regulated

markers from CD8.c05/11/12 (Supplementary Figure S1, 2F) as

the gene set.
2.6 Monocle3

We learned trajectory graphs in CD4 and CD8 TIL separately

with Monocle3 (28), while inheriting cluster discrimination from

Seurat aforementioned, giving each individual cell a pseudotime

value, which represents the distance (relative time) from the original

root defined manually with reference to literature and function of

“get_earliest_principal_node”. Signatures scoring along the order of

cells was calculated by irGSEA introduced above (Supplementary

Table S3) (29). Scores were computed and visualized by

Complexheatmap (30).
2.7 Cell communication analysis pipeline

2.7.1 CellChat
CellChat R package version 1.4.0 (31) was used for L-Rs

investigation within 20 subpopulations identified previously, with the

‘CellChatDB.human’ L-Rs interaction database as reference data.

Separate CellChat objects for pre, Non, and MPR were conducted,

later with comparison analysis to infer differentially enriched L-Rs

interactions using the ‘compareInteractions’ function. Dominant

sender and receiver cells in 2D space were portraited by the

‘netAnalysis_signalingRole_scatter’ function. The strength of L-Rs

interactions was compared using ‘netVisual_heatmap’ function, and

visualized using the ‘netAnalysis_signalingRole_heatmap’ function,

with options set to “all”, “incoming”, and “outgoing”. To directly

compare L-Rs interactions we used the ‘RankNet’ function. To visualize

interactions among subpopulations, we used ‘netVisual_aggregate’

function with the ‘layout = “circle”‘ option. Finally, for the specific

pathway, we used the ‘netAnalysis_signalingRole_network’ function to

show interaction patterns in different groups.

To perform CellChat on VIPER, we calculated the minimum

value of each gene in the normalized matrix from VIPER, added the

absolute minimum value to the entire matrix, except for zero values,

and used this as the input data for CellChat.
2.7.2 CellphoneDB
To investigate L-Rs among clusters from each meta-cluster, we

analyzed L–Rs using CellphoneDB (v.3.1.0) and database (v4.0.0)

(32). L-Rs appeared within over 10% of cells of certain clusters were

extracted for illustration. We focused on L-Rs having consistent

performances in Cellchat and NicheNet, then compared differences

between log (mean (Ligand)) and log (mean (Receptor)) in MPR

versus Non.
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2.8 NicheNet

To focus on intercellular interactions, we performed the

Differential NicheNet (33), which is an extension of the default

NicheNet, to improve the performance of resolutions for comparing

between different niches and better predicting niche-specific L-Rs

pairs. We used DEGs (pre-ICIs versus post-ICIs) as targets to figure

out what ligands from CD4 T cells in MPR-E and PD1-R potentially

influenced CD8.c05/11/12. We showed the prioritization scores of

the top 50 ligands (as for their highest scoring receptor) (section

3.2). in the post niche (score averaged over the 3 analyses), and of all

the postcondition L-Rs pairs with a prioritization score ≥ the score

of the pre. DEGs of cd8.c05/11/12 between post and pre were

selected as our interested gene sets filtered by lfc_cutoff = 0.15,

expression_pct = 0.1 and pvalue < 0.05 as commended.
2.9 SCENIC

Based on the single-cell RNA-seq results, we used the SCENIC

or pySCENIC (34) to infer the regulatory network of TFs based

upon old version databases (https://resources.aertslab.org/cistarget/

databases/old/). Each regulatory network was considered a regulon.

By analyzing the regulon activity in each cell type, we identified

differences in the regulatory activity of TFs among sub-clusters, and

then used GENIE3 to target filtered genes with significance. Finally,

Rcistarget was adopted for determining regulons based on the

StarGet dataset, with AUCell to quantify the activity of regulons.
2.10 VIPER

The regulatory network in this study was reverse-engineered

using the ARACNe-AP algorithm (35). We generated networks for

each patient’s immune cells from each cluster and integrated the

networks. The relative activity of each protein represented in the

network was inferred using the VIPER algorithm v1.26.0 (36),

similar to the master regulator inference algorithm (MARINA)

(37), which uses the MR targets inferred by the ARACNe algorithm.

In addition to calculating the enrichment of ARACNe-predicted

targets in signatures, statistical significance for VIPER-pro filtering,

including p-value and normalized enrichment score (NES), was

estimated by comparison to a null model generated by permuting

the samples uniformly at random 1,000 times.
2.11 Chip-seq analysis

NCBI site(ftp://ftp.ncbi.nlm.nih.gov/biosample) was used for

downloading datasets (Supplementary Table S4. database) to

construct a Chip-seq database. Sequencing data in every SRX

were organized into the format of fastq (method of “fastq-dump”

in SRA Toolkit (ver.2.3.0) by default settings. Produced fastq data

were aligned afterward using Bowtie2 (38) (ver.2.2.2) with default

parameters and then integrated to make our Chip-seq database.
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Reads underwent alignments to hg38 (H. sapiens) or mm9 (M.

musculus). Genome regions (BED) of ADGRE5 and random

permutation of ADGRE5 were counted with the “intersect”

function within BEDTools2 (39) (ver.2.23.0). Two-tailed Fisher’s

test was adopted for P-value calculation between them (null

hypothesis meaning same proportion at peak-call of the two

datasets). peak-caller MACS2 (40) (v2.2.7) was used to determine

thresholds for statistical significance values. Significantly enriched

TFs responsible for ADGRE5 regulation were depicted

(Supplementary Table S4. ADGRE5).
2.12 Proteomics analysis

The raw mass spectrometric files were proceeded by MaxQuant

computational platform (41) (version 2.4.0.0) using sequencing data

from Uniprot-Swiss-prot database (FDR < 1% for either peptides or

proteins). Potential contaminants were then filtered, as well as for

reverse hits and those that were conclusively identified by site. Log2

scale transformation was conducted for LFQ values, then pooling of

three technical replicates and the average was taken, and proteins

were filtered for at least three valid values in any of the experimental

groups that existed. For missing values, imputation was performed

by a normal distribution (width =0.4; shift 1.6), based upon the

assumption of setting expression of missing proteins adjacent to the

detection limit. We then used the ANOVA function (Perseus) with

FDR <0.05 and S0 of0.4 to find out feature proteins that marked

prominent differences among various CD8+ T cells sub-clusters.

Finally, a Protein ruler in Perseus was adopted to calculate protein

copy numbers per cell through standardization to histone MS

signaling on the whole.
2.13 Construction of Tsurv model

We developed a signature discovery module (section 3.7) to

identify signatures capable of ICIs therapy response identification

and ICIs prognosis prediction.

To obtain genes that can best predict the ICB therapy response

status, we first collected genes up-regulated in MPR in all analysis

pipelines: scCODE, Monocle3, Cell-communication pipeline,

VIPER and SCENIC. Taking advantage of the PIC dataset

(Supplementary Table S1. PIC_bulk_RNA_seq), we then adopt

batch operation of ROC analyses for PR/PD classification and OS

prediction analyses for each gene separately and simultaneously,

and only kept those with significance (P-value<0.05). To be noticed,

we separated PIC datasets according to cancer types, and then

integrated sequencing data as well as patients’ prognosis

information in a cancer-type-specific manner. For example, with

all melanoma-derived data integrated, we then further dissected it

into training sets and validation sets, while all the other cancer types

were handled as validation datasets. Meanwhile, for sc-sequencing

datasets (Supplementary Table S1. single_cell), we utilized them as

independent validation datasets separately without integration.

To construct the Tsurv signature, feature selection algorithms

(particle swarm algorithm (PSA) and recursive feature elimination
Frontiers in Immunology 05
(RFE)) were applied. In addition, machine learning algorithms

(logistic regression (LR), random forest (RF) and support vector

machine (SVM)) were adopted for label classification. We traversed

all permutations of feature selection algorithms and classification

algorithms aforementioned to determine the optimal combination.

RFE combined with LR was selected because of their optimal

performance in cross-validations (4-, 6-, 8-, 10-fold).
2.14 CYTOF

Murine TIL were sorted by MACS (Miltenyi Biotec, Cat: 130-

110-618) as has been suggested in bio-protocol. Cells were

restimulated with 50ngml−1 phorbol 12-myristate 13-acetate

(Sigma–Aldrich) and 500ngml−1 ionomycin (Sigma–Aldrich) in

the presence of 1× Brefeldin A (BD Biosciences) for 4h at 37°C.

3×106 Cells per condition (pre, Non, MPR) were stained with 100mL
of 250nM cisplatin (Fluidigm) for 5min on ice, and then incubated

in Fc receptor blocking solution before surface antibodies staining

(30 mins on ice). Cells were then fixed in 200mL of intercalation

solution (Maxpar Fix and Perm Buffer containing 250nM 191/

193Ir, Fluidigm) overnight. After fixation, cells were stained with

intracellular antibodies cocktail for 30 min on ice. After adding 20%

EQ beads (Fluidigm), cells were acquired on a mass cytometer

(Helios, Fluidigm).

Antibodies were acquired from eBioscience, Biolegend, R&D

systems and BD Biosciences (Supplementary Table S2). Labeling of

antibodies by indicated metal tag was performed through the

MaxPAR antibody Labelling kit (Fluidigm). The optimal

concentration was decided, then a doublet-filtering scheme was

adopted for debarcoding from raw data. Afterward, bead

normalization method was used to control batch effects, and

debris, doublets and dead cells were removed to get single living

cells. CATALYST R package (1.24.0) was used for NRS calculation,

FlowSOM-based cell population identification, as well as umap-

based dimensional reduction visualization.
2.15 qRT-PCR

CD8+ T cells in TILs were sorted by beads (StemCell). Trizol

(Thermo Fisher) was used to extract RNA (2*10^6 CD8+ T cells).

PrimeScript RT reagent Kit (Takara Bio) was adopted for reverse

transcription reactions. Afterward, TB Green Premix Ex Taq II

(Takara Bio) was adopted for quantifying genes from cDNA.

Amplification of Genes (primers in Supplementary Table S6) was

conducted by >40 cycles at 95C for 15 s, and then 60C for 15 s to

finally 72C for 45 s. Normalization of genes to Gadph was

conducted and then comparisons among different groups (MPR,

Non, pre) were performed.
2.16 Cell culture

The Lewis lung carcinoma cell line (LLC) was used for the

murine tumor model and 3D HYGTIC model. LLC was purchased
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from the Shanghai Institute for Biological Sciences Chinese

Academy of Sciences (Shanghai, China). Complete medium for

LLC was prepared as: Dulbecco’s modified eagle medium (DMEM)

with high glucose (Hyclone, Cat: SH30027.02) with heat-inactivated

10% fetal bovine serum (FBS, Gemini, Cat: SH3015103) and 1%

penicillin/streptomycin (P/S, GIBCO, Cat No 15140-122) at 37C

(5% CO2 atmosphere).
2.17 Anti-PD-1 resistant murine models

LLC were injected subcutaneously (s.c.) into 6 to 8-week-old

mice (3*10^5 LLC for each). Volumes of tumors were measured

starting from day 7 and were calculated by length x width^2)/2.

Anti-mouse CD279 (RMP1-14, BioXcell) (200 mg/100 mL) were

injected from day 6 every day intraperitoneal (i.p.), with tumor

volume monitored. Mice in the control group were treated with

200mg/100 mL isotype IgG2 (i.p.). For ACT therapy, mice in the

MPR group (n:5) (determined by monitoring tumor volume

through two paired t-tests) were sacrificed. Tumor specimens

were digested and handled by Percoll gradient centrifugation to

get TIL. KLRD1neg ADGRE5+ CD8+ TIL was sorted (survT) (BD

Fortessa AriaIII, BD Biosciences), with the other cells collected as

control group cells, and survT and control group cells were

cryopreserved till use. Antibodies for sorting were in

Supplementary Table S2 sheet 2. From day16 to day21, survT (to

Non-survT group mice, n=3) or control group cells (to Non group

mice, n=3) were injected intratumorally together with anti-mouse

CD279 as aforementioned, with mice sacrificed at day21 (tumor

volume <2000mm3).
2.18 bulk-RNA-seq analysis

CD8+ T cells in TIL were sorted by MACS beads (StemCell).

The total RNA of purified CD8+ T cells was extracted with Trizol

(ThermoFisher). RNA quality was assessed on an Agilent 2100

Bioanalyzer (Agilent Technologies). Eukaryotic mRNA was

enriched by Oligo(dT) beads. Enriched mRNA was reversely

transcribed into cDNA by NEBNext Ultra RNA Library Prep Kit

for Illumina (Cat: 7530). After end-repairing, A-base-adding and

ligating of cDNA fragments to adapters, PCR-amplified cDNA was

sequenced with Il lumina Novaseq6000 (Gene Denovo

Biotechnology Co.). Afterward, Fastqc was used for quality

control, and GRCm39 from Ensemble release 107 using STAR

(v.2.5.2b) was adopted for reads mapping. We first computed DEG

between MPR and Non with DEseq2, EdgeR and limma and

conducted an intersection to get DEG_up and DEG_down. DEGs

along the T cells differentiation trajectory from Monaco et al.

(https://www.proteinatlas.org/) were recorded. We grouped them

into Tn-Teff or Tex due to their relative expression (scaling to 0-1

by “minmax” algorithm among clusters) (HPA). At the same time,

we assessed their prognostic value in PIC (Supplementary Table S1)

and divided them into bad prognosis, not significant and good

prognosis groups based on their HR by Cox proportional hazards

regression models and P value by log-rank test (PIC). Then we used
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the DEG_up for GSEA analysis across pre and MPR or Non.

Afterward, we built the PPI signature by developing the PPI

networks with the intersection genes from DEG_up, PIC, HPA,

and ADGRE5-CD55 axis on the STRING website (https://string-

db.org/).
2.19 Flow cytometry and sorting

2.19.1 Flow cytometry
Mouse TILs or splenocytes, as well as human TIL and PBMC, were

stained with Zombie Violet (Biolegend) viability dye solution (1:1000)

with specific antibodies, incubated at 4°C for 38 min, washed and fixed

before intracellular staining. Stimulation for intracellular staining was

conducted as in CYTOF aforementioned by Cyto-Fast™ Fix/Perm

Buffer Set (Biolegend, Cat: 426803). For intra-nuclear TFs staining,

True-Nuclear™ Transcription Factor Buffer Set (Biolegend, Cat:

424401) was used. Antibodies in flow cytometry as well as for

sorting were listed in Supplementary Table S2. BD LSR Fortessa X20

(Beckton Dickson) was the facility for the collection of stained cells. Fcs

data were processed through FlowJo (10.0.1).

2.19.2 Sorting
CD45+ TIL or CD8+ TIL for CYTOF, bulk-RNA-seq, flow

cytometry or 3D HYGTIC experiments were sorted by MACS

beads (Stem cell) or by flow cytometry sorting, after confirming

its purity by flow cytometric analysis. Cells (diluted in FACS)

density was counted by hemacytometer manually. ≥ 10x106 cells

were centrifuged, and then resuspended with specific antibodies

(Supplementary Table S2) and incubated at RT for 15 minutes in

dark for sorting. Using BD FACS Aria III (BD Biosciences), ≥1x106

cells for each condition would be sorted. Sorted cells were washed

with 0.25% BSA and counted.
2.20 Immune cells proliferation assay

Lyophilized CFSE dye (Biolegend, cat: 423801) was prepared to

5mM stocking solution, then a 1:1,000 dilution ratio was adopted

for working solution immediately before use. Cells (1*10^7 cells/

ml) sorted above-mentioned or dissociated from 3D HYGTIC were

centrifuged (2,000 rpm), resuspended, and incubated in CFSE

dyeing solution further at room temperature in dark for 20 min.

After quenching with FACS 5 times, cells were collected for further

staining or loaded for flow cytometry immediately.
2.21 Immunofluorescence

Fresh tumor tissues were fixed and dehydrated as has been

proposed. For mIF, tumor sections from the following

independent ICI cohort (2 patients for MPR, Non, and pre

respectively) were collected. OCT embedding agent (Servicebio)

was used to embed tissues before staining. Briefly, 3% BSA

(diluted in PBS) was adopted for blocking non-specific binding,

then anti-human ADGRE5 Ab (1:150) (Absin, Cat: abs132702)
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was incubated at 4°C overnight. PBS (pH 7.4) washing of slides 3

times was conducted. Slides were then incubated with Cy5-goat

anti-rabbit (1:300) for 70 min in dark (room temperature). After

washing by PBS, anti-human CD8a Ab (1:300, Absin, Co:

abs158658) staining was performed. Then counterstain of the

DAPI solution (1:4000) was performed. Leica Sp8 laser scanning

confocal microscope and ImageJ software were used for imaging

and image-data processing respectively.
2.22 Dissociation of human NSCLC
tumor specimen

Single-cell suspensions from collected biopsies were obtained

according to previously published literatures (16). Briefly, biopsies

or surgery fragments (diagnosed by pathologists according to intra-

operative frozen section) were processed by mechanical dissection

thoroughly then in enzymatic cocktail at 37C in a shaker (45rpm). 2

patients for each group (MPR, Non, pre) were used for single cell

dissociation, and patients’ tissues within the same group were

gathered together to obtain enough cells for 3D HYGTIC and sc

sequencing. Enzymatic cocktail was configured from human tumor

dissociation kit (Miltenyi Biotec, Cat: 130-095-929). 100 mm

strainer was first used to achieve cell bulks (patient-derived tumor

fragments (PDTF), meaning dozens of cells gathered together) for

the convenience of 3D HYGTIC construction. Then 40um strainer

was used to obtain single-cell suspension. Percoll gradient (GE

Healthcare) centrifuge and subsequent MACS were adopted for

further enrichment of CD45+ TIL for downstream 5’ single-cell

RNA-seq.
2.23 sc-RNA-sequencing for the
independent ICI cohort

The sc-RNA sequencing was performed using Chromium

Single Cell Reagent Kits (v3) (10x Genomics). CD45+ TIL in the

former step was kept on ice for <4h, and library construction was

performed within 6h from the extraction of the tumor specimen.

10x Chromium Next GEM Chip K was loaded with cells from the

six samples (20,000 cells per sample, for every condition: MPR,

Non, pre, there were 2 samples pooled together) respectively. The

reverse transcription and cDNA amplification were performed.

Qsep (BiOptic) and Qubit HS dsDNA kit (ThermoFisher) were

adopted for measurement of size distribution and DNA

concentration respectively. Expression libraries were constructed,

and sequenced by Illumina Novaseq, obtaining >55,000 reads per

cell for every expression library.
2.24 3D HYGTIC model construction

3D HYGTIC model was constructed as has been previously

described (20). Briefly, PDTF from human tumor fragments, or

tumor cells sorted from murine TME (from cell clumps below

Percoll layer) by tumor isolation kit (Miltenyi Biotec, Cat: 130-110-
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187) (MDTF), were collected for 3D tumor-microspheres

construction. 5ml GelMA-PEO mixture containing 40,000 cells/ml
was pipetted to make microspheres in BIOFLOAT™ 96-well plate

(faCellitate, Cat: F202003), and was cultured and grown till day 7 in

organoid culture medium. TIL was separated and T cells were

isolated as aforementioned. Isolated T cells were cultured in T cells

expanding medium (TEM, which was prepared as follows:

ImmunoCult-XF T Cell Expansion Medium (10981, Stemcell)

supplemented with 1000 IU/mL Recombinant IL-2 (human: 200-

02; mice: 212-12; PeproTech). 0.5×106 expanded T cells after 2 days

culturing in TEM were added to each 3D tumor-microsphere

containing PDTF or MDTF and set up as 3D-HYGTIC, with

50ng/ml mIL-2 and no CD3/28 addition. For sorted TIL above-

mentioned (Supplementary Table S2 sheet2), 3D-HYGTIC was

constructed without TIL expansion to exclude its interference on

proliferation monitoring by Ki67 and CFSE.
3 Results

3.1 Meta-cluster MPR-E expansion for MPR
images compared to non or pre-images

In the TME, which is a complex ecological biosystem, multiple

cell types, including CD36+ CAFs (42), plasma cells (17), and cancer

stem cells (CSCs) (19), interact with each other and influence ICIs

prognosis (43). Since T cells are major targets of neo-antiPD1 (44),

we used sorted T-cell scRNA-seq data from the NSCLC TME from

Zhang et al. (11) and Caushi et al. (12). Considering that post-ICI

specimens were obtained after 2 cycles of mono-nivolumab

treatment, we were able to strictly exclude other covariations,

such as tumor types (16), metastases (45, 46), ICI combination

strategies (47), and ICI cycles, which were all correlated with

heterogeneous changes in TILs. After filtering doublets and red

blood cells, 164,754 CD3+ T cells were collected from 23 MPR

samples, 34 non-MPR samples and 33 pre-ICI samples. To enable a

reasonable comparison between MPRs (33,432 cells) and non-

MPRs (117,284 cells), we sampled 45% of the non-MPRs.

With the guidance of the Scpred (23) and SCINA (24) clustering

methods (Supplementary Figure S1A, S1B, methods), we manually

identified 20 subtypes of CD3+ TILs (Figures 1A, D) with reference

to the atlas of TILs (TIL atlas) proposed by Zhang et al. (48) Certain

subtypes were well recognized due to obvious marker

overexpression, such as FOXP3 in TNFRSF9+ Tregs, ISG15 in

ISG+ Tregs, NKG7 in CD8.c08 (KIR+EOMES+NK-like), and

MKI67 and NME1 in NME1+ CD8.c17 (NME+T) (Supplementary

Figure S1D). Since exclusive marker detection was rather difficult

for other subtypes, we performed correlation analysis with the TIL

atlas (Supplementary Figure S1H) and successfully identified the

other clusters, among which a transition from stem-like CD4.c01,

(T naïve) marked by KLF2 and SELL, to exhausted CD4.c16

(IL21+Tfh) and CD4.c17, (IFNG+Tfh/Th1) marked by SNX9 and

TOX2, was observed (Figure 1D, Supplementary Figure S1C), as

was the transition of GZMK to GZMB expression from CD8.c05

(GZMK+ early Tem) to CD8.c12 (terminal Tex) (Supplementary

Figures S1E–G, S2A).
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We hypothesized that the MPR inherited certain subcluster

expansions compared to those in the non-MPR (Non) and pre-ICI

(pre) groups, thus revealing the cluster distribution in each group

(Figure 1B). Indeed, CD4.c16, CD4.c17, CD8.c05, CD8.c11 and

CD8.c12 experienced significant gradual expansions from pre to

Non groups and then toMPR and were subsequently grouped into a

meta-cluster named MPR-E. Those with the most obvious

fluctuation in Non against pre, but that showed no change in the

MPR, were indicated as the PD1-responding (PD1-R) meta-cluster,

which included CD8.c10 (ZHF683+CXCR6+Trm) and CD4.c14

(CCR6+ Th17), and those within a downward trend were

classified as the MPR shrinking meta-cluster (MPR-S), which

included CD4.c01 (Tn) and CD8.c08 (KIR+EOMES+NK-like).

Other subpopulations, such as CD8.c15 (ISG+CD8+T), were

excluded from further investigation due to their limited

sizes (Figure 1C).

To decipher the functional signatures of these meta-clusters, we

performed functional annotation via irGSEA (method) on all

MSigDB C7 and C8 6,049 pathways (49) (Supplementary Figures

S4A, B). C8, as a sc-derived annotation database, was intended to

elucidate cluster definition. CD4.c16 appeared to be a travaglini-

lung-cd4-memory-effector-t-cell analog, and CD4.c17 was more

likely to be a travaglini-lung-cd4-naïve-t-cell analog (Figure 1E

and Supplementary Figure S4A). CD8.c11 and CD8.c12 cells

exhibited fetal-like lymphoid profiles, which indicated their

gradually increasing tolerance phenotypes (50–52), which was in

accordance with the upregulation of TIGIT, PDCD1 and LAG3. On

the other hand, CD8.c05 showed no obvious correlation with any

cluster in C8. We further profiled the immunological pathways

from C7 (Figure 1F and Supplementary Figure S4B). All other meta-

clusters were associated with certain functional enrichment

pathways. However, compared with those in CD8.c11 and

CD8.c12, CD8.c05 in MPR-E merely manifested moderate

gse26495-naïve-vs.-pd1-high-cd8-t-cell-dn enrichment, suggesting

that its functional profile is rather obscure.

We then selected scCODE (26) to determine the MPR-E

characteristics in an attempt to capture features of CD8.c05 cells.

The MPR-E subgroup was enriched in cytokine- and chemokine-

mediated cytotoxic i ty pathways , as wel l as ce l l−ce l l

immunoregulatory interactions (Figure 1H). CD4.c16 and

CD8.c11 both showed upregulation of CXCL13 in the MPR

(Figure 1G), which was in line with the indispensable role of

CXCL13 in identifying tumor-reactive CD8+ expanding T-cell

clones in multiple cancer types (16, 53). Moreover, the expression

of PER1 and KLRB1 in CD4.c17 cells, as well as that of HLA-DQA1

and KIR2DL4 in CD8.c12 cells (Figure 1G), indicated significantly

enhanced cytotoxicity of CD4.c17 and CD8.c12. However, in

addition to the widely accepted stemness-related markers CST7,

CCR7 and TCF7, other cluster-specific markers of CD8.c05, such as

SIPR1 and ENC1 (Figure 1I, Supplementary Figure S2A), as well as

MPR-enriched DEGs such as PTGER4 and SRSF2 (Figure 1G), still

lacked certain research related to their roles in tumor immunology,

which made the features of CD8.c05 even more unclear.
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To further clarify trajectories of specific clusters in MPR-E, we

conducted a Monocle3 analysis. In accordance with our analysis

above, from CD4.c16 to CD4.c17, the differentiation trajectory

oriented toward CD4.c01 was accompanied by gradually

enhanced expression of antigen-presenting molecules such as

CD74, DUSP4 and HLA-A, along with decreased expression of

SELL, IL7R and CCR7 (Supplementary Figures S2B, S3A, B). We

further identified functional modules associated with the CD4+ T

cells differential trajectory, among which modules 22 and 41 were

the most upregulated in CD4.c16 and CD4.c17 cells, respectively

(Supplementary Figures S2C, D). LAG3 CXCL13 and CXCR5, the

chemokine receptor responsible for TIL retention in the TME (54,

55), and IL21, a cytokine recently reported to be involved in Tfh

cytotoxicity in neoadjuvant NSCLC immunotherapy (2), were

enriched in module 41, demonstrating that neo-PD1-pulsed

terminal differentiation of CD4+ T cells is accompanied by

enhanced tumor-killing potential.

In contrast, Monocle3 had two origins for CD8+ TILs: CD8.c05

and CD8.c10. ZNF683, the core marker of CD8.c10 (Supplementary

Figure S1I), was recently proven to serve as a marker of responding

Trm cells following ICI therapy in HNSCC (9) and Richter syndrome

(56) and is indeed located at relatively early differentiation stages in

TIL trajectories (48) (Figure 1J). Additionally, the differentiation

pathway prevailed along with TUB4A vanishing, PRF1 and GZMH

enhancing for both origins (Supplementary Figures S1F, G). For the

trajectory of CD8.c05 to CD8.c11 and CD8.c12, specific distinct

features were observed in CD8.c11 compared to those in CD8.c12

(Figure 1K). Two exhaustion signatures, one with CD52, CCL5 and

LSP1 (Figure 1L) and the other with CXCL13, ENTPD1 and LAYN

(Figure 1M), served as characteristics of CD8.c11 and CD8.c12,

respectively, indicating varying degrees of activation. The CD8.c11

signature increased earlier along the trajectory (Figure 1N) and

decayed rapidly in CD8.c12 cells, followed by a steep increase in

the CD8.c12 signature. Indeed, we identified an effector-exhaustion

mixture state signature (Miller et al. (57)) enriched in CD8.c11 via a

meta-analysis of literature-reported signatures (Supplementary Table

S3), while a burned-out state of CD8.c12 characterized by

Braun_et_al_terminal_differentiation and Braun_et_al_Inhibitory

signatures (58) was observed (Figure 1O). This further confirmed

the rationality of a more significant expansion of CD8.c11 than

CD8.c12 in MPR-E.

As has been verified, CD4.c16, CD4.c17, CD8.c11 and CD8.c12

can be categorized into transitional states according to both

functional features (Azizi_et_al_Pro_inflADMmatory signature:

CCL4, CCL5, PRF1 and IFNG, etc.) and exhaustion features

(Azizi_et_al_Immunoselective signature: LGALS1, IGTGAE, CD5

and ENTPD1, etc. (59)), with CD8.c12 and CD4.c16 being relatively

more exhausted (Figure 1O). In contrast, CD8.c05 was located at

the origin of CD8+ TIL differentiation and was enriched with the

Miller_et_al_progenitor_exh signature (Figure 1O); however, it was

still difficult to acquire sophisticated functional annotations through

the Molecular Signatures Database (MSigDB), scCODE marker

identification, or Monocle3 trajectory analysis.
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FIGURE 1

Meta-cluster MPR-E expanding in MPR compared to Non or pre. (A) Uniform manifold approximation and projection (UMAP) of cell clusters, patients
ID and status from integrated scRNA-seq data of 164,754 sorted CD3+ T cells, which are further defined in (F). (B) Comparison of the frequency of
20 clusters respectively in all CD4+ T cells and CD8+ T cells from pre, Non, MPR. Statistical testing between any pair of two group by two-sided t-
test and Kruskal-Wallis’s rank sum test for three groups (bottom) (*p < 0.05, **p < 0.01, ***p < 0.001). (C) Definitions of the four meta-clusters for
CD3+ T cells. MPR-E, MPR-expanding. PD1-R, PD1-responding. MPR-S, MPR-shrinking. (D) Heat map of selected MSigDB C8 gene sets scores in
each cluster. (E) Heat map of selected MSigDB C7 gene sets scores in each cluster. (F) Dot plot of differentially expressed genes found in each
cluster. (G) Volcano plot showing differentially expressed genes between MPR and Non from MPR-E clusters; each colored dot denoting an
individual gene with adjusted P value < 0.05 (scCODE) and |log (Fold change)≥ 0.2. (H) Pathway enrichment analysis of DEGs from MPR-E meta
cluster between MPR and Non in KEGG, GO and REACTOME database and pathways with q-value < 0.01 were shown here. (I) UMAP feature plots
showing the expression levels of certain genes. (J) 60,939 CD8+ T cells colored by pseudotime inferred by Monocle3. (K–N). The distribution of
CD8+ T cells along with the pseudotime (upper panel) and fitting curve for the expression levels of certain signature genes along the pseudotime
(lower panel). (O). Heat map of CD8+ T cells related signatures scores per cell in CD8.c05/06/11/12 along the pseudo-time. Select genes in each
genesets are shown.
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FIGURE 2

ADGRE5 pathway enhancement from Non to MPR in MPR-E. (A) Summary of cell-communication pipeline composed of three methods. (B) The
total number (left) or strength (right) of CellChat-inferred interactions among the population in each group (light blue: pre, blue: Non, red: MPR). (C)
Strength of significant ligand-receptor pairs between any pair of two meta-clusters. The edge width is proportional to the indicated strength of
ligand-receptor pairs. (D) Comparing the outgoing and incoming interaction strength in 2D space in each group. Each dot denotes an individual
cluster colored by the meta-cluster group. (E) Heat map of interaction strength comparisons of significant ligand-receptor pairs between any pair of
two clusters. Red means upregulated in Non(upper) and MPR (down). (F) Ligands with top 50 prioritization scores (50-ligands) expression in CD4+T
cells in MPR-E and PD1-R meta-clusters post and pre (left). The outcome of NicheNet’s ligand activity prediction and scaled ligand activity on DEGs
upregulated in CD8.c05 within post-ICIs compared to pre-ICIs (middle). Scaled expression of target genes in CD8.c05 (right upper) and NicheNet’s
ligand–target matrix denoting the regulatory potential between 50 ligands and target genes with meta-pathways annotation on the right (right
lower). (G) The outgoing signaling patterns between CellChat curated pathways and defined cell clusters. The interaction strength reflects the sum
of all normalized interactions in each pathway. The top bar graph and the right one summarize the interaction strength per cell type or per pathway
respectively. The meta-pathways and meta-clusters were annotated on the left and bottom. (H) Select signaling pathways with significant
differences in the overall information flow of MPR-E between specific pairs of pre, Non and MPR. (I) Scaled contribution of each pathway within
MPR-E in pre, Non and MPR. (J) Scaled contribution of each pathway within MPR-E in pre, Non and MPR. (K) The inferred TNF signaling network
among the cell populations represented by the nodes. Subclusters’ color distribution as in G, edge width representing the pathway-specific
interaction strength. (L) Same as K for ADGRE5 pathway. (M) Dot plots showing expression of genes between MPR and Non coding for interacting
ligand–receptor proteins (CellPhoneDBV3) in agreement with CellChat. (N) Heatmap showing the relative importance of each cell type based on the
computed four network centrality measures of the ADGRE5 signaling network. (O) Integrated network of 19 signal mediators, 7 irTFs and ADGRE5-
CD55 pathway from NicheNet.
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3.2 ADGRE5 pathway enhancement from
non-to-MPR-E

Since Zada et al. successfully identified mregDC as an

indispensable cluster for refueling CXCL13+PD1+ CD4+ Th1

through PIC-seq (60), we wondered whether cell-communication
Frontiers in Immunology 11
analysis could shed light on the dissection of the MPR-E meta-

cluster, especially for CD8.c05.

Thus, to systematically explore the different aspects of cell

communication between various meta-clusters longitudinally, an

integrated cell-communication analysis pipeline composed of three

methods, CellChat (31), Nichenet (61) and CellPhoneDBV3 (62),
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FIGURE 3

Multimodal analysis revealing STAT5 regulation of ADGRE5. (A) Heat map of DEGs found in clusters in MPR-E with VIPER. (B) Volcano plot showing
DEGs between MPR and Non from MPR-E clusters with VIPER. Each colored dot denoting an individual gene with adjusted P value < 0.05 (scCODE)
and |log (Fold change)≥ 0.2. (C) UMAP of MPR-E clusters from VIPER; n = 50,037 cells. (D) Violin plots showing normalized expression of selected
genes in VIPER for MPR-E clusters. (E) Relationship of 27 markers of CD8.c05/11/12 from VIPER versus corresponding markers calculated from sc
count data through scCODE; fitting with a linear regression model. P values were determined by a two-sided linear regression t-test. (F) SCENIC
results on CD8.c05/11 with VIPER-pro after filtering; TFs were ranked by the expression levels in MPR. (G) Comparison and overlap of TFs from
CD8.c05/11/12 (left) and the motif of 3 irTFs (middle) and expression of them in CD8.c05/11/12 in pre, Non and MPR (right). n = 36,412 cells. (H)
Pearson correlation coefficients of ADGRE5 with all the other genes in pan-cancer TCGA database; ranked by coefficients value. P values were
determined by a two-sided linear regression t-test. (I) TFs that could upregulate ADGRE5 or not from KnockTF database. (J) Meta-analysis of CHIP-
seq datasets involving ADGRE5 from different cell types (data index in Supplementary Table S4). (K) Heat map of genes’ binding scores in STAT5
CHIP-seq with different treatments (calculated through MACS2). (L) Genes that were found significantly (P-adj<0.01) up- or downregulated mutually
between STAT5AN642H or STAT5BS710F vs. WT mice in SP8 cells (CD8 single-positive T cells). (M) Heatmap showing STAT5-ADGRE5 axis among
different types of CD8+ T cells from two independent proteomics datasets, shown as averaged scaled gene expression for each sample.
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FIGURE 4

survT sub-cluster in MPR-E mapped across human to murine TME. (A) Workflow for sample processing and CYTOF or bulk-RNA-seq and 3D-
HYGTIC construction from murine ICI-resistance model (method). (B) UMAP of cell clusters from integrated CYTOF of sorted 318,324 CD45+ TILs.
(C) Bar plots of cluster distribution among cells from Pre, Non or MPR. (D) Heat map showing functional markers and ICs expression in murine MPR-
E and PD1-R. The top smooth lines fit the sum of average expression of functional markers and ICs in each condition. (E) Tumor picture for each
group (n = 5 mice/group). (F) UMAP plots showing the expression levels of certain signature genes. (G) CD62L and RUNX3 expression in MPR, Non
and Pre from CD8_1 T cluster. (H) UMAP of murine CD8+ T cells from bulk RNA-seq data (n = 3 samples/group). (I) Venn diagram of overlap of
DEGs unregulated in MPR versus Non, genes involved in PIC, HPA and PPI. PIC, Pan Immunotherapy Prognosis; HPA, Human Protein Atlas; PPI,
Protein-Protein Interaction Networks. (J) GSEA results for DEGs up- or downregulated in MPR versus Non in murine CD8+ TIL. (K) Pathway
enrichment analysis of DEGs from murine MPR and Non in GO and REACTOME database and pathways with q-value < 0.01 were shown here. (L) Bar
plots of genes distribution involved in PIC among DEGs up- or downregulated in MPR versus Non; good prognosis (purple) meaning positive
correlation between gene expression level and longer OS in PIC dataset, with bad prognosis (green) meaning the opposite; survival analysis of OS
calculated by log-rank test (P-value<0.05 considered significant). (M) Bar plots of genes distribution in HPA-based analysis among naive CD8+ T cell
(Tn), central memory CD8+ T cell (Tcm), effector memory CD8+ T cell (Tem), terminal effector memory CD8+ T-cell (Tex) (left). Numbers of genes
were summarized on the right. (N) Heat map of normalized RNA expression through qRT-PCR of genes in the PPI signature. Statistical testing
between samples in MPR and CD8_3 (Non, red asterisks) or Pre_1 (Pre, black asterisks) by two-sided t-test (*p < 0.05, **p < 0.01, ***p < 0.001).
(O) Kaplan-Meier plots showing the PPI signature indicating better OS in PIC. Hazard ratios (HR) were calculated using Cox proportional hazards
regression models, and p-value was calculated using log-rank test. (P) Significant PPI of the intersection genes of PIC and HPA (I) and IL32-
ADGRE5-CD55 axis with node colored by their function, red: (L–R), yellow: TFs, blue: others. (Q) Relationship of the PPI signature and IL32-
ADGRE5-CD55 in TCGA datasets (LUAD, SKCM). P values were determined by a two-sided linear regression t-test. (R) Heat map of normalized RNA
expression through qRT-PCR of genes in the Tsurv signature upon murine CD8+ TIL, except for IL32 that was tested in patients’ CD8+ TIL (method).
Statistical testing between samples in MPR and CD8_3 (Non, red asterisks) or Pre_1 (Pre, black asterisks) by two-sided t-test (*p < 0.05, **p < 0.01,
***p < 0.001).
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was developed (Figure 2A). Although we demonstrated that MPR-E

significantly expanded in the MPR, it was inappropriate to

arbitrarily assume that MPR-E served as the most prominent

meta-cluster in terms of cell communication; thus, all 20

subclusters were included in further analysis.

We hypothesized that ICIs could reprogram the interaction

mode of TILs based upon the knowledge of a “ligand–receptor pair”

model for ICI response prediction developed by Huang et al. (63)

Strikingly, although the inferred interaction amounts decreased

from the pre to MPR, the interaction strength peaked in the

MPR, which was used to assess the probability of certain

interactions given the expression levels of the ligand–receptor

pairs (L-Rs) (Figure 2B). In addition, communication in the

MPR-E and PD1-R gradually became in the driving seat from pre

to Non and then to MPR (Figure 2C, Supplementary Figure S6A).

We further profiled the distribution of outgoing or incoming signals

in specific clusters in each condition. Intriguingly, compared to that

in the pre and Non groups, CD8.c05 and CD8.c11 in MPR-E, as

well as CD8.c10 in PD1-R, predominantly occupied the most

weights of interaction strength in MPR, measured by Euclidean

distance between clusters (Figure 2D). Consistent with these

findings, when comparing signaling between sources and senders

quantitatively, MPR-E, especially CD8.c05 and CD8.c11, increased

progressively from pre to non and then to MPR (Figure 2E,

Supplementary Figure S6B). Moreover, all the other meta-clusters,

such as CD8.c08 and CD4.c20 in MPR-S, quickly faded away, as

measured by interaction strength. Overall, we noticed that,

according to survival of the fittest, MPR-E gradually seized

dominance in cell communication in the MPR group compared

to that in the Non and Pre groups, especially for CD8.05 and

CD8.c11, followed by CD8.c12, CD8.c10 and CD4.c16/17, which we

termed as the “pruning effects” triggered by successful ICIs.

Given the prolific communication in MPR-E, we explored

exactly which L-Rs participated in MPR. We adopted Differential

NicheNet (33), an extension of the default NicheNet algorithm, to

depict L-Rs specific for CD8.c05 and CD8.c11 post-ICIs, mainly

focused upon ligands from CD4+ T cells in MPR-E and PD1-R,

given the widely accepted concept of the delicate interplay between

CD4+ and CD8+ T cells in the tumor immune cycle. However, an

inevitable controversy would be the legitimacy of putting CD8.c05/

11 TILs in the spotlight instead of CD4.c16/17. The CD4.c16/17

subset, a subset predicted to be CXCL13+PD-1+ (Figure 1I,

Supplementary Figure S1C), was comprehensively explored by

RNA sequencing of physically interacting cells (PIC-seq)

developed by Zada et al. (60), a method for exploring physically

interacting immune cells. They found that CXCL13+PD-1+ CD4+ T

cells (equal to CD4.c16/17) augmented antitumor cytotoxicity

through interaction with LAMP3+ DCs in tumor-draining lymph

nodes (TDLNs). We reanalyzed the PIC-seq data (Supplementary

Figures S5A, B) and confirmed the enhancement of the CD4.c16/

17-LAMP3+DC interaction post-ICIs (Supplementary Figures S5C,

D), possibly through MIF-(CD74+CXCR4)L-R (Supplementary

Figures S5F–H); a detailed analysis of this interaction is provided

in the Supplementary Files. Therefore, we instead placed poorly

defined CD8.c05/11 cells at the center.
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Nevertheless, indeed, ligands with the top 50 prioritization

scores (50 ligands) exhibited significant cluster-specific

upregulation of CD8.c05/11 in post-ICIs compared to that in pre-

ICIs (Figure 2F, Supplementary Figure S6C); for example, SEMA4D

in CD4.c17 has been linked to an imbalance of Th17/Treg cells with

increased expression of IL-22 and RORyt in Th17 cells (64), and

CCL3 in CD4.c16 has been considered an inducer of CD8+ T-cell

proliferation in the TDLN (65). We then grouped the 50 ligands

into 6 meta-pathways: cell mechanics and adhesion, chemokine,

immune modulation, metabolism, MHC and PARs (Figure 2F).

Taking a closer look at the predicted target genes related to the 6

pathways, we detected frequent immune-related transcription

factor (irTF) activation in CD8.c05/11 cells. These activated irTFs

included FOS-Jun, STAT5, and RUNX3 (Figure 2F), which are

critical TFs responsible for CD8+ Trm redistribution that is

repressed in CD4+ Trm cells (66).

To cross-validate and further refine the 50 ligands identified by

NicheNet, we examined the signaling probabilities of all

interactions previously identified by CellChat. In accordance with

Nichenet, these interactions fell into the 6 meta-pathways. As

proposed, the “pruning effects” of ICIs led to the enrichment of

MHC-I/II, MIF, CLEC and ADGRE5 L-R in the CD8.c05/11/12

subgroup in the MPR cohort, while the expression of IL16, ICAM

and FASLG L-R gradually decreased (Figure 2G, Supplementary

Figures S6D, E, S7A, B). Considering that the interaction strength

was more strongly enhanced in MPR than in Non, we focused on

interactions within the MPR-E group that underwent stepwise

enhancement from pre to Non then to MPR (Figure 2H) and

identified CCL/CXCL, CLEC and ADGRE5 L-Rs (Figures 2I, L,

Supplementary Figures S7D, E). Simultaneously, TNF, IL16 and

SELPLG were characterized as the dominant L-Rs in the pre or Non

(Figures 2J, K, Supplementary Figures S7F, G).

However, the abovementioned L-Rs were rather general; thus,

we further explored the specific pathways enriched in these genes.

CCL5-CCR4 contributed most to CCL L-Rs (Supplementary Figure

S7C), which are responsible for the interplay between T cells/NK

cells and T cells/endothelial cells post-ICIs (63). Moreover,

neoantigen vaccines combined with ICIs can induce an antigen-

specific CCL5+/CXCR3+ CD8+ T-cell population (67). CXCL13-

CXCR3, a type of CXCL L-R, was upregulated significantly in MPR

(Supplementary Figure S7C). The combination of features from

CXCR3+CD8+ T cells and CD11c+ antigen-presenting cells (APCs)

was shown to be associated with OS and progression-free survival

(PFS) in patients with HCC (68). CLEC2B/C/D-KLRB1, which is a

CLEC L-R (Supplementary Figures S7C, S7E), is closely associated

with GZMB+ CD8+ T cells and has tissue homing properties (69).

The IL-16 pathway was enriched in L-Rs of pre (Figure 2J,

Supplementary Figure S7F), which compromised T-cell antitumor

immunity by upregulating the coinhibitory receptor CD160 (70).

Among these L-Rs, ADGRE5-CD55 (Figure 2H) has rarely been

investigated in the context of CD8+ T-cell communication during

ICI therapy. Capasso et al. first identified the activation capacity of

ADGRE5 on CD55+ CD4+ T cells (71), and recently, Abbott et al.

confirmed that the CD55-ADGRE5 interaction between monocytes

and T cells undermined T-cell responses (72). Recently, Felce et al.
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further demonstrated that ADGRE5-/- CD4+ T cells are unable to

respond to superantigens presented by DCs (73). Mechanistically,

ADGRE5, which contains extracellular EGF-like repeats that

mediate adhesion, localizes to and stabilizes immunological

synapses (74). Despite being a well-defined participant in APC-

CD4+ T-cell interactions, in-depth research on the role of ADGRE5

in tumor immunology is lacking.

Before the thorough exploration of ADGRE5 in CD8.c05 cells, we

confirmed that the expression of ADGRE5, CXCL and CCL L-Rs was

higher in MPR than in Non by CellPhoneDBV3 based on the

principle of the null distribution, with ADGRE5 exhibiting the

greatest increase (Figure 2M). Notably, we detected cluster-specific

differences in ADGRE5 from pre to Non and then to MPR. Notably,

ADGRE5 was exclusively enhanced in MPR-E during ICIs

(Figure 2L), especially in the CD8.c05, in which the most

significant enhancement in the ADGRE5 L-R was observed in

MPR compared with that in Non. Moreover, ADGRE5 L-R in

CD8.c05 was the only one that participated in all four components

of L-Rs according to CellChat (sender, receiver, mediator and

influencer) analysis compared to all the other subclusters (Figure 2N).

Afterward, we adopted centrality metrics from graph theory in

Nichenet to identify dominant contributors to the intercellular

communication networks of ADGRE5-CD55 (Figure 2O). Taking

these irTFs into consideration, we narrowed the list of candidate

molecules to “19 signaling mediators”, from CCL3 and IL21 to

IL23A, and “7 irTFs”, including PPARA/G and STAT5 (Figure 2O),

which are the most likely regulators of the ADGRE5-

CD55 pathway.

The derivation process of ADGRE5 was extremely fragile due to

the complex cell-communication analysis pipeline; thus, evidence

from multimodal data became necessary. Nevertheless, interactome

analysis revealed a “pruning effect” imposed by ICIs, with MPR-E

acquiring an exclusive interaction strength above that of PD1-R or

MPR-S, among which CD8.c05/11 contributed the most to the

upregulation of ADGRE5-CD55, a critical L-R that might be

mediated by irTFs.
3.3 Multimodal analysis revealing STAT5
regulation of ADGRE5

irTFs, as described by Nichenet, are vital for decoding the

ADGRE5 regulatory network. In an attempt to identify specific

irTFs that mediate the ADGRE5 pathway, the SCENIC method for

determining TF activity was adopted. To enhance resolution, we

performed a SCENIC analysis for each cluster in each patient

separately and then performed integration. Unfortunately,

although some canonical TFs specific to certain clusters, such as

STAT2 in CD4.c16 (75), RORC in CD4.c17 (76) and RUNX3, were

observed in CD8.c05/11/12 (77) (Supplementary Figure S10A),

hardly any changes could be detected in MPR compared to that

in Non, which was inconsistent with prior knowledge (78). We

speculated that the lack of detailed and precise information due to

the sparsity of the sc data and “gene dropout” hindered our inquiry
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(79). Sparsity is tolerable for molecularly distinct cell populations

but fails to grasp subtle differences, as in our sorted CD3+ TILs. To

handle sparsity, numerous strategies, such as imputation methods

(80, 81), paired bulk RNA-seq data (82), and VIPER, have been

developed. VIPER was generated by Obradovic et al. (83) The

protein activity data revealed that C1Q+TREM2+APOE+

macrophages were an indicator of early postsurgical disease

recurrence in RCC patients, a finding that was unavailable merely

by sc, which was validated by CITE-seq and qmIF. Inspired by this

circumstance, we took advantage of VIPER to replenish our existing

sc data.

We thus used the VIPER pipeline to infer protein activity and

generated 3,122 additional proteins (VIPER-pro) for our sc dataset.

After the integration of the original transcriptomic data, we managed

to acquire clearer clustering effects for MPR-E than for sc in terms of

umap visualization and DEG heatmaps (Figures 3A, 3D), before

scCODE-irFilter (Methods) or after (Supplementary Figures S9A,

B). For marker detection, VIPER indeed offered additional biological

insights. For example, IL-9R (Figure 3A), which is considered a

marker of newly discovered Th9 cells (84) and contributes to the

expansion of CD8+ TILs after ICIs (85), was found to be

differentially activated in CD8.c05 cells. VIPER successfully

profiled delicate differences between subpopulations and between

MPR and Non (Figures 3B–D). BATF2, upregulated in CD8.c05 cells

in the MPR (Figure 3B), was shown to be essential for epigenetic

reorganization of chromatin during CD8+ Teff differentiation in

cooperation with RUNX3 and IRF4 (86).

Similar to our speculation, the results obtained with VIPER-pro

were further corroborated by Pearson correlation analysis of the

transcriptomic cluster markers in an independent Smart-seq dataset

focused on ICIs (Figure 3E, Supplementary Figure S9E). Proteins

ranked within 27 in each MPR-E cluster were taken into account

because they exhibited the most significant correlation with the original

cluster markers while showing the slightest correlation with markers

from other clusters simultaneously (a data processing procedure

named “VIPER-irFilter”, see in Methods) (Supplementary Figures

S9D, E).

Therefore, approximately 135 VIPER-pro proteins were

ultimately incorporated into the VIPER-based SCENIC process;

these proteins could be retained in MPR-E after VIPER-irFilter.

Notably, VIPER-irFilter, considered an exercise dealing with the

abovementioned sparsity, greatly improved the capacity of SCENIC

to capture the transition of irTF programs from Non to MPR

(Figure 3F). Strikingly, such a transition did not occur inside

CD4.c16/17 cells (Supplementary Figure S10B), indicating that

CD8+ TILs undergo significantly more intense reprogramming

than CD4+ T cells (87).

Afterwards, following scCODE-based filtering of TFs with

log2FC>0.2 (MPR versus Non), we excluded those that were

upregulated in pre and retained those exhibiting cluster-specific

characteristics. While Fos-Jun (AP-1) dominated the reconstruction

of CD8.c05, POLR2A played a leading role in CD8.c11, and FOXN2

gradually prevailed in CD8.c12 (Figure 3F, Supplementary Figure

S10B). With the function of the latter two remaining unknown in
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tumor immunology, Giuliana et al. recently confirmed that AP-1 is

indispensable for the prevention of NFAT1-induced T-cell

exhaustion (88).

To extrapolate the SCENIC results to ADGRE5 L-R in

CD8.c05/11, we hypothesized that candidate irTFs responsible for

ADGRE5 regulation should meet 3 criteria: 1) these irTFs

constantly appeared in all three CD8+ subpopulations; 2) they

underwent gradual downregulation along the trajectory from

CD8.c05 to CD8.c12; and 3) they experienced stepwise

enhancement from pre to Non to MPR. After taking the

intersection, AP-1, CREB3 and STAT5 were ultimately selected

for further exploration (Figure 3G, Supplementary Figures

S10C, D).

As demonstrated in the VIPER-irFilter, we adopted a

methodological strategy featuring cross-validation of informative

reference data with real-world sequencing data; thus, verification of

SCENIC-derived TFs with TCGA data was conducted. We

performed a Pearson correlation analysis of ADGRE5, CD55 and

IL32 in the pan-cancer TCGA database (Figure 3H, Supplementary

Figures S10E, F). Although absent in NicheNet, CellChat or VIPER

according to our own analysis, IL32 is considered an activator of

ADGRE5 on CD8+ T cells according to mFC (89); thus, it was

temporally incorporated into our analysis. Astonishingly, STAT5

was tightly correlated to ADGRE5 in the TCGA cohort, following

STING1, the core molecule in the cGAS-STING axis that amplifies

I-IFN via the TBK1-IKK-NFkB pathway in antitumor immunity

(90). In addition to STING1, the aforementioned enriched L-Rs,

such as MHC-I/II (CD74, HLA-E, MYD88, MAPKAPK3, etc.),

CCL/CXCL (CCL18, CXCL16, CX3CL1, etc.), and NicheNet-

derived irTFs (SPI1, PPARA, JUNB/D, etc.), as well as IL32, were

closely correlated with ADGRE5, while ADGRF5 linked with IL32

further confirmed the potential STAT5-mediated regulation of

ADGRE5 under IL32—which remained a postulation until the

KnockTF database and public CHIP-seq data were obtained.

We then questioned exactly which TFs manipulate the

ADGRE5 pathway. First, we identified TFs that decreased

ADGRE5 expression via KnockTF, which is a comprehensive

database with manually curated datasets containing 308 TFs

disrupted by different knockdown and knockout techniques (91).

Notably, siRNA-mediated disruption of AP-1 dampened ADGRE5

expression, as did that of POLR2A, while CREB1, which has a

similar function as CREB3, positively regulated ADGRE5 instead

(Figure 3I). Unfortunately, STAT5 was not detected in the

KnockTF; thus, a meta-analysis of cell type-based Chip-seq

datasets was performed (Supplementary Table S4). Among the 29

cell types we collected, comprehensive heterogeneity across TFs that

control ADGRE5 fate was recapitulated. With SPI1 appearing to be

a specific modulator in macrophages, K-562 (human chronic

myelogenous leukemia cell line) cells instead rely upon multiple

TFs, from AP-1 to FOXJ3. Moreover, with NFATC1 dominating in

CD4+ T cells, STAT5 appeared to control ADGRE5 in CD8+ T cells,

surpassing CTCF completely (Figure 3J).

Specifically, STAT5 is composed of two highly correlated

proteins, STAT5A and STAT5B (92), since most related studies

consider STAT5/B as a whole (92–94); thus, in the following

analyses, we included STAT5A/B-related datasets.
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Based upon the Chip-seq data, we investigated whether STAT5

interferes with ADGRE5 expression. The IL-2/IL-2R pathway is a

well-defined axis that depends on STAT5-mediated signals (92).

Recently, a PD-1-cis IL-2R agonist that boosts PD-1+TCF-1+ stem-

like CD8+ T cells was developed (95), the targeted cells of which

were similar to those of CD8.c05 in our analysis. We hypothesized

that IL-2R agonists could be an alternative option for reproducing

neo-PD1 effects on the STAT5-ADGRE5 axis due to the lack of such

Chip-seq data.

H9 is a “superkine” IL2 that augments IL-2Rb signaling more

profoundly than IL2, and H9RET behaves as a partial agonist, while

H9RETR serves as a nonagonist (96). With the integrated analysis

of STAT5 Chip-seq data, we revealed significant upregulation of

ADGRE5 downstream of STAT5 in combination with IL2 or H9

(Figure 3K). Astonishingly, only one replication of H9RET retained

activation of ADGRE5, H9RETR and the control groups all failed,

while IL32 remained strongly enriched under both conditions,

which indicated that the regulation of STAT5 by ADGRE5 was

stricter than that by IL32. Nevertheless, IL2-mediated STAT5

activation provides indirect evidence to some extent, and we

further reanalyzed DEGs from Tobias et al. They constructed the

“gain-of-function” mutations STAT5AN642H and STAT5BS710F in

CD8+ T cells via CRISPR/Cas9 and performed bulk RNA-seq on

wild-type CD8+ T cells (97). Again, ADGRE5 was upregulated in

STAT5N642H and STAT5S710F cells (Figure 3L), further confirming

the positive regulatory effect of STAT5 on ADGRE5. Finally, since

proteins, rather than RNAs, are executors of specific biological

activities, we also validated the STAT5-ADGRE5 axis via

proteomics datasets. Along the trajectory from Tn, Tcm to Tem

and finally to Temra, STAT5 expression peaked within the Tcm and

Tem1 stages, located at relatively early differentiation paths,

followed by ADGRE5 activation ranging from Tcm to Tem4;

these two genes were significantly correlated, as was the case for

CD62L+ CD8+ T cells (Figure 3M). Since the phosphorylation of

STAT5 (p-STAT5) definitely reveals its activity more precisely,

which was not detected here, we hypothesized that the

measurement of p-STAT5 would be more accurate and have

shown this phenomenon (Figure 4).

It should be mentioned that Temra and CD62L- CD8+ T cells

were both considered as exhausted activation state of T cells, the

relatively low expression of ADGRE5 and STAT5 in these T cells

further consolidated our aforementioned conclusions.
3.4 survT subcluster in MPR-E mapped
across the human to murine TME

CD8.c05 in MPR-E, as described above, was a stem-like CD8+

TIL cluster that expanded in the MPR, characterized by enhanced

STAT5-ADGRE5 activity. However, whether precursor CD8+ TILs

or terminally differentiated CD8+ TILs respond to neo-PD-1

therapy remains controversial. Similarly, Zhang et al. proposed

that, compared with renal cell carcinoma (RCC), NSCLC with lower

co-inhibitory ligands (CIL score) pre-ICIs is associated with more

precursor-like CD8+ TILs post-ICIs in the MPR (16), which is

consistent with our analysis. We thereby designed an LLC-based
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murine model to verify our findings in vivo. We managed to group

mice that underwent the same regimen of anti-PD1 therapy into

either MPR or Non according to tumor size, and CD45+ TILs or

CD8+ TILs were sorted for CYTOF or bulk RNA-seq analysis,

respectively (Figures 4A, E).

After non-redundancy score (NRS)-based selection of CD45,

CD44, CD3e, CD4, CD8a and TNFa, CYTOF achieved well

classified population identification (Figure 4B, Supplementary

Figures S11A, B). In support of the sc analysis, murine CD3+

TILs also exhibited recalibration, with CD8_1, CD8_2, CD4_3

and CD4_4 significantly expanding in the MPR compared to that

in the Non or pre groups (Figure 4C). Under the same paradigm,

murine CD3+ TILs were categorized into murine MPR-E, PD1-R,

and MPR-S TILs and others (Figure 4C, Supplementary Figure

S11C). In addition, similar to the somewhat indescribable CD8.c05

identified during MSigDB annotation, murine MPR-E also

exhibited a sustained ‘silent’ phenotype with weakened functional

markers such as CD39, CD69 or ICs such as PD-1, TIGIT, CTLA-4

and KLRG1 (Figure 4D, Supplementary Figures S11C, Figure

S13A), indicating a quiescent state even post-ICIs. Intriguingly,

compared with those in pre or MPR, CD8_c3 and CD8_c4 in

murine PD1-Rs exhibited upregulation of functional markers and

ICs in Non (Figure 4D, Supplementary Figure S13D). In contrast,

the expression of stemness markers (IL-7R and RUNX3) and

resident-memory markers (CD62L, CD103, and RORg)

significantly increased exclusively in MPR compared to that in

Non, a phenotype similar to that observed for CD8.c05 in human

MPR-E (Figures 4F, G, Supplementary Figures S11D, E). For the

convenience of harmonization, we labeled CD8_c1/2 in murine

MPR-E and CD8.c05 in human MPR-E as survT, indicating that T

cells preserved the stemness of surviving ICIs under TME pressure.

Due to the limited use of CYTOF markers, bulk RNA-seq was

performed for sorted CD8+ TILs. UMAP dimensionality reduction

analysis revealed considerable heterogeneity (Figure 4H,

Supplementary Figure S12A). A total of 132 upregulated genes in

the MPR versus Non (DEG_up) were included in further

exploration (Figure 4I) after demonstrating their significant

enrichment in MPR compared with that in Non via GSEA

(Figure 4J). Astonishingly, except for T-cell activation and

differentiation pathways, DEG_up revealed enhanced enrichment

of cell−cell adhesion, indicating potential synapse formation and T-

cell migration (Figure 4K). Additionally, the human CD8+ MPR-E

signature was significantly more prevalent in murine MPR than in

murine pre (Supplementary Figure S12F). Although the CD8.c05

signature was moderately enriched in murine MPR (NES=1.31, P

value=0.1), it still strongly outperformed the CD8.c11 signature

(NES=1.03, P value=0.39), as well as the CD8.c12 signature

(NES=0.77, P value=0.91), further supporting our notion that

MPRs prefer stem-like survT rather than terminally functioning

Tex, such as CD8.c12, in both the murine TME and the

human TME.

To bridge the gap between the molecular features of human and

murine TMEs, we utilized the Monaco et al. sc dataset from the

Human Protein Atlas (HPA) (98) and integrated pan-cancer

immunotherapy cohort datasets (PIC, Supplementary Table S1)

to project DEG_up into the human ICI scenario. We identified 30
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genes among the DEGs with measurable expression along the T-cell

differentiation trajectory in the HPA cohort (Methods) (Figure 4I).

Strikingly, 27 of the 30 genes exhibited higher expression in Tn,

Tcm or Tem cells than in Tex cells (Figure 4M). In addition, DEGs

with favorable prognoses were much more prevalent in the PIC

than in the DEG_down (genes down-regulated in MPR compared

to Non) subgroup (Figure 4L), further supporting the robustness of

our murine model. After the intersection of the genes identified via

PIC and HPA analyses, a protein−protein interaction (PPI) network

was constructed, and the 8-gene signature (PPI signature) with the

highest combined score was identified (Figure 4I). The PPI

signature showed intertwined communication with the

aforementioned IL32-STAT5-ADGRE5 axis (Figure 4P) and was

an indicator of improved OS (Figure 4O), even when considered

separately (Supplementary Figure S11D). Additionally, the PPI

signature exhibited a significantly strong correlation with the

IL32-STAT5-ADGRE5 signature in multiple TCGA datasets

(LUAD, SKCM, BRCA, HNSC, etc.) (Figure 4Q). Finally, qRT

−PCR was conducted to verify the PPI signature, which was

robustly upregulated in MPR compared with both Non and Pre

(Figure 4N, Supplementary Figures S13B, C). Overall, these findings

not only confirmed the existence of a species-conserved survT as an

MPR-responding cluster post-ICIs in lung cancer but also

supplemented additional multimodal data, including CYTOF and

bulk RNA-seq data, to support our conclusions.
3.5 Verification of the IL32-STAT5-ADGRE5
axis in patients in the MPR-E cohort in an
independent ICI cohort

Theoretically, direct induction analysis of sorted CD3+ or

CD45+ TILs indeed abolishes interference from other cell types

and improves the resolution of the sparse sc matrix but also

introduces imprecision into the data analysis when taking

everything in account. We thus analyzed our own cohort of

NSCLC patients with all TME cells (Methods). Altogether, 9 cell

types were well represented in our own samples, among which

neutrophils (S100A8 and CXCL8) and CAFs (COL6A3, FN1, and

POSTN) were rather difficult to capture due to primary cell fragility

and scarcity (Supplementary Figures S14A, B).

In addition to the predominance of T cells in MPR compared to

that in Non or pre, moderate expansion of B cells was also detected,

while endothelial cells and macrophages were more prevalent in

Non than in MPR (Supplementary Figures S14C, D). We further

divided T cells into 18 clusters, via Louvain clustering, (Figure 5A),

among which CD8_c1/2/3/8 were substantially enlarged in MPR

compared to those in Non and pre, while CD8_c10 exhibited slight

expansion in the MPR compared to that in Non but exhibited a

contraction compared to that in pre (Figure 5B). Importantly, the

extremely close correlation of CD8_c1/2/3 with CD8.c05 in MPR-E

reinforced the indispensable role of survT in MPR, once again, with

CD8_c8/10 in relation to CD8.c11 (Figure 5C, Supplementary

Figure S14E). Although we did not observe prominent CD4+

subpopulation expansion in MPR, CD4_c4/12/13 cells exhibited

great similarity with CD4.c16/17 cells (Figure 5C, Supplementary
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Figure S14E). In summary, we considered CD8_c1/2/3 as survT in

this independent dataset and included CD8_c8/10 and CD4_c4/12/

3 in further investigations due to the correlation analysis above.

To further validate the ADGRE5 pathway, we examined

ADGRE5, IL32, CD55 and Nichenet-derived “19 signal

mediators” in the clusters mentioned above. Unfortunately,
Frontiers in Immunology 17
except for TNF, 18 signaling mediators remained unchanged in

MPR compared to Non, and CD55 was downregulated in MPR

(Supplementary Figure S14F). Due to the inconsistency of CD55

expression pattern within this validation cohort compared to that in

the discovery sc dataset above, we next investigated the potential

role of IL32 in the regulation of ADGRE5.
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FIGURE 5

Verification of IL32-STAT5-ADGRE5 axis in MPR-E in an independent ICIs cohort. (A) UMAP of 14,819 T cells in MPR, Non and Pre from an
independent NSCLC patients’ cohort. (B) Bar plots of T cells clusters distribution across MPR, Non and Pre. (C) Heat map showing correlation scores
calculated by SingleR between certain clusters from B with MPR-E in Figure 1C. (D) Comparison of the AGDRE5 and IL32 expression in different cell
clusters from C, with color coded by clusters. (E) Volcano plot showing differential expression of ADGRE5 and IL32 between MPR and Non in cell
clusters from C, color coded by clusters. (F) The total number (left) or strength (right) of CellChat-inferred interactions among the population in
each group (gray: pre, blue: Non, red: MPR). (G) CD8+ T cells colored by pseudotime inferred by Monocle3 (n = 6,680 cells). (H) Scatter plot of
certain signature genes among clusters listed (right legend) ordered along pseudo-time. Points are colored by cell clusters. (I) Scaled contribution of
ADGRE5 pathway within MPR-E in pre, Non and MPR. (J) The inferred ADGRE5 signaling network among the cell populations represented by the
nodes; edge width representing the pathway-specific interaction strength. (K) scCODE results of TFs from SCENIC on CD8_c1-3 between MPR
and Non.
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Astonishingly, IL32 together with ADGRE5 exhibited

significantly higher expression in MPR than in Non within

almost all the clusters (except for CD4_c13), which was closely

correlated with the MPR-E (Figure 5E, Supplementary Figure

S14G). Strikingly, CD8_1/3 had the highest ADGRE5 expression

(Figure 5D) and the greatest difference between MPR and Non
Frontiers in Immunology 18
(Figure 5E). Although CD8_c2-related IL32 expression was rather

moderate (Figure 5D), its expression in MPR markedly surpassed

that in Non (Figure 5E). In addition, the differential trajectory

(originating at the interface of CD8_c06 and CD8_c02 on the umap

plot) from CD8_c01/02 to CD8_c03 depicted by Monocle3 was

rather similar to that of the discovery sc dataset (Figures 1J, 5G),
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FIGURE 6

ADGRE5 regulated by STAT5 dependent on IL32 revealed in 3D HYGITC system. (A) Ridge plot showing MFI of AGDRE5+CD8+ T cells pre- and post-
PD1 or PD-L1. (B) Flow cytometry analysis of Ki67 expression and CFSE results on ADGRE5+ or ADGRE5- CD8+ T cells pre- and post-PD1. (C) Flow
cytometry analysis of specific markers’ expression on KLRDneg, KLRDmild and KLRDhigh CD8+ T cells gated from AGDRE5+CD8+ T cells. (D) Flow
cytometry analysis of calcium-AM of tumor cells (upper) or immune cells (down) in KLRDneg, KLRDmild and KLRDhigh CD8+ T cells (gated from
AGDRE5+CD8+ T cells) in separate 3D-HYGTIC systems (method); (E) Bar plot showing MFI of ADGRE5 or STAT5 p-Tyr694 expression on CD8+ T
cells under the anti-PD1, IL32 or anti-IL32. (F) Bar plot showing MFI of ADGRE5 or STAT5 p-Tyr694 expression on CD8+ T cells under the anti-PD1
or STAT5_IN_1 (STAT5 inhibitor). (G) Representative images of mIF from Pre, Non and MPR patients (left). Scale bar, 1000 mm (upper panel), 500 mm
(middle panel), 50 mm (lower panel) (left). Cell density and extension radium of ADGRE5+CD8+ T cells (n = 2) (upper right). (H) LLC-tumor-bearing
mice treated with anti-PD1 antibody. On day 15, survT sorted from MPR reinfused into Non through intratumoral injection (Non-survT), with non-
survT into Non-ctrl (method). Each line represents an individual mouse. (n = as least 3 mice/group, Kaplan–Meier method, two-way ANOVA test).
Data in all quantitative panels, except for G and H, are displayed as the mean ± SEM. n = 5, *p < 0. 05, **p < 0.01, ***p < 0.001, two-tailed unpaired t
test. T.
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with CST7 and TUBA4A peaking at CD8_c02 and HLA-DRB1

prevailing at CD8_c3 (Figure 5H, Supplementary Figure S15C).

Interestingly, CXCL13, KLRD1 and GNLY, markers of exhausted

and activated TILs, were dominant in CD8_c8 cells and indeed

showed the highest correlation with CD8.c12 in MPR-E cells

(Figure 5C, Supplementary Figure S15C).

According to the L-Rs analysis, we accidentally uncovered

“pruning effects” beyond CD3+ TIL populations. In fact, the

interaction amount and strength decreased substantially after ICI

therapy; instead, the interaction within T cells increased

tremendously, especially in the MPR group, indicating the

invincible status of T cells in cell communication (Figure 5F,

Supplementary Figures S15A, B). Closer examination of the

specific clusters responsible for “pruning effects” revealed that

CD8_c2 outperformed the other clusters and manifested stepwise

upregulation of ADGRE5 signaling from pre to Non, together with

CD8_c1 (Figure 5I, J). Finally, VIPER-based SCENIC inference of

irTFs, as mentioned above, revealed STAT5 in survT within MPR

compared to that in Non (Figure 5K), further supporting the

previously revealed role of the STAT5-ADGRE5 axis.

Overall, we reconstructed our analysis pipeline on our

independent NSCLC ICIs cohort and successfully mapped the

STAT5-ADGRE5 axis to verify the results, incorporating IL32 as

a potential regulator.
3.6 ADGRE5 regulation by STAT5 is
dependent on IL32, as revealed by the 3D
HYGITC system

The 3D-HYGTIC system is a well-designed nonimmunogenic

ex vivo platform for tumor-immune interaction studies, as has been

proposed (20). We hypothesized that ADGRE5 could be stimulated

by anti-PD-1 through the activation of STAT5 according to

previous investigations. Therefore, we constructed 3D-HYGTIC

from murine TME-derived tumor fragments (MDTF; methods)

and utilized TILs to carry out coculture experiments with or without

anti-PD-1 therapy. Indeed, anti-PD-1 therapy strongly increased

ADGRE5 expression on CD8+ T cells (Figure 6A). Strikingly, anti-

PD-L1 therapy, on the contrary, had moderate effects, indicating

potential specific anti-PD-1 mechanisms (Figure 6A).

According to our previous analysis, the ADGRE5-characterized

survT manifested stemness phenotype with expansion in MPR. We

then wondered whether ADGRE5+ CD8+ TILs might have

improved proliferation ability compared with that in ADGRE5-

CD8+ TILs. In fact, Ki-67 upregulation in the ADGRE5+ CD8+ TIL

population not only confirmed its proliferative potential but also

suggested that it was a subcluster that responded to anti-PD-1

rather than ADGRE5- CD8+ TILs (Figure 6B, Supplementary Figure

S16A). In addition, this population also exhibited enhanced

production of effector molecules (CD107a, IFNg, TNFa) as well as
stemness markers (TCF-7) post-ICIs therapy (Supplementary

Figure S16D). In addition, exhausted CD8 TILs could also boost a

certain degree of antitumor cytotoxicity (99) at the cost of

activation-induced cell death (100). Astonishingly, more

ADGRE5+ CD8+ TILs survived ICIs and exhibited comparable
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antitumor potential compared to that of ADGRE5- CD8+ TILs

(Supplementary Figure S16E), suggesting that these cells have a

more favorable stemness phenotype even within the TME exposed

to ICIs.

Specifically, the ADGRE5+ CD8+ TIL cluster should be

heterogeneous, as should the CD8+ MPR-E cluster, and we

hypothesized that LAG-3 upregulation post-ICIs (Supplementary

Figure S16D) could be attributed to a more specific exhausted

subcluster inside the cluster. First, we further separated ADGRE5+

CD8+ TILs into LAG3+ and LAG3- subclusters according to the

differential expression of LAG3 across CD8.c05/11/12

(Supplementary Figure S16B). Indeed, compared with LAG3+

TILs, LAG3- TILs exhibited an even greater proliferation ability

in the carboxyfluorescein succinimidyl ester (CFSE) dilution assay

and Ki67 staining (Figure 6B, Supplementary Figure S16C).

Noticeably, although LAG3- cells were capable of identifying

CD8.c05 from ADGRE5+ CD8 TIL to some extent, CD8.c11 and

ZNF683+ CD8+ TIL in PD1-R all showed enhanced LAG3

expression (Supplementary Figure S16B); thus, we further used

KLRD1 instead of LAG3 to depict CD8.c05 and CD8.c11 more

precisely. Astonishingly, KLRD1neg or KLRD1mid ADGRE5+ CD8

TIL cells exhibited a better survival rate than KLRD1high cells under

TME selection pressure (Figure 6D). KLRD1mid cells exhibited

antitumor cytotoxicity comparable to that of KLRD1high cells,

with more preserved TCF7 (Figure 6C). KLRD1neg cells exhibited

a certain degree of activation and markedly improved stemness, as

indicated by increased TCF7 expression, decreased LAG3

expression and decreased apoptosis (Figures 6C, D). In

conclusion, KLRD1neg ADGRE5+ CD8 TILs could be considered

stem-like survT, as mentioned above, while KLRD1mid and

KLRD1h i gh ce l l s cou ld be mapped to CD8.c11 and

CD8.c12, respectively.

To better profile survT, we sorted them out and examined

whether the modulatory effect of anti-PD1 therapy on ADGRE5

was dependent upon IL-32 and STAT5. Here, we used patient-

derived tumor fragment (PDTF)-based 3D HYGTIC because of the

unavailability of murine anti-IL32 antibodies (method). First, anti-

PD1 therapy successfully enhanced ADGRE5 expression, as did

STAT5 phosphorylation at Tyr694 (p-Tyr694 STAT5) (Figure 6E).

Although supplementation with IL32 could not further stimulate

ADGRE5 expression or p-Tyr694 STAT5, inhibition of IL32 after

anti-PD1 therapy indeed abrogated the anti-PD1-dependent

upregulation of ADGRE5 and STAT5 p-Tyr694 (Figure 6E).

Furthermore, we validated IL32-STAT5-ADGRE5 regulatory axis

by western blot (WB), ELISA and qRT-PCR. Importantly, post-

anti-PD-1 MPR samples showed significantly elevated IL32

expression (Supplementary Figure S25A). Our WB analysis of 20

samples indicated enhanced expression of both p-STAT5 and

ADGRE5 in MPR, both pre and post anti-PD-1 compared to Non

(Supplementary Figure S25B). Notably, a strong positive correlation

between p-STAT5 and ADGRE5 was consistently observed and

confirmed by PCR analyses (Supplementary Figure S25C). What’s

more, we further utilized Jurkat cell line to prove our findings. Two

experimental platforms were established: one comprised solely of

Jurkat cells, and the second was integrated into A549-based tumor

3D HYGTIC models. Consistent with our primary specimen results
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(Supplementary Figures S25A-C), IL32 demonstrated a noticeable

increase following anti-PD-1 treatment (Supplementary Figure

S25D). Additionally, ADGRE5 and p-STAT5 exhibited significant

up-regulation as confirmed by WB and PCR (Supplementary

Figures S25E, F). Moreover, in accordance with our mFC results,

while IL32 alone did not enhance ADGRE5 and p-STAT5

expression, the inhibition of IL32 (anti-IL32) abolished the effects

of anti-PD-1. This provides evidence that the anti-PD-1-stimulated

STAT5-ADGRE5 axis is indeed dependent on IL32. Additionally,

STAT5_IN_1, a STAT5-specific inhibitor, strongly suppressed

STAT5 phosphorylation and significantly reversed the increase in

ADGRE5 expression after treatment with an anti-PD1 antibody

(Figure 6F). Overall, these findings suggested that anti-PD1 therapy

stimulates ADGRE5 expression via survT, which is regulated by

STAT5 phosphorylation and dependent upon IL32.

Overall, ADGRE5 itself was found to be a responsive marker for

anti-PD1 therapy and was found to be a meta-cluster with

improved proliferation ability and effector function. We next

performed multiplex immunofluorescence (mIF) analysis of

tumor sections paired with our own aforementioned ICIs cohorts

to verify ADGRE5 in a clinical setting (Figure 6G, Supplementary

Figure S17). In terms of spatial infiltration depth as well as density,

CD8+ TIL in the MPR group exceeded that in Non and pre groups

enormously, as well as for ADGRE5 (Figure 6G). Notably, ADGRE5

was not exclusively expressed by CD8+ TILs. We next calculated the

colocalization of CD8 and ADGRE5 further, and ADGRE5+ CD8+

TILs were significantly enriched in MPR compared with that in pre

and Non. In addition, rather than exhibiting a diffuse distribution in

Non, ADGRE5+ CD8+ TILs accumulated in tertiary-lymphoid-

structure-like (TLS-like) cell clusters and deeper into the interior

tumor bed in the MPR group (Figure 6G), some of which presented

alongside the tumor microvasculature (Supplementary Figure S17).

This unique distribution pattern of ADGRE5 not only revealed its

correlation with the improved antitumor ability of CD8+ TILs but

also indicated probable enhanced budding, adhesion and migration

of CD8+ TILs from the peripheral circulation system into the TME.

We previously developed a stepwise digestion process for 3D

HYGTIC in which we were able to compare different TIL

infiltration modes outside tumor spheroids (outer), at tumor

boundaries (inner), or inside tumor core areas within 200 µm

(core). Interestingly, in 3D HYGTIC, ADGRE5 exhibited

significantly higher expression in the inner compartment than in

the outer segment, while the infiltration of ADGRE5+ CD8+ TILs

into the core still exhibited moderate expression (Supplementary

Figure S16F), which was in accordance with our mIF findings.

Since we have successfully verified the distinct antitumor

behavior of ADGRE5+ CD8+ TILs in MPR patients and in 3D

HYGTIC, we decided to conduct adoptive cell therapy (ACT) in a

previously established ICI-resistant murine model by reinfusion of

survT fromMPR mice into Non mice. As soon as the growth curves

of MPR mice showed a significant difference with Non on day15

(Figure 6H), we sacrificed MPR mice and sorted survT (KLRD1neg

ADGRE5+ CD8+ TIL) from TME and reinfused them into Non

mice through intratumoral injection (methods). Astonishingly,

mice in the Non-survT ACT group began to exhibit significantly

slower tumor growth than those in the Non-survT ACT group
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(Figure 6H). In conclusion, we further highlighted the translational

application of survT as an ACT regimen in murine models, which is

highly clinically significant considering the unsatisfactory outcomes

of traditional ACT therapies in solid tumors, such as NSCLC.
3.7 ADGRE5-centered Tsurv model for ICI
prognosis prediction and
MPR classification

We utilized multimodal analysis of the aforementioned

discovery dataset , including scCODE, Monocle3, cel l

communication (CellChat, Nichenet, and CellPhoneDBV3),

VIPER and SCENIC, with elucidative gene sets generated at every

step (for example, irTFs in Nichenet). The IL32-STAT5-ADGRE5

axis was thus identified, and the results revealed that MPR

classification potential was good in the melanoma ICI cohort

(Supplementary Figure S18A). In an attempt to generalize the

favorable effects of survT to MPR for multiple cancer types, we

managed to incorporate the gene sets generated above into a

classifier model developmental pipeline (method).

Generally, we integrated literature-reported ICI cohorts with

paired prognosis information and bulk RNA sequencing data

(Supplementary Table S1) into a PIC database and split them into

a training set and a validation set for model fine-tuning

(Supplementary Table S1). We subsequently collected genes

associated with the MPR in the MPR-E meta-cluster and tested

their ability to predict ICI prognosis and the MPR/PR classification.

Afterward, the genes that remained were subjected to feature

selection, model construction and parameter optimization.

Finally, a model named Tsurv, composed of ADGRE5, IL32,

STAT5 and 12 other genes, was generated (Figure 7A).

Strikingly, each individual Tsurv gene exhibited a significant

ability to distinguish responders (R) from non-responders (NR)

(area under curve (AUC): upper=0.8, lower=0.64) in the training

dataset (integrated melanoma post-ICI cohort; Supplementary Table

S1, Supplementary Figure S18A). In addition, qRT−PCR analysis of

the Tsurv signature in the aforementioned CD8+ TILs from the

murine model showed significant upregulation compared to that in

Non or pre (Figure 4R). IL32, STAT5 and ADGRE5 exhibited AUCs

of 0.8, 0.74 and 0.7, respectively (P value<0.001), and the overall

Tsurv model had an AUC of 0.81 (P value=6.2e-04) (Figure 7C).

Here, we should mention that the IL32-STAT5-ADGRE5 axis was

present in the Tsurv model and was not artificially selected but was

generated from the feature selection algorithm.

With respect to the Tsurv model, we first checked its

performance in the NSCLC datasets. In two independent lung

cancer cohorts with pre-ICIs bulk RNA-seq data, Tsurv had an

outstanding AUC (validation 1 AUC: 1; validation 2 AUC: 0.71)

(Figure 7B). Since melanoma was the exclusive tumor type for

which enough pre-ICIs and post-ICIs were avai lable

(Supplementary Table S1), we selected the melanoma PIC to

further validate the potential of Tsurv for identifying PRs in pre-

ICIs and post-ICIs.

Notably, Tsurv exhibited remarkable predictive power in two

independent melanoma ICI cohorts, pre-ICIs (validation 1,
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FIGURE 7

ADGRE5-centered Tsurv model for ICIs prognosis prediction and MPR classification. (A) Workflow for construction of Tsurv model. (B–E) Receiver
operating characteristic (ROC) curves for the performance of Tsurv in NSCLC, SKCM, GC, UC with pre- or post-ICIs bulk-RNA-seq data. Data
summarized from n = 16 and 35 samples from NSCLC; n = 26, 35, 51, 26, 92, 160 samples from SKCM (from above to below in the figure legend of
(C); n = 45 samples from GC and N = 345 samples from UC. (F–I) Kaplan-Meier plots for the performance of Tsurv in SKCM, BC, UC and NSCLC.
Hazard ratios (HR) calculated using stratified Cox proportional hazards regression models, and p values calculated using a stratified log-rank test.
Data summarized from n = 104 (train) and 145 samples (validation1) from melanoma; n = 73 samples from bladder cancer; n = 348 samples from UC
and N = 35 (validation2) or 16 (validation1) samples from NSCLC. (J–P) Comparison of the Tsurv scores in cells from Supplementary Table S1
(sheet2). Each dot representing one cell with the center line indicating the median value. The median of each group’s Tsurv scores shown in the top
tables colored by each group. The lower and upper hinges representing the 25th and 75th percentiles, respectively, and whiskers denoting
1.5× interquartile range. Two-sided t-test. Data were summarized from n= 51,701 cells from GSE166181, n= 489,490 cells from GSE169246, n=
409,639 cells from GSE173351, n= 489,490 cells from GSE169246, n= 150,849 cells from GSE179994, n= 16,291 cells from GSE120575, n= 29,004
cells from GSE123813 and n= 31,450 cells from GSE160903. (J), T0: at baseline; T1: at the first cycle of ICIs; T2: at the second cycle of ICIs. (K), T1+:
more than one cycles of ICIs; total: cells in PBMC, tumor and metastases. (L), W2: two weeks after ICIs; W4: 4 weeks after ICIs; M3: three months
after ICIs. (P), PIC: physically interacting cells; separate_myeloid: single CD11c+ cells, separate_T: single CD3+ cells).
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AUC=0.73; validation 2, AUC=0.71), and in one post-ICI validation

dataset (AUC=0.82) (Figure 7C). However, the treatments for the

validation cohorts mentioned above and for the training dataset

were all anti-PD-1-based. We next examined Tsurv in anti-CTLA-4

settings. Moreover, Tsurv exhibited satisfactory performance in

predicting anti-CTLA-4 responders (AUC of pre_anti-CTLA-4:

0.68; AUC of post_anti-CTLA-4: 0.88) (Figure 7C). Overall, the

behavior of Tsurv remained stable pre-ICIs or post-ICIs, regardless

of whether it was administered in combination with anti-PD-1 or

anti-CTLA-4 therapy for melanoma. We further implemented tests

in gastric cancer (GC) and urothelial cancer (UC) patients, and

Tsurv again exhibited superior performance (GC AUC=0.78; UC

AUC=0.65) pre-ICIs (Figures 7D, E). However, due to insufficient

post-ICI samples from the remaining tumor types (Supplementary

Table S1), we were forced to integrate post-ICI samples that were

left altogether, and in this case, Tsurv failed to operate regularly

(Supplementary Figure S18B). For esophageal cancer (ESCA) or

HNSCC pre-ICIs, Tsurv was not suitable either (Supplementary

Figures S18 C, D).

Generally, Tsurv is well-behaved in multiple cancer types for R/

NR identification. We next evaluated its ability by performing

Kaplan−Meier (KM) survival analysis. Tsurv not only performed

well in the training dataset (HR=0.31, p value<0.0001) but also in

three independent melanoma datasets (Figure 7F, Supplementary

Figure S18E, F). In addition, Tsurv exhibited excellent prognostic

value for bladder cancer (HR=0.34, p value=0.0031), UC (HR=0.76,

p value=0.045) and NSCLC (validation 1: HR=0.32, p value=0.011)

(Figures 7G–I). Tsurv performed rather generally in another

NSCLC dataset and glioma cohort, mainly because of the limited

sample size (Supplementary Table S1, Figure 7I, Supplementary

Figure S18H). From another perspective, Tsurv might not be

suitable for all tumor types; for example, it behaved poorly in

ESCA (HR=1.64, p value =0.17) (Supplementary Figure S18G).

We further compared the performance of Tsurv with that of

previously published predictive gene signatures focused on ICI

cohorts. Most of them were developed for the prediction of OS

from pre-ICIs, and within 5 signatures we tested (blood,

IFN_gamma, IMPRES, inflammatory and T_cell_inflamed); all

but IMPRESs exhibited little ability to identify R, with IMPRES

incapable of predicting response (Supplementary Figures S18I-M).

Tumor types and treatment regimens were chosen according to

published articles (Supplementary Table S1), and all 5 signatures

were not able to discriminate between PR and PD post-ICIs

(Supplementary Figures S1, 8I-M). Overall, compared to

published ICIs response prediction signatures, the Tsurv signature

outperformed them and remained stable across different tumor

types; moreover, its malleability and universality are rather rare.

Considering that Tsurv was developed from a restricted gene list

that was actually derived from sorted CD3+ sc data, we evaluated

the prediction power of Tsurv via the aforementioned bulk RNA-

seq; thus, we hypothesized that Tsurv might preserve the ability to

identify R/NR in sc datasets as well. Biasi et al. reported that

CXCR4+ GZMB+ mucosal-associated invariant T (MAIT) cells in

peripheral blood mononuclear cells (PBMCs) were more abundant

in melanoma ICIs responders than in healthy controls. We

calculated Tsurv model-derived scores from their PBMC-sc data
Frontiers in Immunology 22
and revealed that the Tsurv score was constantly upregulated in R

patients compared with that in HCs before and throughout therapy

(T0: baseline; T1: first cycle of ICIs; T2: second cycle of ICIs)

(Figure 7J). In addition, compared with that at T0, NR exhibited a

pulsed increase in Tsurv expression at T1, while R did not increase

until T2, with a slight downward trend at T1.

For further validation, we adopted the BC sc dataset from

Zhang et al. and the NSCLC sc dataset from Caushi et al., which

all contained PBMC sc data. Additionally, Tsurv was significantly

upregulated within MPR in the BC and NSCLC ICIs cohorts

(Figures 7K, L left). In addition, we longitudinally observed the

same fluctuation trend in the Tsurv score in NSCLC PBMCs (W4:

at the second cycle of ICI therapy before surgery) (Figure 7L). We

wondered whether transient downregulation of Tsurv at W4 in the

MPR together with pulsed upregulation in the Non group could be a

sign of survT (the CD8+ subcluster marked by our Tsurv

signature) migration.

We thus hypothesized that after 2 cycles of ICI therapy, in MPR,

survT would experience obvious mobilization from the peripheral

circulation to the TME, while in Non, survT would be excluded

from the TME (named the “Tsurv-migrate” phenomenon).

Therefore, we calculated the Tsurv score from multiregional data

at W4, including tumor-adjacent normal tissue (normal), tumor-

draining lymph node (lymph node) and brain metastasis data.

Astonishingly, the Tsurv score exhibited a significant stepwise

upregulation trend in MPR from PBMCs to normal tissue, then

to lymph nodes, and finally to the TME (Figure 7L). Moreover, the

Tsurv score peaked in lymph nodes in Non but decreased from the

lymph node to the TME and then to brain metastases (Figure 7L).

Overall, the Tsurv score in MPR exceeded that in Non, regardless of

the sampling region, except for in the lymph nodes in Non

(Supplementary Figure S19C right). Notably, ADGRE5 was

completely consistent with the Tsurv model, emphasizing its

indispensable role in survT functionalization and the “Tsurv-

migrate” phenomenon (Supplementary Figure S19C left and S19D).

Afterward, we examined the influence of different ICIs regimens

on Tsurv performance in the sc datasets. In another NSCLC cohort

that underwent anti-PD1+chemo therapy, Tsurv remained

upregulated regardless of the cell subpopulation (Figure 7M,

Supplementary Figures S19E, F). In addition, in melanoma, the

Tsurv model performed well in the anti-PD1 regimen, anti-CTLA-4

regimen and combination therapy cohorts (Figure 7N). In patients

with less aggressive BCC or SCC (nonmelanoma skin cancer), Tsurv

also exhibited excellent performance (Figure 7O). Overall, these

findings indicate that the Tsurv model is suitable for the treatment

of various ICIs in clinical settings, further expanding the scope of

its application.

Finally, taking advantage of the previously described PIC-seq

dataset, we found that the Tsurv score was significantly higher in

PICs than in separate T cells and manifested significant up-

regulation in PIC post-ICIs compared to that in pre-ICIs

(Figure 7P, Supplementary Figure S19H), indicating that survT

might be dependent upon myeloid cells in the TME. Indeed, Cluster

0, which contained CXCL13+PD-1+CD4+ T cells, and Cluster 12,

which represented LAMP3+ DCs (Supplementary Figure S5), were

the only two clusters with significantly higher Tsurv scores post-
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ICIs and in the PIC than in the other subclusters (Supplementary

Figure S19I).

Additionally, there is room for improvement in the Tsurv

model. Frustratingly, Tsurv could not predict CD8+ TIL-specific

potential for R in clear cell renal cell carcinoma (ccRCC) PBMCs or

in the ccRCC TME, regardless of exploration in a multiregional

matter (Supplementary Figure S19A). In BC, Tsurv lost the ability

to predict R in PBMCs or the TME at T0 or T1 (Supplementary

Figure S19B), with moderate efficacy of R/NR identification at T1+

(Supplementary Figures S7K, S19B). From another perspective, the

limitations of Tsurv in BC and ccRCC were rather reasonable and

explainable considering that Zhang et al. described them as CILhigh

tumors that indeed suffer from reduction of precursor-like CD8+

TILs (phenotypically resembling survT) pre-ICIs and post-ICIs, in

accordance with our Tsurv model behavior here. Finally, biological

insights into the Tsurv model in non-T cells, such as CD45- cells

(Supplementary Figure S19A) and myeloid cells (Supplementary

Figure S19H), still remained to be illuminated.

Overall, the ADGRE5-centered Tsurv model indicated that, as

has been illuminated, could be used as a “multifunctional toolkit”, not

only for excellent prediction of ICIs prognosis in multiple tumor

types but also for PBMC-based liquid biopsy monitoring of the MPR/

Non tract, even in biology insight mining, for instance, the “Tsurv-

migrate” phenomenon and dependence of survT upon LAMP3+DC.
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3.8 Spatial codependences of the IL32-
STAT5-ADGRE5 axis

We next sought to investigate whether the IL32-STAT5-

ADGRE5 axis aligns with specific spatial distribution patterns in

spatial transcriptomics data. After cluster discrimination and

identification, we classified 7 clusters and 11 clusters in bladder

cancer datasetA (GSM5224028) (101) and breast cancer datasetB

(GSM6177599) (102), respectively. Although datasetA and datasetB

were baseline nonmetastatic cancers that had not undergone ICI

therapy (Supplementary Figure S20), we still observed obvious

similarities in spatial distribution patterns across ADGRE5, IL32

and STAT5A/B (Figure 8A). To quantify spatial correlation, we

utilized the Delaunay triangulation method to construct

neighboring networks and then calculated the co-expression

probability through the adjacency list (Methods). When

computing the expression similarity within cell−neighbor pairs,

we detected strong correlations between ADGRE5, STAT5, IL32

and CD8A in both datasetA and datasetB (Figure 8C). Notably, a

co-expression pattern also appeared at the cluster level, as was the

case for immune cell cluster 6 in dataset A and clusters 1, 4 and 7 in

dataset B (Figure 8B). In conclusion, the spatial colocalization of the

IL32-STAT5-ADGRE5 axis with CD8+ TILs further emphasized its

probable regulatory network in the TME.
B C

A

FIGURE 8

Spatial co-dependences of IL32-STAT5-ADGRE5 axis. (A) Spatial distribution (left) and UMAP plot (middle) of clusters in GSM5224028 (upper) and
GSM6177599 (down), with feature plot of specific markers spatially (right). (B) Dot plot of genes expression of specific markers in clusters manifested
in A from GSM5224028 (left) and GSM6177599 (right). (C) Expression similarity within cell-neighbor pairs.
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4 Discussion

Neo-PD1-based therapeutic strategies offer invaluable

opportunities for temporal tracing of TME remodeling (11),

which facilitates mapping specific beneficial cell subpopulations in

the MPR to Non groups for overcoming ICI resistance (103).

However, inter- and intratumor heterogeneity, together with the

complexity of different immunotherapy combinations, have made

this process challenging.

In this study, we managed to simplify the intricate scientific

inquiry by specifically focusing on sc data derived exclusively from

CD3+ TILs after 2 cycles of nivolumab treatment in resectable

primary NSCLC patients. In adopting this approach, we ensured a

more targeted and refined analysis, minimizing confounding

factors, and successfully identifying IL32-STAT5-ADGRE5 as the

axis responsible for the expansion of survT (a specific sub-cluster of

MPR-E) within TME of MPR patients. To the best of our

knowledge, this marks the inaugural recognition of the ADGRE5

pathway within the realm of tumor immunology.

In our analysis, we confirmed that MPR-E, composed of stem-like

CD8.c05, effector-like CD8.c11 and CD4.c16/c17 and terminally-

differentiated CD8.c12, was stepwise upregulated from pre to non-

MPR and then to MPR. The debate over whether effector CD8,

exhausted CD8, or stem-like CD8 constitutes the primary responsive

sub-cluster to immunotherapy has persisted. Although both in vitro-

expanded Teffs (≈ CD8.c11) and Tstems (≈ CD8.c05/survT) exhibited

cytotoxicity to some extent in ACT, Meyran et al. confirmed that

stemCAR-T cells (≈ CD8.c05/survT) with enhanced expression of

SELL, TCF7 and RUNX2 were retained rather than conventional

effector-like CAR-T cells that differentiated into anergic states rapidly

in vivo (104). Indeed, survT projected from stem-like CD8.c05 cells,

compared with the others in MPR-E, exhibited the best consistency

across murine and human multimodal validation.

To elucidate the mechanism driving the expansion of survT, we

employed a cell communication analysis pipeline. This approach

unveiled the ADGRE5 pathway between CD4+ T cells and survT in

MPR-E, highlighting the significance of multicellular ecosystems in

neo-PD1. Interestingly, CD8+ stemCAR-T cells failed to function

without CD4+ stemCAR-T cells (104), and in another study, the

TCF-1 Tpex was shown to increase and respond to neo-PD1 only in

uninvolved regional lymph nodes (uiLNs) with help from DCs (15).

Indeed, we also revealed physical interactions between LAMP3+

DCs and CXCL13+CD4 (CD4.c16/17 in MPR-E), possibly through

MIF-(CD74+CXCR4), through reanalysis of a PIC-seq dataset (60).

However, the direct involvement of ADGRE5 remained elusive.

Although CD55, reported by Chang et al. to be potential ligand for

ADGRE5 (89), exhibiting up-regulation in MPR-E in our discovery

datasets, it did not consistently follow this trend in our own neo-

PD1 sc datasets. Indeed, Chang et al. neither verified ADGRE5-

CD55 interaction by ex-vivo experiments. This prompted us to

leverage multimodal analyses ranging from Chip-seq to proteomics,

which finally led to the discovery of IL32 and STAT5 as regulators

of ADGRE5 expression.

Previous research has shown that IL32 has paradoxical

behaviors. The microbiome stimulates protumorigenic IL32

expression in multiple myeloma (MM) cells via TLRs-NFkB
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(105), and Treg-derived IL32 promotes bladder cancer metastasis

and immunosuppression together with TIGIT (106). In contrast,

IL32 induces ICI-resistant melanoma by activating DCs to secrete

CCL5-primed CD8+ TILs (105). In UC, IL32 promoted CD3+ TIL

infiltration (107). However, the role of IL32 in CD8+ TILs in the

neo-PD1 scenario has not been fully elucidated. In 3D-HYGTIC,

IL32 served as the pillar for ICI-mediated upregulation of ADGRE5,

without which ADGRE5 survT decreased exponentially, while IL32

addition did not upregulate ADGRE5. To explore the regulatory

network of ADGRE5, we performed VIPER-based SCENIC analysis

with ChIP-seq verification and subsequently suggested that STAT5

could be the core TF mediating ADGRE5 expression in survT.

In contrast to IL32 or CD55, STAT5 is a well-defined key TF

involved in the antitumor effects of CD8+ TILs. Numerous newly

discovered ICs, such as the methionine transporter SLC43A2 (108),

protein tyrosine phosphatase 1B (PTP1B) (109), and the ubiquitin

ligase MDM2, manipulate CD8+ TILs through STAT5 (110).

Overexpression of STAT5 in the intermediate Tex epigenetically

antagonized TOX in an LCMV infection mouse model (111).

Moreover, little is known about the influence of STAT5 on neo-PD1

or the ADGRE5 pathway. We demonstrated that CD8.c05/11/12,

although they share various degrees of exhaustion, enhanced STAT5

activation, together with CD8.c05 (named survT), was characterized by

the most prominent enrichment of STAT5. In 3DHYGTIC, anti-PD-1

promoted ADGRE5 expression on survT through phosphorylation of

STAT5 through a mechanism dependent on IL32. Consistent with our

study, Wang et al. revealed that IL-2-treated CD8+ T cells quenched

NFAT1-dependent PD-1 upregulation via competitive binding of the

PD-1 promoter domain to STAT5 (112).

Overall, the IL32-STAT5-ADGRE5 axis serves as an essential

pathway controlling survT, which makes us wonder whether this

axis could be used to construct a classifier for MPR identification;

thus, an ADGRE5-centered Tsurv model was constructed.

Compared to existing immunotherapy prognosis models, some of

which suffer from poor behavior in large cohorts or different tumor

types, Tsurv performed markedly better in multiple ICI cohorts,

both for pre-ICI prediction and post-ICI classification and was even

capable of monitoring the MPR temporally with PBMC bulk RNA-

seq data, further extending its translational capacity for low-cost,

liquid biopsy-based identification of Non from MPR in the clinic.

Apparently, the limitations of our study are irrefutable. First,

paired or extra sc TCR sequencing to decipher clonal expansion was

absent, which was necessary for supporting MPR-E beyond a pure

increase in the subcluster fraction. In addition, a better, well-

designed CYTOF panel for the murine TME equipped with

markers such as ADGRE5, IL32 and CD55 could be beneficial.

Finally, the mechanisms responsible for the STAT5-ADGRE5 axis,

as well as additional ligands for ADGRE5, have yet to

be determined.
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49. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The
Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst (2015)
1(6):417–25. doi: 10.1016/j.cels.2015.12.004

50. Liu L, Huang X, Xu C, Chen C, ZhaoW, Li D, et al. Decidual CD8+T cells exhibit
both residency and tolerance signatures modulated by decidual stromal cells. J Transl
Med (2020) 18(1):221. doi: 10.1186/s12967-020-02371-3

51. Hardardottir L, Bazzano MV, Glau L, Gattinoni L, Köninger A, Tolosa E, et al.
The new old CD8+ T cells in the immune paradox of pregnancy. Front Immunol (2021)
12:765730. doi: 10.3389/fimmu.2021.765730

52. Cao J, O’Day DR, Pliner HA, Kingsley PD, Deng M, Daza RM, et al. A human
cell atlas of fetal gene expression. Science (2020) 370(6518):eaba7721. doi: 10.1126/
science.aba7721

53. Zhang Y, Chen H, Mo H, Hu X, Gao R, Zhao Y, et al. Single-cell analyses reveal
key immune cell subsets associated with response to PD-L1 blockade in triple-negative
breast cancer. Cancer Cell (2021) 39(12):1578–1593.e8. doi: 10.1016/j.ccell.2021.09.010

54. Li G, Guo J, Zheng Y, Ding W, Han Z, Qin L, et al. CXCR5 guides migration and
tumor eradication of anti-EGFR chimeric antigen receptor T cells. Mol Ther -
Oncolytics. (2021) 22:507–17. doi: 10.1016/j.omto.2021.07.003

55. Wang J, Li R, Cao Y, Gu Y, Fang H, Fei Y, et al. Intratumoral CXCR5+CD8+T
associates with favorable clinical outcomes and immunogenic contexture in gastric
cancer. Nat Commun (2021) 12(1):3080. doi: 10.1038/s41467-021-23356-w

56. Lemvigh CK, Parry EM, Deng SL, Dangle NJ, Ruthen N, Knisbacher BA, et al.
ZNF683 (Hobit) marks a CD8+ T cell population associated with anti-tumor immunity
following anti-PD-1 therapy for richter syndrome. Blood (2022) 140(Supplement
1):1807–8. doi: 10.1182/blood-2022-162550

57. Miller BC, Sen DR, Abosy RA, Bi K, Virkud YV, LaFleur MW, et al. Subsets of
exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint
blockade. Nat Immunol (2019) 20(3):326–36. doi: 10.1038/s41590-019-0312-6

58. Braun DA, Street K, Burke KP, Cookmeyer DL, Denize T, Pedersen CB, et al.
Progressive immune dysfunction with advancing disease stage in renal cell carcinoma.
Cancer Cell (2021) 39(5):632–648.e8. doi: 10.1016/j.ccell.2021.02.013

59. Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, et al.
Single-cell map of diverse immune phenotypes in the breast tumor microenvironment.
Cell (2018) 174(5):1293–1308.e36. doi: 10.1016/j.cell.2018.05.060

60. Cohen M, Giladi A, Barboy O, Hamon P, Li B, Zada M, et al. The interaction of
CD4+ helper T cells with dendritic cells shapes the tumor microenvironment and
immune checkpoint blockade response. Nat Cancer. (2022) 3(3):303–17. doi: 10.1038/
s43018-022-00338-5

61. Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercellular
communication by linking ligands to target genes. Nat Methods (2020) 17(2):159–62.
doi: 10.1038/s41592-019-0667-5

62. Garcia-Alonso L, Handfield LF, Roberts K, Nikolakopoulou K, Fernando RC,
Gardner L, et al. Mapping the temporal and spatial dynamics of the human
endometrium in vivo and in vitro. Nat Genet (2021) 53(12):1698–711. doi: 10.1038/
s41588-021-00972-2

63. Jiang YQ, Wang ZX, Zhong M, Shen L-J, Han X, Zou X, et al. Investigating
mechanisms of response or resistance to immune checkpoint inhibitors by analyzing
cell-cell communications in tumors before and after programmed cell death-1 (PD-1)
targeted therapy: an integrative analysis using single-cell RNA and bulk-RNA
sequencing data. OncoImmunology (2021) 10(1):1908010. doi: 10.1080/
2162402X.2021.1908010

64. Xie J, Wang Z, Wang W. Semaphorin 4D induces an imbalance of th17/treg cells
by activating the aryl hydrocarbon receptor in ankylosing spondylitis. Front Immunol
(2020) 11:2151. doi: 10.3389/fimmu.2020.02151
frontiersin.org

https://doi.org/10.1038/s43018-022-00433-7
https://doi.org/10.1016/j.ccell.2022.02.002
https://doi.org/10.1016/j.immuni.2022.02.001
https://doi.org/10.1016/j.immuni.2022.02.001
https://doi.org/10.7150/thno.54648
https://doi.org/10.1002/adbi.202200264
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1186/s13059-019-1862-5
https://doi.org/10.3390/genes10070531
https://doi.org/10.1016/j.cell.2018.09.006
https://doi.org/10.1093/bib/bbac180
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1038/s43018-022-00500-z
https://doi.org/10.1002/imt2.43
https://doi.org/10.1002/imt2.43
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1038/s41586-022-04918-4
https://doi.org/10.1016/j.cell.2021.12.018
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1093/bioinformatics/btw216
https://doi.org/10.1038/s41467-018-03843-3
https://doi.org/10.1038/msb.2010.31
https://doi.org/10.1093/bioinformatics/bty648
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1101/496521
https://doi.org/10.1101/496521
https://doi.org/10.1038/nprot.2016.136
https://doi.org/10.1038/s41421-023-00529-z
https://doi.org/10.1186/s13073-022-01050-w
https://doi.org/10.1186/s13073-022-01050-w
https://doi.org/10.1038/s41577-020-0306-5
https://doi.org/10.1038/s41586-022-05680-3
https://doi.org/10.1002/advs.202203699
https://doi.org/10.1002/advs.202203699
https://doi.org/10.1172/JCI164809
https://doi.org/10.1126/science.abe6474
https://doi.org/10.1126/science.abe6474
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1186/s12967-020-02371-3
https://doi.org/10.3389/fimmu.2021.765730
https://doi.org/10.1126/science.aba7721
https://doi.org/10.1126/science.aba7721
https://doi.org/10.1016/j.ccell.2021.09.010
https://doi.org/10.1016/j.omto.2021.07.003
https://doi.org/10.1038/s41467-021-23356-w
https://doi.org/10.1182/blood-2022-162550
https://doi.org/10.1038/s41590-019-0312-6
https://doi.org/10.1016/j.ccell.2021.02.013
https://doi.org/10.1016/j.cell.2018.05.060
https://doi.org/10.1038/s43018-022-00338-5
https://doi.org/10.1038/s43018-022-00338-5
https://doi.org/10.1038/s41592-019-0667-5
https://doi.org/10.1038/s41588-021-00972-2
https://doi.org/10.1038/s41588-021-00972-2
https://doi.org/10.1080/2162402X.2021.1908010
https://doi.org/10.1080/2162402X.2021.1908010
https://doi.org/10.3389/fimmu.2020.02151
https://doi.org/10.3389/fimmu.2024.1304183
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1304183
65. Allen F, Rauhe P, Askew D, Tong AA, Nthale J, Eid S, et al. CCL3 enhances
antitumor immune priming in the lymph node via IFNg with dependency on natural
killer cells. Front Immunol (2017) 8:1390. doi: 10.3389/fimmu.2017.01390

66. Fonseca R, Burn TN, Gandolfo LC, Devi S, Park SL, Obers A, et al. Runx3 drives
a CD8+ T cell tissue residency program that is absent in CD4+ T cells. Nat Immunol
(2022) 23(8):1236–45. doi: 10.1038/s41590-022-01273-4

67. Liu L, Chen J, Zhang H, Ye J, Moore C, Lu C, et al. Concurrent delivery of
immune checkpoint blockade modulates T cell dynamics to enhance neoantigen
vaccine-generated antitumor immunity. Nat Cancer. (2022) 3(4):437–52.
doi: 10.1038/s43018-022-00352-7

68. Chuah S, Lee J, Song Y, Kim H-D, Wasser M, Kaya NA, et al. Uncoupling immune
trajectories of response and adverse events from anti-PD-1 immunotherapy in hepatocellular
carcinoma. J Hepatol (2022) 77(3):683–94. doi: 10.1016/j.jhep.2022.03.039

69. Argyriou A, Wadsworth MH, Lendvai A, Christensen SM, Hensvold AH,
Gerstner C, et al. Single cell sequencing identifies clonally expanded synovial CD4+
TPH cells expressing GPR56 in rheumatoid arthritis. Nat Commun (2022) 13(1):4046.
doi: 10.1038/s41467-022-31519-6

70. Bozorgmehr N, Okoye I, Oyegbami O, Xu L, Fontaine A, Cox-Kennett N, et al.
Expanded antigen-experienced CD160 + CD8 + effector T cells exhibit impaired effector
functions in chronic lymphocytic leukemia. J Immunother Cancer. (2021) 9(4):e002189.
doi: 10.1136/jitc-2020-002189

71. Capasso M, Durrant LG, Stacey M, Gordon S, Ramage J, Spendlove I.
Costimulation via CD55 on human CD4+ T cells mediated by CD97. J Immunol
(2006) 177(2):1070–7. doi: 10.4049/jimmunol.177.2.1070

72. Abbott RJM, Spendlove I, Roversi P, FitzgibbonH, Knott V, Teriete P, et al. Structural
and functional characterization of a novel T cell receptor co-regulatory protein complex,
CD97-CD55. J Biol Chem (2007) 282(30):22023–32. doi: 10.1074/jbc.M702588200
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