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Identification and validation
of biomarkers in membranous
nephropathy and
pan-cancer analysis
Yue Yang, Gu-ming Zou, Xian-sen Wei, Zheng Zhang, Li Zhuo,
Qian-qian Xu*† and Wen-ge Li*†

Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
Background: Membranous nephropathy (MN) is an autoimmune disease and

represents the most prevalent type of renal pathology in adult patients afflicted

with nephrotic syndrome. Despite substantial evidence suggesting a possible link

between MN and cancer, the precise underlying mechanisms remain elusive.

Methods: In this study, we acquired and integrated two MN datasets (comprising a

single-cell dataset and a bulk RNA-seq dataset) from the Gene Expression Omnibus

database for differential expression gene (DEG) analysis, hub genes were obtained by

LASSO and random forest algorithms, the diagnostic ability of hub genes was

assessed using ROC curves, and the degree of immune cell infiltration was

evaluated using the ssGSEA function. Concurrently, we gathered pan-cancer-

related genes from the TCGA and GTEx databases, to analyze the expression,

mutation status, drug sensitivity and prognosis of hub genes in pan-cancer.

Results:We conducted intersections between the set of 318 senescence-related

genes and the 366 DEGs, resulting in the identification of 13 senescence-related

DEGs. Afterwards, we meticulously analyzed these genes using the LASSO and

random forest algorithms, which ultimately led to the discovery of six hub genes

through intersection (PIK3R1,CCND1, TERF2IP, SLC25A4,CAPN2, and TXN). ROC

curves suggest that these hub genes have good recognition of MN. After

performing correlation analysis, examining immune infiltration, and conducting

a comprehensive pan-cancer investigation, we validated these six hub genes

through immunohistochemical analysis using human renal biopsy tissues. The

pan-cancer analysis notably accentuates the robust association between these

hub genes and the prognoses of individuals afflicted by diverse cancer types,

further underscoring the importance of mutations within these hub genes across

various cancers.

Conclusion: This evidence indicates that these genes could potentially play a

pivotal role as a critical link connecting MN and cancer. As a result, they may hold

promise as valuable targets for intervention in cases of both MN and cancer.
KEYWORDS
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1 Introduction

Membranous nephropathy (MN) encompasses a spectrum of

disorders distinguished by the thickening of the glomerular

basement membrane (GBM) and the accumulation of immune

complexes beneath the epithelial cells on the outer surface of the

GBM (1). MN can be categorized into primary MN and secondary

MN based on its underlying causes. The causative factors for MN

are multifaceted, encompassing infections, autoimmune diseases,

malignancies, pharmaceutical agents, heavy metals, and more.

For decades, a connection between MN and cancers has been

established (2), tracing back to 1966 when Lee et al. (3) disclosed that

11% of nephrotic syndrome patients had carcinoma, the solid tumors

most commonly associated with MN are lung and gastric cancers,

followed by renal cell carcinoma, prostate cancer, and thymoma (4),

these glomerular lesions are thought to be paraneoplastic.

Nonetheless, the precise prevalence of cancer among MN patients

remains elusive, with estimates ranging from 5% to 22%. A meta-

analysis indicated that the cancer prevalence in MN patients was

approximately 10% (5). This association is frequently observed in

patients aged over 60, and most cancer cases are identified either

before or concurrent with the diagnosis of MN (6), unfortunately, in

most cases, the exact pathogenesis is unclear.

Microarray-based gene expression profiling is a widely utilized,

high-throughput technique for investigating complex disease

mechanisms (7). This approach has facilitated the identification

of diagnostic and prognostic biomarkers, disease classification,

monitoring of treatment responses, and understanding of disease

pathogenesis (8, 9). Recently, numerous bioinformatics studies have

aimed to elucidate the pathogenesis of membranous nephropathy.

These studies have included searching for biomarkers (10, 11),

examining their association with immune infiltration (12),

identifying hub genes involved in disease mechanisms (13), and

investigating the miRNA-mRNA regulatory networks related to

podocyte autophagy, lipid metabolism, and renal fibrosis (14). Such

bioinformatics analyses enhance our understanding of

membranous nephropathy, allow for personalized molecular

assessments of patients, and identify potential therapeutic targets.

Among various types of cancers, solid cancers originating from the

lung, prostate, gastrointestinal tract, and breast, as well as certain

hematological cancers, exhibit a closer relationship to MN (5). Some

researchers have suggested that T-cell responses, especially those

triggered by tumor antigens, may play a significant role in the

interaction between cancers and MN (15), but the precise

mechanism underlying the occurrence of cancer-associated MN

remains unidentified (16). It is worth highlighting that the latest

Kidney Disease: Improving Global Outcomes (KDIGO) clinical

practice guidelines (17) recommend the use of the monoclonal

antibody rituximab, originally employed in lymphoma treatment, as

a 1B recommendation for intermediate-to-high-risk MN treatment.

Furthermore, newer monoclonal antibodies, such as ocrelizumab,

obinutuzumab, and ofatumumab have also been explored for MN

treatment (18). As antineoplastic agents assume an increasingly pivotal

role in treating immune-mediated non-neoplastic conditions (19, 20),

the relationship between immune-related disorders and cancer has

garnered more attention. We contend that numerous potential
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connections between MN and cancer remain undisclosed. Our study

aims to employ bioinformatics methods to analyze the potential link

between MN and pan-cancer.
2 Methods

2.1 Data source

We conducted a search in the Gene Expression Omnibus (GEO)

for gene expression datasets. Firstly, we searched for “membranous

nephropathy” as the keyword, selecting “series” for Entry type and

“Homo sapiens” for Organisms, and then filtered the single-cell RNA

sequencing dataset and bulk RNA sequencing dataset from these

datasets. In cases where multiple datasets met the aforementioned

criteria, we opted for the dataset with a larger sample size and a

greater count of differentially expressed genes (DEGs). In addition,

RNA sequencing and clinical data for 33 distinct cancer types were

obtained from The Cancer Genome Atlas (TCGA).
2.2 Data processing of the single-cell RNA-
seq dataset

The single-cell RNA-seq data underwent filtering and analysis

using the Seurat R package. The filtering criteria were established

with nFeature_RNA falling within the range of 300 to 7500. To

mitigate batch effects among samples, the Harmony R package was

employed. The ScaleData function was utilized for data

normalization, ensuring zero-centered data for principal

component analysis (PCA). For data dimensionality reduction,

the RunUMAP function was applied, and the FindAllMarkers

function was employed to identify DEGs across distinct clusters.

Clustering was carried out at a resolution of 0.8.
2.3 DEG screening

Quantile normalization was conducted using the preprocessCore

R package, and DEGs were identified through the utilization of the

limma R package. Genes with an adjusted p-value < 0.05 were

exclusively considered. The upregulated and downregulated DEGs

from the two datasets were subjected to an intersection process to

derive the shared upregulated and downregulated DEGs.
2.4 Enrichment analyses and senescence-
associated DEGs

We conducted enrichment analyses utilizing the clusterProfiler R

package for both Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) analyses. A total of 318 genes

associated with senescence were identified by utilizing the cellular

senescence pathway (Homo sapiens) within the KEGG database

(https://www.kegg.jp/pathway/hsa04218) and the human gene set

REACTOME_CELLULAR_SENESCENCE from the REACTOME
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database (ht tps : / /gsea-msigdb.org/gsea/msigdb/cards/

REACTOME_CELLULAR_SENESCENCE). The intersection

between DEGs and senescence-related genes was considered as the

set of senescence-related DEGs.
2.5 Protein-protein interaction networks

Constructing protein-protein interaction (PPI) networks for the

13 senescence-related DEGs were constructed using the STRING

Database (https://string-db.org/).
2.6 Machine learning and identification of
hub genes

we utilized least absolute shrinkage and selection operator

(LASSO) regression and random forest to further refine the

selection of DEGs. The kernlab R package was employed for

LASSO regression, while the randomForest R package was

utilized for the random forest algorithm. Subsequently, by

intersecting the gene sets derived from LASSO regression and

random forest, we identified the central hub genes.
2.7 Characterization and functional
analyses of hub genes

We generated receiver operating characteristic (ROC) curves

for the hub genes using the pROC R package. Correlation analyses

among the hub genes were conducted using the circlize R package.

To assess immune cell infiltration, we employed the ssGSEA

function from the GSVA R package. Visualization of immune cell

correlations, expression differences in immune cells across different

groups, and correlations between hub genes and immune cells was

achieved using the ggplot2 R package. Furthermore, leveraging the

top 50 genes that exhibited positive correlations with the hub genes,

we conducted gene set enrichment analysis (GSEA) utilizing the

Reactome database. The outcomes were presented through a ridge

plot showcasing the 20 most significant pathways.
2.8 Prediction of upstream transcription
factors and miRNAs

We utilized the Regnetwork database (https://regnetwork

web.org) to predict the upstream transcription factors (TFs) and

microRNAs (miRNAs) associated with the hub genes. The resulting

network was visualized using Cytoscape software.
2.9 mRNA differential expression analysis
of hub genes in pan-cancer

mRNA sequencing data and clinical information were sourced

from the TCGA database. For analysis, we included only 14 cancer
Frontiers in Immunology 03
types that featured more than ten pairs of cancer and normal

samples. These cancer types encompassed BLCA, BRCA, COAD,

ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, PRAD,

STAD, and THCA. The mRNA expression values from TCGA are

presented as normalized RSEM values. The fold change was

computed as the ratio of the mean expression in cancer samples

to the mean expression in normal samples. To determine statistical

significance, a t-test was employed, and the resulting p-values were

adjusted using the false discovery rate (FDR).
2.10 Survival analysis of hub genes
in pan-caner

The mRNA expression data of hub genes and the corresponding

clinical survival data across 33 cancer types were integrated for

survival analysis. The cancer samples were categorized into high

and low expression groups based on the median gene RSEM value.

The survival R package was employed to model the survival time

and status for these two groups, encompassing disease-free interval

(DFI), disease-specific survival (DSS), overall survival (OS), and

disease-free survival (DFS).
2.11 Pan-cancer mutations of hub genes

Copy number variation (CNV) data were collected from the

TCGA database across 33 different cancer types. CNV is classified

into homozygous and heterozygous types, which include

amplifications and deletions. These variations indicate the

presence of CNVs on either one or both chromosomes. The

frequency (percentage) of single nucleotide variation (SNV)

mutations within each gene’s coding region was calculated using

the following formula: Number of Mutated Samples/Number of

Cancer Samples. An SNV oncoplot was generated using the

maftools package. Additionally, CNV profiles were examined, and

the correlation between CNV and mRNA expression was assessed.

Statistical significance was determined using p-values adjusted

through the FDR correction. The relationship between paired

mRNA expression and methylation levels was evaluated using

Pearson’s product-moment correlation coefficient, followed by a

t-distribution test. The resulting p-values were then adjusted using

FDR correction. Genes with an adjusted FDR of 0.05 or lower were

retained for further analysis.
2.12 Drug sensitivity analysis

The small molecules were sourced from the Genomics of Drug

Sensitivity in Cancer (GDSC) and Cancer Therapeutics Response

Portal (CTRP) databases. The Spearman correlation coefficient was

employed to indicate the potential correlation between gene

expression and drug sensitivity. A positive correlation suggests

that genes with high expression levels confer resistance to a drug,

while a negative correlation suggests that genes with high

expression levels render sensitivity to a drug.
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2.13 Validation by immunohistochemistry

The experimental procedures conducted in this study were

approved by the Ethics Committee of China-Japan Friendship

Hospital (Ethics Approval Number: 2021–75-K43). For the control

group, normal kidney tissue adjacent to the cancerous tissue removed

during kidney cancer surgery was selected. All patients in the MN

group were confirmed through pathological examination.

Immunohistochemistry was employed to validate the protein

expression levels of the hub genes. Paraffin-embedded tissues were re-

sectioned, underwent antigen retrieval, and were then treated with 5%

serum to prevent nonspecific binding. Endogenous peroxidase

activity was also blocked. Primary antibodies (PI3KR1, CAPN2,

TERF2IP from Santa Cruz Biotechnology; CCND1, TXN from Cell

Signaling Technology; SLC25A4 from Affinity Biosciences) were

applied and incubated at 4°C to evaluate their expression in kidney

tissue. Subsequently, secondary antibodies were used, followed by

standard incubation, staining, and observation procedures.
3 Results

3.1 Selecting of MN dataset

According to the search conditions, we finally screened and

identified a single-cell RNA-seq dataset (GSE171458) and a bulk

RNA-seq dataset (GSE108109) for analysis, and a search flow

(Supplementary Figure 1) has been drawn up.
3.2 Processing of single-cell RNA-seq data

The single-cell RNA-seq dataset GSE171458 comprises 6 MN

patients and 2 healthy subjects (Supplementary Figure 2). Following

filtration, a total of 25,223 genes and 14,357 cells were retained. In the

MN group, there were 543 genes with up-regulated expression and

193 genes with down-regulated expression (Supplementary Figure 3).
3.3 DEG identification

GSE108109 contains 44 MN patients and 6 healthy subjects,

all patients with MN had a clinical presentation of nephrotic

syndrome, after quantile normalization of the gene expression matrix

(Figures 1A, B), DEGs were identified (Figures 1C, D). The numbers of

upregulated genes in GSE171458 and GSE108109 is 2632 and 2389,

respectively, while the numbers of downregulated genes were 2632 and

2171, respectively. Intersections of the up- and downregulated DEGs of

the two datasets were performed separately to obtain 222 upregulated

and 144 downregulated genes (Figures 1E, F).
3.4 Enrichment analyses of senescence-
associated genes

To comprehensively explore the biological functions and

pathways associated with the 366 common DEGs, GO and KEGG
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pathway enrichment analyses were conducted (Supplementary

Figure 4). In the GO enrichment analysis, the top three biological

processes exhibiting significant enrichment were cellular cation

homeostasis cellular cation homeostasis (p = 5.01E-8), cellular

metal ion homeostasis (p = 2.77E-7), and response to metal ion

(p = 9.44E-7). In the KEGG enrichment analysis, the top three

pathways were protein processing in the endoplasmic reticulum (p

= 1.03E-8), amyotrophic lateral sclerosis (p = 0.000453), and

Parkinson’s disease (p = 0.000102).

We performed an intersection analysis between the 318

senescence-related genes and the 366 common DEGs, resulting in

the identification of 13 senescence-related DEGs (Figure 2A). In the

GO enrichment analysis, in terms of biological processes, genes

exhibited significant enrichment in functions such as negative

regulation of organelle organization (p = 8.61E-5), regulation of

DNA binding (p = 6.98E-5), and negative regulation of

mitochondrial outer membrane permeabilization involved in the

apoptotic signaling pathway (p = 3.39E-5) (Figure 2B). The top

three pathways in the KEGG enrichment analysis were cellular

senescence (p = 9.64E-17), human T-cell leukemia virus 1 infection

(p = 1.41E-7), and necroptosis (p = 3.85E-5) (Figure 2C).
3.5 Protein-protein interaction networks

PPI networks predictions for 13 senescence-related DEGs

(Supplementary Figure 5).
3.6 Expression of senescence-related DEGs

The expression patterns of the 13 senescence-related

DEGs in GSE108109 are depicted in the volcano plot and

heatmap (Supplementary Figures 6A-B). When contrasted

with healthy controls, all of the senescence-related DEGs

exhibited significant expression differences, except for TERF2IP

(Supplementary Figure 6C).
3.7 Identification of hub genes

To further narrow down the genes, we employed machine

learning techniques, namely LASSO regression and random

forest. Initially, LASSO regression identified seven genes

(Figure 3A) and subsequently, the random forest method was

used to obtain the top ten genes ranked by their importance

(Figure 3B). The intersection of these two sets yielded the final

selection of six hub genes (Figure 3C): PIK3R1, CCND1, TERF2IP,

SLC25A4, CAPN2, and TXN.

The ROC analysis revealed that the AUC values for PIK3R1

(0.996), SLC25A4 (0.922), CCND1 (1.000), and CAPN2 (0.936)

exceeded 0.9, indicating a robust predictive classification

capability of these hub genes for distinguishing between

MN and healthy controls (Figure 3D). Moreover, visual

representations were used to display the correlations among the

hub genes (Figure 3E).
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3.8 Immune infiltration of hub genes

The correlations among immune cells were intricate and

widespread (Supplementary Figure 7A). In comparison to healthy

controls, MN patients exhibited significantly elevated levels of

gamma delta T cells, macrophages, mast cells, myeloid-derived

suppressor cells, monocytes, natural killer cells, natural killer T

cells, cytoid dendritic cells, regulatory T cells, follicular helper cells,

type 1 T helper cells, and type 2 T helper cells (Supplementary

Figure 7B). Additionally, all hub genes showed close associations

with immune cell infiltration (Supplementary Figure 7C).
3.9 GSEA of hub genes

In order to gain a deeper insight into the significance of hub

genes in MN and to anticipate their potential functions, we initially

identified the top 50 genes in the dataset that were positively

correlated with the hub genes (Supplementary Figure 8).
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Subsequently, GSEA was conducted for each individual hub gene.

Focal adhesion ranked first in CAPN2 and CCND1, while intrinsic

component of organelle membrane, Golgi apparatus, actin

cytoskeleton organization, and regulation of anatomical structure

morphogenesis ranked first in PIK3R1, SCL25A4, TERF2IP, and

TXN, respectively (Supplementary Figure 9).
3.10 Prediction of the upstream
regulation network

Using the Regnetwork database, we identified TFs and miRNAs

upstream of the six hub genes (Figure 4).
3.11 Hub genes expression and survival
analysis of hub genes in pan-cancer

Hub genes were significantly differentially expressed in multiple

types of cancer. Among them, SLC25A4 was significantly differentially
A B

D

E F

C

FIGURE 1

Identification of differentially expressed genes. (A, B) Box plot of data before and after quantile normalization from GSE108109; (C) Volcano plot
showing the identification of upregulated and downregulated genes. (D) Heatmap displaying the top 20 upregulated and downregulated genes,
where upregulated genes are highlighted in light red, and downregulated genes in light blue. (E, F) Venn diagrams illustrating the overlapping
upregulated and downregulated DEGs from GSE171458 and GSE108109, revealing 222 and 144 common genes, respectively.
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expressed in 11 cancers (highly expressed in KICH, and lowly

expressed in HNSC, ESCA, BLCA, STAD, LUSC, KIRP, COAD,

PRAD, LUAD, and KIRC), followed by PIK3R1, CAPN2, TXN,

TERF2IP and CCND1 in 9, 8, 7, 7, and 6 types of cancer,

respectively (Figure 5A). The expression of hub genes correlates with

the prognostic indicators (including progression-free internal survival,

disease-specific survival, overall survival and disease-free survival) of

many types of cancer (Figure 5B). In survival analysis, a Hazard Ratio

(HR) less than 1 and a p-value less than 0.05 signify that heightened

gene expression diminishes the risk of patient mortality and enhances

survival—an advantageous outcome. Conversely, an HR exceeding 1

with a p-value under 0.05 indicates that increased gene expression

elevates the hazard of patient demise and diminishes survival—a

detrimental scenario. When HR equals 1 and p-value is less than

0.05, it suggests that heightened gene expression has no discernible

impact on patient survival.
Frontiers in Immunology 06
3.12 Mutations of hub genes in pan-cancer

First, we analyzed the distribution of CNV types, and the CNV

pie chart revealed that the primary CNV types were heterozygous

amplification and deletion (Figure 6A). Subsequently, we assessed

the mutation frequencies of hub genes in pan-cancer, with PIK3R1

exhibiting the highest frequency of SNV (Figure 6B). The mutation

landscape indicated that missense mutations were the predominant

type, with the hub genes displaying mutation frequencies in the

following descending order: PIK3R1, CAPN2, CCND1, TERD2IP,

SLC25A4, and TXN, with mutation percentages of 69%, 17%, 13%,

8%, 6%, and 2%, respectively (Figure 6C).

CNV percentage analysis revealed that hub genes displayed

heterozygous amplification or deletion in nearly all cancer types,

and in some cancers, they also exhibited homozygous amplification

or deletion (Figure 7A). Correlation analysis unveiled a close
A B

C

FIGURE 2

Enrichment analyses with senescence-related differentially expressed genes. (A) The Venn diagrams show an overlap of 13 genes; (B) GO analysis;
(C) Top 5 pathways of KEGG analysis and the genes they contained.
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relationship between the mRNA expression of hub genes and pan-

cancer CNV. These genes displayed significant positive or negative

correlations across multiple cancer types (Figure 7B). These

findings suggested that CNV in hub genes mediated their

aberrant expression, which could potentially play a crucial role in

cancer progression. Methylation and mRNA expression correlation

analysis indicated that, for the most part, the expression levels of

hub genes were negatively correlated with their methylation levels,

especially PIK3R1, CCND1, and CAPN2. Conversely, only TXN in

BLCA, KICH, UCS, and UVM, as well as SLC25A4 in CESC, MESO,

and TGCT, exhibited a positive correlation between methylation

and gene expression (P < 0.05, Figure 7C).

Genomic aberrations have a significant impact on the clinical

response to both chemotherapy and targeted therapy treatments. To

investigate the role of hub genes in chemotherapy and targeted
Frontiers in Immunology 07
therapy, we analyzed drug sensitivity and gene expression profiling

data from cancer cell lines in GDSC and CTRP. The correlation

analysis specifically refers to the relationship between gene

expression and the half-maximal inhibitory concentration (IC50)

of a drug, which is usually used to assess antitumor activity. A lower

IC50 value indicates greater drug potency. Thus, a positive

correlation implies that higher gene expression weakens the

drug’s inhibitory effect, while a negative correlation suggests that

higher gene expression strengthens it. The mRNA expression level

of TXN, CCND1, and CAPN2 showed a positive correlation with the

sensitivity to most drugs, except for 17-AAG and docetaxel. On the

other hand, the mRNA expression level of TERF2IP and PIK3R1

exhibited a negative correlation with the sensitivity to most drugs in

GDSC and CTRP, again with the exceptions of 17-AAG and

docetaxel (Figures 7D, E).
A B

D

E

C

FIGURE 3

Identification of hub genes. (A) LASSO regression; (B) Top ten genes ranked by importance in random forest; (C) Venn diagram of LASSO regression
and random forest; (D) ROC curve and AUC of hub genes; (E) Correlation analysis between hub genes, red symbolizes positive and green
symbolizes negative correlation, and darker color means stronger correlation.
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3.13 Immunohistochemical verification of
hub gene expression in the kidneys

We performed immunohistochemical staining on 22 MN

kidney specimens and 3 control kidney specimens (Figure 8). In

the control group, PIK3R1 and SLC25A4 were expressed in both

glomeruli and tubules, while CCND1 and TXN were primarily

expressed in tubules, with minimal expression in glomeruli.

CAPN2 was expressed in glomeruli and in some renal tubular

epithelial cells. In contrast, in the MN group, PIK3R1 exhibited

reduced expression in glomeruli, while TXN showed significantly

decreased expression in tubules. CCND1 and CAPN2 displayed

markedly increased expression in glomerular podocytes, and

SLC25A4 exhibited increased expression along the glomerular

basement membrane. TERF2IP, on the other hand, showed

minimal expression in renal tissues in both the control and

MN groups.
4 Discussion

In recent years, an increasing body of research has highlighted a

potential correlation between immune-mediated diseases and

cancer (21, 22). Possible mechanisms involved include: 1. Cancer-

associated antigens induce the host to produce antibodies, and these

antigens may become lodged beneath glomerular epithelial cells,

forming in situ immune complexes that ultimately mediate renal

injury (23). 2. Certain oncogenic viruses, such as hepatitis B virus,

cytomegalovirus, and Epstein-Barr virus, infect the host, resulting in

the production of antibodies against viral antigens. These viral

antigen-antibody complexes may then deposit in the glomerulus,

activate the complement system, and cause renal injury (24). 3.

Necrotic tumors release substantial amounts of DNA, which
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triggers the body to produce anti-DNA antibodies. These immune

complexes may accumulate in the kidneys, subsequently causing

kidney damage (25).

In this study, we aimed to explore the potential connection

between MN and pan-cancer. Our analysis led to the identification

of PIK3R1, CCND1, TERF2IP, SLC25A4, CAPN2, and TXN as hub

genes, which could potentially serve as targets for interventions in

both MN and cancer.

The PI3K enzymes constitute a conserved family of lipid

kinases, consisting of a catalytic subunit and a regulatory subunit.

Phosphatidylinositol-3-kinase regulatory subunit 1 (PIK3R1)

exhibits low expression levels in the majority of cancers and is

believed to function as a cancer suppressor. Downregulation of

PIK3R1 is associated with poor survival outcomes for most cancer

patients (26). Conversely, PIK3R1 has been observed to be

significantly upregulated in rats with adriamycin-induced chronic

glomerulonephritis (27). Simultaneously, phospholipase A2

receptor (PLA2R), the primary target antigen in MN, has been

demonstrated to activate the upregulated PI3K/AKT/mTOR

pathway (28).

CCND1 plays a pivotal role as a critical regulator of the cell cycle

and holds a central position in the development of cancer by driving

uncontrolled cellular proliferation. Its activity is significantly

heightened in various cancer contexts (29), and the expression of

CCND1 is indispensable for the survival and proliferation of cancer

cells (30). In glomerular intrinsic cells, CCND1 was found to be

expressed in podocytes in both the Heymann nephritis model of

rats (31) and cases of FSGS in humans (32). It is primarily enriched

in actively proliferating podocytes, as opposed to those in a

quiescent state, and its expression increases following injury in

passive Heymann nephritis rats (31).

TERF2IP, the most highly conserved component of the shelterin

complex, plays a multifaceted role in the regulation of various
FIGURE 4

Network between transcription factors, miRNAs and hub genes. Red indicates hub genes, and blue indicates transcription factors and miRNAs.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1302909
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2024.1302909
cellular processes, encompassing cell metabolism, DNA damage

response, and NF-kB signaling (33). It has been shown to play a part

in oncogenesis, cancer progression, and the development of

resistance to chemotherapy in human cancers, with multiple

mutations and diverse expression patterns of TERF2IP reported

in cancer contexts (34, 35). On the other hand, TERF2IP serves as a

central signaling hub within podocytes (36). In murine disease

models and kidney biopsies from glomerulosclerosis patients,

injured podocytes displayed reduced activation of TERF2IP

within the glomeruli. Notably, severe glomerulosclerosis manifests

in mice with diminished podocyte expression of TERF2IP, leading

to early mortality from renal failure by 8 weeks of age. Furthermore,

podocyte-specific TERF2IP haploinsufficiency also resulted in

significant podocyte damage, including signs of podocyte

detachment (37).

The solute carrier protein 25 (SLC25) family, which is the

largest gene transporter family, consists of membrane proteins
Frontiers in Immunology 09
that regulate the transport of various solutes in and out of cells.

They play crucial roles in essential physiological processes such as

cellular material transport, energy transmission, signal

transduction, and nutrient metabolism. Pan-cancer analysis of the

SLC25 family suggests that SLC25A4 is linked to multiple oncogenic

pathways, including the PI3K-AKT-MTOR pathway, MYC-

TARGETS-V1 pathway, MYC-TARGETS-V2 pathway, and

MTORC1 pathway (38). Regrettably, there have been no reported

associations between SLC25A4 and membranous nephropathy.

CAPN2 (calpain-2) is a prototypical classical isoform of the

calpain family of calcium-activated cysteine proteases. Its substrate

proteins are involved in a wide range of cellular processes, including

transcription, survival, proliferation, apoptosis, migration, and

invasion. Dysregulated calpain activity has been linked to

tumorigenesis, suggesting that calpains may hold promise as

therapeutic targets (39). Interestingly, researchers have observed

that inhibiting both calpain 1 and 2 in cell cycle protein G-related
A

B

FIGURE 5

Hub gene expression and survival analysis in pan-cancer. (A) mRNA expression profiles of hub genes across diverse cancer types; (B) Assessment of
the prognostic significance of hub genes in pan-cancer; DFI, progression free internal; DSS, disease specific survival; OS, overall survival; DFS,
disease free survival. In this representation, red indicates elevated gene expression in cancer, blue signifies reduced expression, and a solid circle
denotes statistical significance.
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kinase knockout mice mitigated podocyte injury. This finding

establishes a direct correlation between calpain-1/-2 activity and

podocyte injury, proteinuria, and glomerulosclerosis (40).

TXN (thioredoxin-1) is a multifunctional protein with a

molecular weight of 12 kDa, primarily localized within the

cytosol. TXN plays a pivotal role in a diverse range of cellular

functions, including cell proliferation, the maintenance of redox

homeostasis, DNA synthesis, gene expression regulation, and the

regulation of apoptosis-mediated cell death. TXN is indispensable

for the normal functioning of both organs and tumors. It is strongly

associated with various diseases, notably cancer, and ample

evidence has been presented to underscore its significance in

influencing the phenotype and prognosis of lung, gastrointestinal,

and urological cancers (41). On the other hand, urinary TXN is
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regarded as a biomarker for diagnosing tubular redox dysregulation

(42). Furthermore, recombinant long-acting TXN has been shown

to ameliorate the transition from acute kidney injury to chronic

kidney disease by modulating renal oxidative stress and

inflammation (43).

Although a causal association between lung cancer and MN was

not found in the Mendelian randomization-based study by Yang

et al. (44), we don’t think they are the opposite of our conclusions.

We speculate that the negative result may be related to the fact that

the investigators used the primary MN dataset for their analyses. In

recent years, it has become increasingly evident that the

development of MN is associated with a variety of target antigens

present on podocytes (45). Among the six central genes identified

through bioinformatics analysis, subsequent immunostaining of
A

B

C

FIGURE 6

Pan-cancer mutations of hub genes. (A) Distribution of copy number variation (CNV) in 33 cancers. This pie chart illustrates the proportion of various
CNV types for a single gene in one cancer, with different colors representing distinct CNV types. Hete Amp, heterozygous amplification; Hete Del,
heterozygous deletion; Homo Amp, homozygous amplification; Homo Del, homozygous deletion; None, no CNV. (B) Mutation frequency of hub
genes. The numbers indicate the count of samples with the corresponding mutated gene in a given cancer. ‘0’ signifies no mutation in the gene
coding region, and the absence of a number indicates no mutation in any region of the gene. (C) Single nucleotide variation (SNV) oncoplot. This
chart depicts the distribution of mutations in hub genes and categorizes SNV types.
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A

B

D

E

C

FIGURE 7

Correlation analyses of mRNA expression, CNV and drug sensitivity in pan-cancer. (A) Heterozygous and homozygous CNVs in pan-cancer. Genes
with > 5% CNV in a given cancer are represented as data points on the figure. (B) Correlation between CNV and mRNA expression. (C) Correlation
between methylation and mRNA gene expression. (D, E) Gene set drug resistance analysis from Genomics of Drug Sensitivity in Cancer (GDSC) and
Cancer Therapeutics Response Portal (CTRP) (Top 30). The size of the data points indicates the statistical significance, with larger dots indicating
higher statistical significance. The false discovery rate (FDR) was used for correction.
FIGURE 8

Immunohistochemical Validation of Hub Gene Expression in Human Kidney Specimens (400×). (A, B) PIK3R1, (C, D) CCND1, (E, F) TERF2IP, (G, H)
SLC25A4, (I, J) CAPN2, (K, L) TXN. (A, C, E, G, I, K) are normal kidney tissues, while (B, D, F, H, J, L) are membranous nephropathy kidney tissues.
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renal tissues revealed a notable increase in the expression of CCND1

and CAPN2 within glomerular podocytes in the MN group

compared to the control group. Moreover, these two genes have

been substantiated to have significant implications in podocyte

injury (32, 40). We believe that further exploration of these two

genes in our research endeavors may unveil novel and intriguing

findings in the future.

Certainly, this study has limitations. First, MN is the most

prevalent pathologic type of cancer-associated nephropathy, though

other types such as minimal change disease, focal segmental

glomerulosclerosis, IgA nephropathy, and membranoproliferative

glomerulonephritis have also been documented (5). Our study

focused exclusively on MN, and thus it remains unclear whether

the six hub genes identified are specific to MN. The intricate

relationship between kidney disease and cancers warrants further

investigation. Second, while elevated expression of CCND1 and

CAPD2 has been noted in MN glomerular podocytes, their roles in

other podocytopathies like minimal change disease are yet to be

defined. Whether these genes could serve as specific markers of

podocyte damage in MN or their association with MN target

antigens (e.g., PLA2R, NELL1, THSD7A) require more extensive

research. Third, SLC25A4, and TXN have not been previously

reported in the context of MN or podocyte injury. Investigating

the mechanisms underlying their roles in MN requires

more research.
5 Conclusions

In conclusion, we identified PIK3R1, CCND1, TERF2IP,

SLC25A4, CAPN2, and TXN as potential markers associated with

both cancer and MN. This discovery enhances our understanding of

the potential connection between cancers and MN. Furthermore,

these genes represent potential therapeutic targets for MN as well as

various types of cancers.
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