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Introduction: Burns are characterized by a massive and prolonged acute

inflammation, which persists for up to months after the initial trauma. Due to

the complexity of the inflammatory process, Predicting the dynamics of wound

healing process can be challenging for burn injuries. The aim of this study was to

develop simulation models for the post-burn immune response based on (pre)

clinical data.

Methods: The simulation domain was separated into blood and tissue

compartments. Each of these compartments contained solutes and cell

agents. Solutes comprise pro-inflammatory cytokines, anti-inflammatory

cytokines and inflammation triggering factors. The solutes diffuse around the

domain based on their concentration profiles. The cells include mast cells,

neutrophils, and macrophages, and were modeled as independent agents. The

cells are motile and exhibit chemotaxis based on concentrations gradients of the

solutes. In addition, the cells secrete various solutes that in turn alter the

dynamics and responses of the burn wound system.

Results: We developed an Glazier-Graner-Hogeweg method-based model

(GGH) to capture the complexities associated with the dynamics of

inflammation after burn injuries, including changes in cell counts and cytokine

levels. Through simulations from day 0 – 4 post-burn, we successfully identified
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key factors influencing the acute inflammatory response, i.e., the initial number of

endothelial cells, the chemotaxis threshold, and the level of chemoattractants.

Conclusion: Our findings highlight the pivotal role of the initial endothelial cell

count as a key parameter for intensity of inflammation and progression of acute

inflammation, 0 – 4 days post-burn.
KEYWORDS
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1 Introduction

Burns are a significant problem worldwide, having a high

mortality and morbidity rate. Especially severe burns generally

induce a massive long-term inflammatory response both

systemically and locally (1–5).

Even though the inflammatory response is initially indispensable

during wound healing, a massive persistent inflammatory response

not only negatively affects the wound healing but may also result in

multiple organ dysfunction (5). Despite significant progress in

unravelling cellular and molecular processes involved in burn

wound healing and the post-burn inflammatory response, the

pathophysiology of burns and how, in this regard, burns differ

from other non-burn wounds is far from fully understood.

The immune system is a key factor in wound healing and tissue

regeneration. In the case of severe burns, the post-burn immune

response is complex and involves intricate interactions between

various cellular and molecular components (6, 7). It is essential to

understand the dynamics of the immune response in burn wounds

for the development of effective therapeutic interventions to

improve patient outcomes (8–10). At the macroscopic level (i.e.

patient level), the long-term inflammation that follows burn

wounds often leads to deformities that affect the quality of life

from burn patients. In severe cases, delayed wound closure (11),

abnormal scarring (12), increased fibrosis (13), increased vascular

proliferation (14) and excessive extracellular matrix deposition (12)

can be caused by intense local and systemic inflammatory reactions.

From a cell biology point of view, the number of inflammatory

cells such as neutrophils, monocytes, macrophages, and level of pro-

inflammatory cytokines are important at the acute inflammation stage

of post-burn wound healing (4–6, 15, 16). During the acute

inflammatory phase, between 24 and 72 hours, damage-associated

molecular patterns (DAMP) and pathogen-associated molecular

patterns (PAMP) trigger the immune response. This is accompanied

by the release of interleukin (IL)-8, IL-6, tumor necrosis factor

(TNF)a, IL-1b and IL-10, this process is summarized in Figure 1C.

After 72 hours, macrophages are attracted to the wound site and

differentiate into pro-inflammatory (M1) or “pro-healing” (M2)

phenotypes. Fibroblasts migrate to the wound site, where

angiogenesis takes place, with the help of endothelial cells. The
02
processes that follow over the next days include reepithelization,

revascularization, peripheral nerve repair, collagen fiber organization,

reducing the number of macrophages and fibroblasts. Both decreased

inflammation (i.e. normalization of the acute inflammatorymediators

such as IL-6 and IL-8) and decreased angiogenesis will lead to limited

scar formation (17). Endothelial cells play a crucial role in balancing

the level of angiogenesis (18), helping to facilitate the inflammatory

response and wound healing (19). After a burn injury, endothelial

cells are among the first responders at the site of tissue damage.

Among their main functions, they initiate the inflammatory response

during the inflammation phase by expressing adhesion molecules and

chemokines (20), facilitating the recruitment of immune cells such as

neutrophils and monocytes to the wound area (21). Since endothelial

cells are crucial during the acute inflammatory phase post-burn, we

hypothesized that the endothelial cell count is one of the crucial

parameters in burn wound healing and the acute immune response as

shown in Figure 1C. Another key parameter is the time frame in

wound healing.

Until now, both experimental and clinical approaches have been

used to gain insight into the post-burn wound healing and

specifically the immune response. However, due to the complexity

of the involved processes, cellular and molecular pathways, these

approaches have limitations such as the ability to sufficiently

understand the underlying mechanisms to predict the system’s

behavior. In some cases, it may not be possible to extract details

on a finer-scale, such as spatial concentrations of cytokines at

microscale level through animal experiments. Moreover, there are

discrepancies in translating knowledge on cellular/molecular level

for development of effective therapies for burn patients. To bridge

this knowledge gap, computational modeling approaches have been

developed as powerful tools to better understand complex biological

processes (22–24). Recently, black box approaches such as machine

learning and neural networks have been developed in context of

burn wound healing process (25). Most of black box models in

literature focus on wound healing prediction via image analysis and

often overlook the underlying mechanisms driving the healing

process. Burn wound healing, in general, wound healing, could

benefit vastly from mechanistic computational models focusing on

different aspects of the healing process. Turley et al. provide a

comprehensive overview of how mathematical model techniques
frontiersin.org
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FIGURE 1

Summary of the data used for validation, conceptual model of the modelling approach, and sigmoid function and Michaelis-Menten function with
different parameters. (A) Cell data relating different species to their respective cell characteristics pre-burn and after burn essay over time series by
different studies. (B) Cytokine data relating different species to their respective cell characteristics pre-burn and after burn essay over time series by
different studies. (A, B) Each arc represents different histogram data related to the main characteristic in study, note that this data has been obtained
experimentally in vivo. (C) Conceptual model of the modelling approach. Each stock contains the variable in question and each link represents its
relationship between variables (Created with BioRender.com). (D, E) Sigmoid function and Michaelis-Menten function with different parameters,
respectively. Each value was randomized to show how different inflection points output different curves.
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could play a role in exploring various aspects of wound healing

including inflammation, closure and angiogenesis (26). Nagaraja et al.

developed mechanistic models to understand the prolonged effects of

inflammation (chronic inflammation) on the healing process and to

test possible intervention strategies computationally (27, 28). These

models were further expanded to identify biomarkers of pathological

scarring in skin tissues (29). Though the abovemodels are not specific

to burn injuries, they showcase the usefulness of mathematical

models in exploration and mechanism driven predictions of wound

healing. In this study, we introduce an in silicomechanistic modeling

approach to investigate the dynamics of the post-burn immune

response. Agent-based modeling (ABM) techniques, specifically the

Glazier-Graner-Hogeweg (GGH) model (30), is used to simulate the

behavior of inflammatory agents and the dynamics of entities

involved in burn wound inflammation (31, 32). By combining

relevant experimental knowledge, data from existing experimental

animal burn models, and mathematical principles (33, 34), our

approach provides a comprehensive framework for studying the

intricate dynamics of the (acute) immune response in burn

wounds. Further, in this study, we hypothesize that endothelial cells

act as one of the key players in determining the extent and duration of

post-burn inflammation response. To verify this hypothesis, we use

the developed spatio-temporal model to numerically simulate,

analyze and qualitatively validate post-born immune responses

during the acute inflammation phase.
2 Methods

2.1 Data description, analysis,
and processing

The dataset provided by Mulder et al. (2), encompasses a

collection of cytokine levels and immune cell counts of

14 different cell types from 247 studies involving rats and

mice (Figures 1A, B). These measurements were taken across

various animal characteristics (age, sex, species), burn wound

characteristics (% total burn surface area, thickness and depth),
Frontiers in Immunology 04
sample source (in the skin), repeated samples, baseline comparison

used, relative burn wound area, wound status (contraction, re-

epithelialization, or overall burn area), anesthetic type used, and

animal outcomes (healthy or not). Additionally, cytokine data

specifically includes details on the analysis methods and the

different cytokines measured, while cell count data specifies the

method of inference and measurement. Both types of data are

longitudinal follow-ups for some of the animals, which means that

cell counts, and concentration of cytokines are accompanied

by timeseries.

Notably, the dataset exhibits significant gaps, missing cytokine

concentration or cell count reports for a notable amount of time

frames, challenging the preprocess of data from a mechanistic

standpoint. To address this issue, certain assumptions had to be

made to enable specific validation points within the analysis.

Table 1 is the result of the raw data analysis on cell count change

over time without any assumptions. These assumptions were made

while considering the overall integrity and scientific validity of the

data. Going forward, the model parameters were adjusted

accordingly to fit the values provided by the data.
2.2 Modeling approach

ABM is a computational modeling technique that enables the

simulation of complex systems by representing individual agents

and their interactions within a defined environment. ABM has

gained increasing popularity in immunology (35, 36) because of its

ability to capture the spatial heterogeneity and emergent behaviors

observed in biological systems.

The GGH model, also known as the Cellular Potts Model

(CPM), is a versatile computational method that enables the

representation of non-uniform cell shapes as agents in multi-cell

systems. It is a widely adopted ABM framework that has been

successfully applied to simulate various biological phenomena,

including cell migration (37), chemotaxis (38), and cell-cell

interactions (39). This model is particularly suitable for studying

the complex dynamics of the immune response, as it allows the
TABLE 1 Cell count transitions 0 – 4 days post-burn.

Cell type 0h T 24h T 48h T 72h T 96h T

Resting Neutrophils (RN) – ↗ – ↘ – ↓ – – – –

Monocytes (M) – – – ↑ – ↘ – – – –

Fibroblasts (F) – – – – – – – ↑ – –

Activated neutrophils (AN) – ↑ – ↘ – ↓ – – – –

Necrotic neutrophils (NN) – – – – – – – – – –

Resting Macrophages (RM) – – – – – – – – – –

Macrophages type I (M1) – – – – – ↑ – ↘ – –

Macrophages type II (M2) – – – – – – – ↗ ↗ ↑

Myofibroblasts (My) – – – – – – – – – ↗
fro
The symbols - , ↗, ↘, ↑, and ↓ indicate unknowns, growth, decline, increase, and decrease respectively, offering an intricate portrayal of cellular dynamics. T represents the transition between
timepoints. Assumptions made based on data supplied by Mulder et al. (2).
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representation of multiple cell types, the diffusion of soluble factors

and the integration of experimental data extracted from existing in

vivo animal burn models (rats and mice) (2) into the simulation

framework (Figures 1A, B). With this integration, we expect to be

able to find a good estimate for the parameters used to simulate the

post-burn effects on cytokines, cells, and two-dimensional

development of the wound. Our condensed two-dimensional

simulation of the wound development implements the free energy

mechanisms previously proposed using CompuCell3D (40, 41), an

open-source GGH implementation.

2.2.1 Simulation dynamics
The burn wound site is created in a 2D 5*5 cm square domain

that includes two main components: the central 4*4 cm square

represents the tissue component whereas the surrounding area of

the central square is treated as the blood component (concept

shown in Figure 1C). Because inflammation after burns intensifies

during the first three to four days, the whole simulation will perform

1,000,001 Monte Carlo steps (MCS) with each 10,000 MCS

representing one hour so that one simulation is treated as 100

hours in real time. The cells used in the simulation environment

follow the rules of the conceptual model of Figure 1C, explained by

following the links. Resting neutrophils and monocytes circulate

commonly in the blood when there is no injury. If a burn occurs, the

endothelial cells of the tissue component will secrete IL-8 [Link 1] to

trigger the inflammatory response. Resting neutrophils are recruited

from blood to tissue by chemotaxis to IL-8 [Link 2] and are

activated by IL-8 [Links 3 and 18] when entering the tissue layer.

Subsequently, activated neutrophils secrete pro-inflammatory

cytokines IL-1b and TNF-a [Link 6] and these pro-inflammatory

cytokines contribute to neutrophil activation [Link 19] and enhance

the inflammatory response. Activated neutrophils can also

endocytose IL-8 [Link 16] to neutralize inflammation to some

extent. Meanwhile, activated neutrophils are short-lived, so they

will enter apoptosis [Link 4] during inflammation. If inflammation

persists, some activated neutrophils will turn into necrotic

neutrophils [Link 5], triggering the release of additional IL-8 in

the tissue [Link 17].

Attracted from blood to tissue, monocytes migrate toward IL

−1b and TNF-a, secreted by activated neutrophils [Link 7], and

then turn into resting macrophages, also called resting monocytes,

in the tissue compartment in the presence of IL-6 [Link 8]. The

resting macrophages are then transformed into activated

macrophages [Link 9], commonly known as M1 macrophages,

promoted by IL-6 and TNF-a. The macrophages of the M1

phenotype can secrete pro-inflammatory cytokines IL-6 and TNF-

a [Link 10], which promote the activation of neutrophils and

macrophages [Links 20 and 21]. M1 macrophages transition to

M2 macrophages [Link 11] is promoted by the anti-inflammatory

cytokine IL-10. M2 macrophages secrete IL-10 [Link 12] and TGF-

b1 [Link 13]. In the current conceptual model, we only consider

activated TGF-b1 (no latent), and IL-10 inhibits neutrophil and

macrophage activation [Links 23 and 24]. Fibroblasts migrate

towards TGF-b1 [Link 27] and can differentiate into

myofibroblasts in the presence of (activated) TGF-b1 [Links 15

and 25]. Fibroblasts are responsible for collagen production [Link
Frontiers in Immunology 05
14] and myofibroblasts cooperate with fibroblasts to form a collagen

matrix [Link 26].

2.2.2 Cell distribution, movement, and transitions
In our modeling system, each cell is depicted as a point arranged

on a lattice. To introduce randomness and fairness to the position of

the cells, we allowed the exchange of lattice sites between adjacent

cells at their boundaries. To ensure that each lattice site has an equal

chance of undergoing potential exchange during the simulation, we

evaluated each potential exchange in random order. This

constitutes a Monte Carlo step (MCS) which serves as the unit of

time in our simulation. We selected a square grid for the

simulations for two main reasons, 1. easier coupling between the

cell field and the cytokine field concentrations, solved using finite

volume solver (FiPy) and 2. to reduce computational complexity

and resource usage if a hexagonal grid were to be considered for

the simulation.

All cell types involved in the simulation will move due to

chemotaxis and their initial number on the lattice is fixed, except

for endothelial cells (as shown in Supplementary Table 1 estimated

from experimental data (2)). The Chemotaxis plugin in CC3D

calculates the change of energy associated with the movement of the

pixels, with the parameter l controlling the strength of chemotaxis.

L is specified for each type of cell, representing the response speed

to a certain chemical. The energy formula is modified with a

saturation coefficient, a, to include saturation terms (Equation 1,

where c (xdestination) and c (xsource) denote the chemical

concentration in the source pixel and the destination pixel,

respectively). The minimum chemical concentration for the

initialization condition is defined by a, which is used as an

indicator of potential resistance to chemotaxis. Resting

neutrophils are attracted by IL-8, monocytes by IL-1b and TNF-a
and fibroblasts by TGF-b1. We assume that a burn injury occurs on

a non-delicate area of the human body and the skin surface is

uniform. The starting point of the implemented model are the

remaining endothelial cells after the burn injury. Therefore, we

assume that these do not move, and their number is limited and

does not change during the simulation. We also assume that no cell

can move across the boundaries so they will disappear if they reach

the boundaries. However, in order to keep the number of cells

constant in the simulation, we implement periodic boundary

conditions, where every time a cell reaches a boundary, the cell

reappears on the other end of the boundary, hence keeping the

count of the cells in the simulation constant.

DEchem  = l
c(xsource )

a + c(xsource )
−

c(xdestination )
a + c(xdestination )

� �
(1)

When it comes to cell transitions, all the details and effects of

the cytokines involved can be found in Table 2. As outlined in the

conceptual model, each cell is treated as an agent in the simulation,

so there is a chance that this cell will transform into another cell

type. To address this probability, we used the sigmoid function (42)

(Table 3, also known as the logistic function; Figure 1D). This

function can take any real value as input and output value in the

range (0, 1), which is necessary to randomly assign a transition

probability. The first point of inflection(a) and the second point of
frontiersin.org
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inflection(b) can be adjusted to the specific needs of the cell

transition. Since the sigmoid function is used to simulate the

probability of a single factor, all the cytokines of promotion and

inhibition should be incorporated to calculate the final transition

probability. Based on Equation 2, the final probability that the

resting neutrophils become activated consisted of five sigmoid

functions, each of which will give a result between 0 and 1

depending on the concentration of each kind of cytokine.

The coefficients w1, w2, w3, w4 must sum to 1 for the final

probability to remain between 0 and 1, and w5 must not exceed 1.

Similarly, w7, w8 and w9 must not exceed 1 in Equation 4. Additionally,

w6, w10, w11 must not exceed 1 since there is only one term in Equations

3, 6 respectively. A base probability of 0.1 is given in Equations 3, 5, 6 in

the event that there is no IL-6 and IL-10 present, as macrophages M1

andM2 do not exist in that situation. The only remaining cell transition

is for activated neutrophils to become necrotic. Since there is no simple

method in the literature that can detect neutrophils undergoing necrosis

(43), activated neutrophils are assumed to be necrotic with a random

probability (e.g., 0.1) in simulation.

The concentration of cytokines in each grid will be determined

by solving the solute diffusion equations, and the cell transition will

be based on probability equations. The parameters for the sigmoid

function can be found in Table 3. Additionally, the order of

magnitude of the cytokine concentration is essential to guarantee

the accuracy of the calculations. Multiple pre-simulations were
Frontiers in Immunology 06
performed to determine the order of magnitude of the cytokine

concentrations, which can be seen in Supplementary Table 2.

P(NR−NA) = w1sIL−8 + w2sIL−1b + w3sIL−6 + w4sTNFa − w5sIL−10 (2)

P(Mo−Mr ) = Pbase + w6sIL−6 (3)

P(MR−M1) = Pbase + w7sIL−6 + w8sTNFa − w9sIL−10   (4)

P(M1−M2) = Pbase + w10sIL−10 (5)

P(fi−myofi) = w11sTGF−b1 (6)

Some cells, such as resting neutrophils and monocytes, have a

predetermined lifespan that is determined by biology (see

Supplementary Table 1 in the Supplementary Material). On the

contrary, the lifespan of other cells, such as fibroblasts and

macrophages, is more difficult to measure due to the variability

between individuals. However, certain assumptions had to me made

to calculate changes in cell count during the healing process. For

example, if in timepoint A the solute concentration or cell number

is increased, and in timepoint B, the solute concentration or cell

number is decreased(assuming A<B), then between these two

points, the solute concentration or cell count is decreasing. By

examining the data presented in Figures 1A, B, we can establish

these assumptions (Table 1) and fit a Michaelis-Menten curve (44)

specifically for macrophages type 2, which are of great importance

in the immune response (45). Type 2 macrophages live beyond day

4 of simulation, however these cells have a significant impact on the

downstream of burn wound healing. Assuming these are immortal,

does not replicate the behavior in Table 1.Therefore, we assume that

their immortality is not constant and tested different parameters

and functions that can make sure the dynamics are replicated. The

parameters and functions used are shown in Table 3.
2.2.3 Model assumptions
In this model we simulate the burn wound microenvironment

after it has occurred, therefore at the initial point(t=0), we assume

the start of the process of healing after burn injury. Owing to the

two dimensional nature of the model, it does not include the depth

or proliferation within the wound. To model accurately this wound

patch of burn injury, we assume that the burn wound is located on a

non-delicate area of the human skin, therefore the injury has not
TABLE 3 Function types and values used in the simulations. y[x-1] means the previously calculated value is used. Inflection points
obtained experimentally.

Function 1st Inflection point 2nd Inflection point Equation

Sigmoid a = 1 b = 4 y   =  
1

1 + e−a(x−b)

Michaelis-Menten Km = -963211.7 Vmax = -17.79826 y   =  

Vmax  −   x
Km     +   x

�� ��,   if  Vmax   x   ≠ Km   +   x

y½x − 1�,                             otherwise

8<
:

TABLE 2 Cell type transition and the influence of cytokines used
in simulations.

Cell
type (from)

Cell
type (to)

Promotion
cytokines

Inhibition
cytokines

Resting
neutrophil (NR)

Activated
neutrophil (NA)

IL − 8, IL − 6,
IL− 1b, TNFa

IL − 10

Monocyte (Mo) Resting
macrophage

(MR)

IL − 6 –

Resting
macrophage

(MR)

M1
macrophage

(M1)

TNFa, IL − 6 IL − 10

M1
macrophage

(M1)

M2
macrophage

(M2)

IL − 10 –

Fibroblast (fi) Myofibroblast
(myofi)

TGFb1 –
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occurred on the face, genitals, or fingertips, for example. We

consider a limited supply of cells in circulation and in the wound

patch simulated (16cm2). This assumption could be replaced with

experimentally or clinically observed vessel density metrics from the

wound area in future studies. The exchange of cells and solute

between the wound area and the blood supply is possible, and this is

driven by the interactions described in Figure 1C. The blood supply

is limited only by the amount of circulating solute concentration or

cells around the wound patch, therefore it implies that more cells

can still be recruited. We allow cells to die by either transitioning

into necrotic or apoptotic(only in neutrophils) or disappearing

from the wound when reaching certain volume. A comprehensive

data availability on cell count from the burn wound tissue and blood

sample would help side step the above assumption in future models.

In the current model, whenever a cell disappears, a new one takes its

place, keeping the cell count homogenous across simulations. The

severity of the wound is dictated by the concentration of pro-

inflammatory cytokines vs anti-inflammatory cytokines given a

certain timespan. Finally, we take into consideration only the

presence of Fibroblasts and Myofibroblasts, and not collagen or

scar formation (Figure 1C), since we limit the model to the effects

on the wound path post-burn injury.

2.2.4 Differential equations
There are six main solute molecules described in the conceptual

model. The diffusion of IL-8 (Equation 7), IL-1b (Equation 8), IL-6

(Equation 9), IL-10 (Equation 10), (Equation 11) and TGF-b1
(Equation 12) with respect to time. All equations contain one

diffusion term (Dcytokine), one or two secretion terms (Kcytokine),

and one decay term (mcytokine). The values of diffusion coefficient,

decay rate, secretion rate, and endocytosis rate (qcytokine) are found
in the literature and adapted to suit the same order of magnitude in

the model. All these diffusion equations are solved within each MCS

during the simulation. Fixed gradient boundary conditions

(Neumann) are specified in the top, right, bottom and left corners

of the whole lattice, meaning that the derivative at a boundary is

zero or a constant. The cell number parameters in the equations,

such as the number of endothelial cells (EC), necrotic neutrophils

(NN), and activated neutrophils (NA), macrophages type 1 (M1),

macrophages type 2 (M2) at time t, depend on the presence of the

cells in the location where the cytokine is being expressed and the

initial values for each can be found in Supplementary Table 3.

∂ fIL−8
∂ t

=  DIL−8∇
2
fIL−8 − mIL−8fIL−8 + KECjIL−8EC +  KNN jIL−8NN

− qNAjIL8NA (7)
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∂ fIL−1b
∂ t

=  DIL−1b∇
2
fIL−1b − mIL−1bfIL−1b + KNAjIL−1bNA (8)

∂ fIL−6
∂ t

=  DIL−6∇
2
fIL−6 − mIL−6fIL−6 + KM1jIL−6M1 (9)

∂ fIL−10
∂ t

=  DIL−10∇
2
fIL−10 − mIL−10fIL−10 + KM2jIL−10M1 (10)

∂ fTNFa
∂ t

=  DTNFa∇
2
fTNFa − mTNFafTNFa + KNAjTNFaNA

+  KM1jTNFaM1 (11)

∂ fTGFb1
∂ t

=  DTGFb1∇
2
fTGFb1 − mTGFb1fTGFb1 + KM2jTGFb1M2 (12)
2.3 Statistical analysis

We employed the Z-score from the SciPy package due to its

key benefits (46). This approach offers scale independence,

making data unit-independent and allowing comparison

between variables with different units. The Z-score also

provides interpretability, with each score indicating how many

standard deviations (SD) a data point is from the mean.

Moreover, the original distribution of the data is preserved. By

using this method, we can guarantee that the data are on a

common scale, which facilitates meaningful comparisons and

statistical analyses. Mathematically, Z-scores (Z) are calculated

by subtracting the mean (m) from the data (X) and dividing by the

standard deviation (s), resulting in Equation 13.

Z =
X − m
s

(13)

The suitability of this method with wide-ranged data made it an

ideal choice for our research context.
2.4 Parameters

Firstly, a parameter scan (i.e. evaluation of possible parameters

for the validation assumptions/data) was run thoroughly to verify

the sensibility of the Saturation Coefficient and l parameters.

Followed by the experimental design, described in Table 4, for the

variable in question, the endothelial cell count.
TABLE 4 Experimental design: Endothelial cell count in 8 groups.

Experiment S1 S2 S3 S4 S5 S6 S7 S8

Endothelial count 10 100 500 1000 2000 3000 4000 5000

Lambda 2000

Saturation coefficient 10−11
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2.5 Code, plugins, configurations and
hardware used

The simulation code, configuration files, and additional results

used in our study can be found in this respository. Programming

was done in Python 3.10. All simulations were performed using

Compucell3D software (version 4.4.1) on Macbook Pro 2019 with a

2,3 GHz 8-Core Intel Core i9 processor.

The chemical field used to simulate chemotaxis is incorporated

with Fipy and the partial differential equations were solved by using

the LinearGMRESSolver() function.

Additional modules in the CompuCell3D environments used in

our simulations and their function are described in Supplementary

Table 1B.
3 Results

3.1 Cell count transition 0 – 4 days
post-burn

Table 1 presents cell count transitions based on available data

from the rat and mouse burn studies (2) in a time frame from 0 – 4

days post-burn. According to this, a lot of data points were unknown.

Based on available data, resting neutrophils growth increased

immediately (0h) after burn (increased Z-score), and resting

neutrophil growth declined 24h post-burn (decreased Z-score).

Monocytes number increased after 24h, and monocyte growth

declined after 48h post-burn. Fibroblasts number increased after

72h post-burn. Activated neutrophils number increased

immediately (0h) post-burn, activated neutrophils growth declined

after 24h, and activated neutrophil number decreased after 48h post-

burn. Macrophages type I (M1) number increased after 48h, M1

growth decreased after 72h post-burn. Macrophages type II (M2)

growth increased after 72h up to 96h, and M2 number increased after

96h post-burn. Myofibroblasts growth increased after 96h post-burn.
3.2 Increasing endothelial cell count leads
to opposite correlations between IL-8 and
TGF-b1

After running the experimental design outlined in Section 2, we

compared the cell percentages between simulations (Figure 2A). The

percentage of necrotic neutrophils was very small compared to other

cell types and almost indistinguishable. With increasing number of

endothelial cell count, all cell types except necrotic neutrophils were

decreased (due to the immortality of endothelial cells) in percentage

(Figure 2A). We took snapshots at different time intervals for all

cytokines, for different simulations (Figures 2B, C), with only the

snapshots from the 100th hour (± 4 days post-burn) shown.

With higher endothelial cell count, the diffusion of IL-8 towards

the center, the site that corresponds with the burn wound, increased

and the diffusion of TGF-b1 towards the centeE r decreased. This

caused the relationship between IL-8 and TGF-b1 to become

opposite in all simulations (Figure 2D). Specifically, the
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concentration of IL-8 increased from simulation 1 to 8 and TGF-

b1 concentration decreased from simulation 1 to 8, compared in the

same order of magnitude (taking highest concentration as

comparison), over time.
3.3 Higher endothelial cell count results in
higher IL-8 concentrations

IL-8, unlike TGF-b1, doubles in concentration with increasing

endothelial cell count, reaching double the order of magnitude

(Figure 2D). Evidently, for IL-8, a higher endothelial cell count leads

to a faster equilibrium convergence around the 10−8 order of

magnitude of concentration, since S6 and S7 slowly converge to

the concentration value achieved by S8.
3.4 Higher endothelial cell count resulted
in increased cytokine response and
cell activation

In the first 24 hours, a lower concentration of IL-8 led to delayed

activated neutrophil recruitment, whereas a higher concentration led

to a more rapid growth. TGF-b1 had the opposite reaction at higher

concentrations. All simulations showed a similar average number of

cells across simulations, suggesting an incoming decrease if the

availability of cells is high, and an increase if the cells are needed in

early stage (supplied by the blood compartment), evidenced by the

high SD (Figure 2E 0-24 hours column).

After 24h, a higher endothelial cell count leads to increased

cytokine response and cell activation for tissue repair. The diffusion

of TGF-b1 increased, which was aided by the higher number of M1,

and an increase in fibroblast number (Figure 2E 24-48 hours

column). Consequently, activated neutrophils also decreased in

cell count. Higher endothelial cell count also resulted in decreased

cell count of monocytes.

Between 48 and 72 hours (Figure 2E 48-72 hours column),

cytokine levels generally decreased as they reached equilibrium and

began to influence cell responses. However, myofibroblast counts

increased due to the increased presence of TGF-b1, transitioning
from fibroblasts. M2 cell counts also increased.

In the last hours of the simulation, 72 – 96h (Figure 2E 72 – 96

hours column), endothelial cell count resulted in increased M2

cell count.
3.5 The physical and physiological
reflection of endothelial cell
count difference

We chose a control simulation that showed similar dynamics to

the indicated in Table 1. We then used the difference in cell count

and cytokine concentration for analysis. Figures 3A, B show the Z-

scored difference in cell counts and cytokine levels(respectively)

between S8 and S4 (control) for different time frames. This provides

a more detailed view of the effect of endothelial cell count.
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A B

C

D

E

FIGURE 2

Overall cell type percentage per simulation, diffusion of IL-8 and TGF-b, and cytokine concentration and cell count over time. (A) Overall cell type
percentage per S (simulation), note that endothelial cell count increases every S. (B, C) Graphic visualization of the diffusion of IL-8 and TGF-b1 in
the 100th hour of simulation, respectively (scale for reference, values range within the same order of magnitude). (D) Cytokine concentration over
time (in hours) per (S) simulation on a logarithmic scale (order of magnitude). (E) Breakdown of Z-score normalized cell count over four time frames
between hours 0 and 96 for S1, S3, S4 and S8. Only most significant simulations are shown, i.e. where the change in cell count is more evident. For
each box plot, the mean is plotted as a black line inside the box and the standard deviation located in each side of the box (at 95% CI), outliers
shown as rhombus points. Note that the calculations for Z-score were done with respect to mean of each cell count/cytokine concentration. The
score here indicates how many standard deviations an observation is from the mean.
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3.5.1 Significance of timing in the
simulation environment

The cell count is expected to be highly variable, which is

reflected in the high SD change for all cell types across time
Frontiers in Immunology 10
frames except necrotic neutrophils and myofibroblasts

(Figure 3A), which either are not shown (24 – 48 and 72 – 96

timespans for necrotic neutrophils) or vary in Z-score very actively.

With increasing endothelial cells, the cell types with the highest SD
A

B

C

FIGURE 3

The difference in cell count and cytokine concentration over different time intervals. (A) Z-score normalized difference in cell count(y-axis) over
different time intervals between simulation 8 (S8) and simulation 4 (S4 - control) for different cell types(x-axis). (B) Z-score normalized difference in
cytokine concentration(y-axis) over different time frames. (C) Initial, 48 hour, 72 hour and 96 hour change in positional diffusion for TGF- b1 (from
top to bottom) by comparing S4 (control, on the left) and S8 (on the right). Note that the calculations for Z-score were done with respect to mean
of each cell count/cytokine concentration. The score here indicates how many standard deviations an observation is from the mean.
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change are resting neutrophils, monocytes, resting monocytes, M1

and M2. The most significant difference was seen in the first 24

hours and the last 48 hours of the simulation, with M2 standing out

as the most variable cell type across time intervals.

3.5.2 Faster inflammation resolution is caused by
the difference in endothelial cell count

A higher endothelial cell count led to faster resolution of

inflammation, restricting the duration of the inflammatory phase

(Figures 3B, C). Pro-inflammatory cytokines were the most active

cytokines, whereas the other cytokines remained relatively stable,

with minimal difference in TGF-b1 concentration. Despite this

encounter, TGF-b1 as an anti-inflammatory cytokine, had most

changes in SD during the last 48 hours (Figure 3B) showing

inflammatory resolution spatially (Figure 3C).
4 Discussions

In previous studies, we and others have demonstrated that the

(acute) immune response is disrupted, i.e., “over-active” and prolonged,

in burn patients, which negatively affects the wound healing and can

cause further significant complications systemically (1–5).

In this article, we proposed a comprehensive framework to study

the intricate cellular and molecular dynamics of the immune response

in burn wounds by using relevant biological knowledge, experimental

data from existing animal burn models, and mathematical principles.

After burn, endothelial cells play a crucial role in the

inflammation phase of the wound healing. Specifically, during the

acute phase, endothelial cells facilitate the movement of circulating

inflammatory cells into the tissue at the site of burn injury (47).

Therefore, we hypothesized that the endothelial cell count is one of

the crucial parameters in burn wound healing and the acute

immune response. The conceptual model initiates post-burn at t

= 0; meaning that this is the moment that the simulation starts after

burn. Within the model, the cells can move (except endothelial

cells), are randomly located (mimicking the real burn wound injury

circumstances), secrete cytokines, and differentiate. The burn

surface area is limited to 5 by 5 cm area.

With these assumptions we demonstrated that our model can

simulate the temporal evolution of the cell counts of the various cell

types involved in the wound healing process (e.g., endothelial cells,

neutrophils, monocytes/macrophages), and the diffusion of cytokines

was simulated over a period of 0 – 4 days post-burn. The resulting

simulations were tested and validated by experimental data.

Based on available data from rat and mouse burn studies (2), we

identified the cell count transitions 0 – 4 days post-burn. Although,

data points at different time frames were missing (unknown); we

had to make assumptions for the time points in between, based on

known data points we were able to simulate the cell count

transitions over time. This is a limitation of the model, but in

reality, it is not experimentally feasible to get complete timeseries

for cell count (and growth) for each cell type.

Our findings revealed a key role for endothelial cells count in

the acute immune response, higher endothelial count led to

increased cytokine response and cell activation. Since endothelial
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cells play a crucial role in the regulation of inflammation during the

early stages of wound healing by facilitating the movement of

inflammatory cells into the tissue, it can be expected that higher

counts results in higher inflammatory reaction (e.g. increased

cytokines and inflammatory cell activation) (48).
4.1 Simulation period 0-24 hours

In the first 24h of simulation, we found already a high number

activated neutrophils, where lower concentration of IL-8 led to

delayed activated neutrophil recruitment, and TGF-b1 had the

opposite reaction (Figures 2D, E). These findings correlates well

with findings in in vivo studies. Namely, in the first 24h post-burn,

there is an enhanced neutrophil migration activity (49), IL-8 plays a

causative role in the recruitment and activation of neutrophils (50),

and TGF-b1 desensitize neutrophils to chemotaxic stimulation (48).
4.2 Simulation period 24 – 72 hours

24 – 48h of simulation we found that both resting and activated

neutrophil numbers decreased, and monocytes number increased.

After 48h, monocyte numbers decreased, activated neutrophil

number decreased further, and macrophage type I number

increased (Figures 2D, E). The increase of monocyte numbers

after 24h are in line with what was found in studies with burn

patients (3, 51, 52). From 48 – 72h after burn monocytes are

expected to decrease since they differentiate into macrophages (53).

However, neutrophils in vivo normally increase in count for a

longer period after burn (50); especially burn wounds are

characterized by a prolonged local acute inflammatory response

of innate immune cells (3, 52). This can be explained by the fact that

the supply of cells in vivo is higher than in the in silico setting, since

the supply in the model indicates an exchange from the blood

compartment to the tissue compartment, where we assume a

limited number of cells in both compartments. This means that

there is no “unlimited” supply of cells when e.g. neutrophils die by

necrosis (apoptosis in not implemented yet into the model either).
4.3 Simulation period 72-96 hours

72 – 96h of simulation, macrophage type I number decreased,

while macrophage type II number increased, and both fibroblasts

and myofibroblasts numbers increased. Moreover, these

phenomena were positively affected by TGF-b1 concentrations

(Figures 2D, E). With higher endothelial cell count, the diffusion

of IL-8 towards the center, the site that corresponds with the burn

wound, increased and the diffusion of TGF-b1 towards the center

decreased (Figure 3). These findings are in line with the

proliferation/remodeling phase during wound repair and scar

formation in vivo. The macrophage phenotype changes as the

wound heals, progressing from the macrophage type I (pro-

inflammatory) to the macrophage type II (anti-inflammatory)

(54). Fibroblasts first proliferate, and thereafter differentiate into
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myofibroblasts, which contract and participate in healing by

reducing the size of wound and secreting ECM proteins (55).

Regarding this phase of wound repair, processes such as collagen

production, wound closure, scar formation, contraction, are not

implemented in the conceptual model yet. The current model

simulates the cells that are mainly intervening in the (acute)

inflammatory phase. And also for these cell types the supply of

cells in vivo is higher than in the in silico setting.

The time frame in (burn) wound healing is another important

parameter. In the current simulation this is limited by the 0 – 4 day

time frame used to initially simulate the acute inflammatory phase

of the post-burn immune response. Furthermore, in our model, we

focused on the role of endothelial cells count. In addition to

endothelial cells, e.g., thrombocytes play an important role in the

inflammation phase of wound healing too (56). Thrombocytes

provide high levels of platelet-derived growth factor (PDGF),

which stimulates chemotaxis of monocytes/macrophages and

proliferation of fibroblasts, both crucial during wound healing

(56). However, thrombocytes are not included in the conceptual

model yet, to simplify the modelling approach.

With regards to the limitations associated with the current

model, most appear to arise from the biological proxies used in the

model. For instance, some cell types are assumed to be immortal,

this is practical considering the smaller duration of the total

simulation period (4 days). However, in reality, some of these

cells may die and release ITMs (Inflammation Triggering

Moieties). These ITMs could further prolong the local

inflammation duration at the wound sites. The extent of

inflammation from such events could only be calculated from

accurate experimental data of cell counts at different time periods.

We assume that wound is in a non-sensitive area. In extensive

burns, this may not be the case, thus new players not considered in

the model could play a crucial role in the healing and wound closure

processes. Finally, to lower computational complexity we have

considered only innate immune system (cytokines and cells), the

effect of adaptive system is not included, which may reduce the

personalization aspect of the current model.
5 Conclusions

In this work, we provided a different perspective of the post-burn

transition between cell types and the dynamics of the life span of cells

that are difficult to measure experimentally. Although the availability

of certain biological factors (data) was at some point limited, our

model can simulate events that take place during the post-burn

wound healing process can correlate with biological data with

appreciable accuracy. The model simulation results are qualitatively

verified against relevant studies in the literature. In a way, this is also

one of the major limitation of the current model. A complete

quantitative verification against experimental or clinical data is

currently not possible either due to lack of complete longitudinal

data or practical limitations in acquiring some datapoints (such as

spatial cytokine concentrations) experimentally. The next step of

model development is to investigate the relation with wound healing

parameters, i.e., wound closure, re-epithelialization, and scar
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formation, and patient specific characteristics; and identify

processes on long-term (after 4 days post-burn). This approach

would provide a comprehensive quantitative validation against

clinical data. Since the current model is developed as a conceptual

dynamic model, which will be continuously fed by new (generated)

data from micro- to macroscale, we expect it will be a continuous

learning model for the cellular and molecular processes during the

immune response after burn. We have focused on developing a

spatio-temporal model to simulate the inflammatory phase of burn

wound in this study. In future studies, we plan to computationally

model and validate other aspects and timelines of burn wound

healing including acute inflammation, collagen production and scar

formation. Such individual yet standardized models would provide a

platform to combine them later to simulate the whole process of

wound healing. In addition, the open-source nature of the developed

GGH models and simulation techniques, other research including

omics studies and machine learning techniques could be integrated to

the mechanistic approach with little computational effort. Eventually,

this will enable to prediction of systems behaviors and clinical

outcomes in the burn wound healing process.
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