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Background: The infiltration and activation of immune cells in the tumor

microenvironment (TIME) affect the prognosis of patients with cancer. Tertiary

lymphoid structure (TLS) formation favors tumour- infiltrating-lymphocyte (TIL)

recruitment and is regarded as an important indicator of good prognosis

associated with immunotherapy in patients with tumors. Chemotherapy is

currently one of the most commonly used clinical treatment methods.

However, there have been no clear report to explore the effects of different

types of chemotherapy on TLS formation in the TIME. This study examined the

effects of immunogenic cell death (ICD)-inducing chemotherapeutics on

immune cells, high-endothelial venules (HEV), and TLSs in mouse melanomas.

Methods: Doxorubicin (an ICD inducer), gemcitabine (non-ICD inducer), and a

combination of the two drugs was delivered intra-peritoneally to B16F1-loaded

C57BL/6 mice. The infiltration of immune cells into tumor tissues was evaluated

using flow cytometry. HEV and TLS formation was assessed using

immunohistochemistry and multiple fluorescent immunohistochemical staining.

Results: Doxorubicin alone, gemcitabine alone, and the two-drug combination

all slowed tumor growth, with the combined treatment demonstrating a more

pronounced effect. Compared with the control group, the doxorubicin group

showed a higher infiltration of CD8+ T cells and tissue-resident memory T cells

(TRM) and an increase in the secretion of interferon-g, granzyme B, and perforin in

CD8+ T subsets and activation of B cells and dendritic cells. Doxorubicin alone

and in combination with gemcitabine decreased regulatory T cells in the TIME.

Moreover, doxorubicin treatment promoted the formation of HEV and TLS.

Doxorubicin treatment also upregulated the expression of programmed cell

death protein (PD)-1 in CD8+ T cells and programmed cell death protein ligand

(PD-L)1 in tumor cells.
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Conclusions: These results indicate that doxorubicin with an ICD reaction

promotes TLS formation and increases PD-1/PD-L1 expression in tumor

tissues. The results demonstrate the development of a therapeutic avenue

using combined immune checkpoint therapy.
KEYWORDS

immunogenic cell death, chemotherapy, immune cell infiltration, high-endothelial
venules, tertiary lymphoid structure, PD-1
1 Introduction
The tumor immune microenvironment (TIME), which comprises

abundant immune cells, plays an important role in the antitumor

response (1). Tertiary lymphoid structures (TLSs) are organized

aggregates of immune cells that form postnatally in non-lymphoid

tissues of the TIME (2). The structure is composed of high endothelial

venules (HEV) and a variety of immune cells, and is considered the

local site where antigen-specific CD8+T cells are generated in the tumor

microenvironment (3, 4). The presence of TLSs is associated with better

prognosis and clinical outcomes in various carcinomas, including non-

small cell lung cancer (5, 6), breast cancer (7, 8), ovarian cancer (9, 10),

colorectal cancer (11, 12), and melanoma (4, 13) and can serve as a

predictive indicator of clinical efficacy in immune checkpoint inhibitor

immunotherapy (14, 15). Currently, chemotherapy is still one of the

most commonly used methods in clinical treatment, and no studies

have explored the effects of different types of chemotherapeutic drugs

on TLS in the tumor microenvironment. Hence, it is clinically

significant to explore chemotherapeutic drugs that can promote the

formation of TLSs to develop a combination approach with immune

checkpoint inhibitors.

Chemotherapeutic drugs can be divided into immunogenic cell

death (ICD) and non-ICD drugs based on whether they trigger an

immune response (16). When ICD occurs, dying cells produce new

antigenic epitopes and release damage-associated molecular

patterns (DAMPs), such as calreticulin (CRT), high mobility

group protein B1 (HMGB1), and adenosine triphosphate (ATP)

and then recruit antigen-presenting cells (APCs) to recognize and

present antigens on dying cells to T cells (17). A persistent

antitumor immune effect is established by activating the immune

response system to eliminate the tumor antigens (18). However,

whether ICDs induce the formation of tumor-localized HEV and

TLSs remains unclear.

As a representative anthracycline drug, doxorubicin mainly acts

on DNA to exert cytotoxicity and acts as a representative

chemotherapeutic drug for ICD (18). Gemcitabine is a cytidine

analog that inhibits DNA synthesis (19). Although related studies

have found that gemcitabine can increase CRT exposure and

HMGB1 release in vitro, it inhibits DAMPs by triggering the

action of prostaglandin E2 in vivo (20). Therefore, gemcitabine is
02
still considered a non-ICD inducer. In this study, we observed

different effects of doxorubicin and gemcitabine on immune cells

in the TIME and further discussed the formation of HEV and

TLS, which provided a basis for chemotherapy combined

with immunotherapy.
2 Materials and methods

2.1 Cells and culture conditions

Mouse B16-F1 melanoma cells were obtained from the

American Type Culture Collection (ATCC). Cells were cultured

in RPMI-1640 medium (Cat. L220KJ; Basal Media, Shanghai,

China) supplemented with 10% fetal bovine serum (Cat. F801-

500; Biocode Biotechnology, Zhejiang, China). The culture

conditions involved incubation at 37°C in a humidified incubator

containing 5% CO2.
2.2 In vivo mouse tumor model

Female C57BL/6 mice aged between six to eight weeks were

purchased from SPF Biotechnology Co. Ltd. (Beijing, China). B16F1

cells were inoculated subcutaneously into C57BL/6 mice at a density

of 5×105. Nine days after inoculation, mice were divided into four

groups (PBS group, doxorubicin group, gemcitabine group, and

combined treatment group) and the corresponding groups

were PBS (volume 100ul/mice), doxorubicin (5 mg/kg),

gemcitabine (25 mg/kg), and a combination of doxorubicin

and gemcitabine for six days, respectively. Doxorubicin (S1208)

and gemcitabine (S1149) were purchased from Selleck Chemicals

(Houston, TX). After initiating the treatment, tumor length and

width were measured daily, and tumor volumes were quantified as

(length×width×height)/2. All mice were observed, treated, and

euthanized according to the protocols of the Animal Ethics and

Welfare Committee of Tianjin Medical University Cancer Institute

and Hospital. The animal study protocol was approved by the

Animal Ethics and Welfare Committee of Tianjin Medical

University Cancer Institute and Hospital (protocol code AE-

2021030, September 9, 2021).
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2.3 Tumor tissue preparation and flow
cytometric analysis

The tumor tissues were collected and cut into small pieces of

approximately 1 mm3. The tumor pieces were incubated with a

medium containing DNA hydrolase I and collagenase IV for 30 min

at 37°C. A 70-mm filter was used to remove non-digested tissue and

obtain a single-cell suspension for the following flow cytometry

staining. Cells were first stained with Zombie NIR (Fixable Viability

kit, BioLegend) to examine live cells and then surface markers

staining with the following antibodies at 4°C for 20 min in the dark:

anti-CD45-PE (BioLegend, San Diego, CA, USA), anti-CD3-APC

(BioLegend), anti-CD4-FITC (BioLegend), anti-CD19-APC

(BioLegend), anti-CD11c-FITC (BioLegend), anti-CD86-PerCP/

Cyanine5.5 (BioLegend), anti-PD-1-PE/Cyanine7 (BioLegend),

anti-PD-L1-PE/Cyanine7 (BioLegend), anti-CD103- PE/Cyanine7

(BioLegend), anti-PNAd-APC (BioLegend). For intracellular

markers, cells were fixed and permeabilized using the FoxP3

staining buffer set (eBioscience) and then stained with

intracellular antibodies for 30 min at 4°C, including anti-IFN-g-
PerCP/Cyanine5.5 (BioLegend), anti-Granzyme B-APC

(BioLegend), anti-Perforin-PE (BioLegend). Flow cytometry

analysis was performed using a BD FACSCanto II flow cytometer

(BD Biosciences), and the data were analyzed using FlowJo

V10 software.
2.4 Immunohistochemistry and multiple
immunofluorescence staining

For immunohistochemical analysis, after deparaffinization,

rehydration, and antigen repair, tissues were incubated overnight

with the primary antibody PNAd (MECA-79, Novus; Shanghai,

China). The following day, EIVISON plus (kit-9903, MXB, China)

was used for secondary antibody incubation. A DAB kit (ZL1-9019,

ZSGB-BIO, China) was used for tissue coloring, hematoxylin was

used for nuclear staining, and neutral resin was used to seal the

object. Finally, a light-field microscope (Olympus, Tokyo, Japan)

was used to examine the stained tumor slices. For multiple

immunofluorescence staining, the slides were stained with

fluorescently labeled antibodies against CD3 (Abcam, Cambridge,

MA, USA), B220 (BioLegend, San Diego, CA, USA), and PNAd

(Novus) using a tyramide signal amplification multiplex

immunohistochemistry kit (Cat. No. 0004100100; Panovue).

According to the immunofluorescence signals, diverse cell types

were accurately quantified in each sector of the images using the

inForm software (PerkinElmer).
2.5 Statistical analyses

All experimental results were statistically analyzed using

GraphPad Prism 8. One-way analysis of variance and Dunnett’s

test were used to compare the experimental and control groups

individually. One-way analysis of variance and Tukey’s test were
Frontiers in Immunology 03
used for comparisons between any two of the four groups. Values

with P<0.05 were considered statistically significant.
3 Results

3.1 Chemotherapy inhibits tumor growth
and influences the expression of HMGB1

We established a melanoma mouse model by subcutaneously

inoculating B16F1 tumor cells into the groin region of C57BL/6

mice. The detailed administration schedule and tumor harvest

intervals are shown in Figure 1A. Tumor volumes were

monitored daily, the data were plotted (Figure 1C), and harvested

tumors were photographed (Figure 1B).

The results showed that doxorubicin and gemcitabine alone and

the combination of both showed significant tumor growth

inhibition effects compared to the control group (P< 0.001, P<

0.01, and P< 0.001, respectively). The combination treatment group

showed the most significant inhibitory effect, but no statistically

significant difference was noted than that in the other two

groups (Figure 1C).

HMGB1 (formerly known as HMG-1), a highly conserved

ubiquitous protein, has been described as a nuclear DNA-binding

protein involved in nucleosome stabilization and gene

transcription. The release of HMGB1 from the nucleus into the

surroundings of the dying cells is an important characteristic of ICD

(17). Immunohistochemical staining was used to evaluate the

cytoplasmic expression of HMGB1 in tumor tissues after different

treatments. The results showed that doxorubicin treatment

demonstrated an increase in the expression of HMGB1 compared

to the control and gemcitabine treatments (5.2% ± 0.45% vs. 3.2% ±

0.45%, P=0.0009, 5.2% ± 0.45% vs. 4.0% ± 1.00%, P=0.0455). In

addition, the expression of HMGB1 was also significantly

upregulated in the combination treatment group than in the

control group (4.6% ± 0.55% vs. 3.2% ± 0.45%,P=0.0175)

(Figures 1D, E).
3.2 Effects of doxorubicin on
lymphocyte subpopulation

To study the changes in the immune microenvironment after

doxorubicin treatment, single-cell suspensions were prepared from

tumor tissues for flow cytometry analysis. The results showed that

the proportion of CD3+ T cells in doxorubicin group and

combination treatment group was significantly higher than that in

gemcitabine group (33.2% ± 10.1% vs. 18.1% ± 5.54%, P= 0.0259;

31.9% ± 8.40% vs. 18.1% ± 5.54%, P= 0.0451) (Figure 2A).

Doxorubicin alone can significantly promote infiltration of CD8+

T cells compared to control and gemcitabine treatments (20.9% ±

7.77% vs. 11.4% ± 2.85%, P= 0.0300; 20.9% ± 7.77 vs. 9.33% ±

3.02%, P= 0.0080); however, it did not exhibit a significant effect on

CD4+ T cells (Figure 2B). Next, we analyzed the levels of cytotoxic

cytokines secreted by CD4+ T cells and CD8+ T cells. Compared

with the control treatment, both doxorubicin alone and
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combination treatment promoted the expression of granzyme B

(25.9% ± 8.27% vs. 13.9% ± 7.13%, P = 0.0492; 33.1% ± 6.39% vs.

13.9% ± 7.13%, P = 0.0061) and perforin in CD4+ T cells (9.45% ±

4.16% vs. 3.13% ± 2.35%, P = 0.0494; 12.7% ± 5.0% vs. 3.13% ±

2.35%, P = 0.0030). However, the results showed no significant

effect on IFN-g expression (Figure 2C). In CD8+T lymphocytes,

compared with the control treatment, doxorubicin increased the

expression of IFN-g (87.5% ± 5.75% vs. 74.4% ± 6.15%, P= 0.0141),

granzyme B (86.5% ± 1.30% vs. 68.9% ± 13.3%, P= 0.0142), and

perforin respectively. (50.5% ± 10.4% vs. 22.2% ± 8.09%, P=

0.0009; Figure 2D).

Foxp3-expressing regulatory T (Treg) cells suppress effective

tumor immunity and are associated with poor prognosis in patients

with cancer (21). In this study, the proportion of Tregs in all

treatment groups was significantly decreased compared than

that in the control group (doxorubicin group:13.6% ± 3.38% vs.

40.2% ± 4.84%,P< 0.0001; gemcitabine group: 29.4% ± 2.49%

vs. 40.2% ± 4.84%,P= 0.0078; combined group:15.5% ± 6.29% vs.

40.2% ± 4.84%,P< 0.0001; Figure 2E).

Furthermore, tissue-resident memory T cells (TRM), which are

important components of tumor infiltrating lymphocytes (TILs)

were also evaluated in this study. TRM cells mediate anti-tumor

immunity by producing cytolytic mediators and releasing cytokines

and chemokines to recruit and activate immune cells (22).
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Compared with the control treatment, doxorubicin alone and the

combination treatment significantly promoted the infiltration of

CD103+ TRM cells (6.43% ± 1.48% vs. 2.24% ± 0.80%, P< 0.0001;

4.15% ± 0.56% vs.2.24% ± 0.80%, P= 0.0186) (Figure 2F).
3.3 Doxorubicin promoted recruitment and
activation of antigen-presenting cells

APCs play key roles in the initiation and regulation of innate

and adaptive anti-tumor immune responses (23, 24). In the present

study, compared with the control treatment, doxorubicin treatment

promoted the recruitment of B cells (30.7% ± 5.46% vs. 17.8% ±

3.84%, P= 0.0286) and dendritic cells(DCs) (31.9% ± 3.23% vs.

15.7% ± 5.89%, P= 0.0001) to the tumor tissue site (Figures 3A, C).

Furthermore, both the doxorubicin alone and the combination

treatment increased the proportion of CD86+ B cells compared to

the control treatment (13.2% ± 2.60% vs. 6.57% ± 1.69%, P= 0.0002;

10.8% ± 0.94% vs.6.57% ± 1.69%, P= 0.0105). Gemcitabine

treatment did not increase the infiltration or activation of B cells

(P > 0.05; Figure 3B). The data showed that only doxorubicin group

showed increased proportion of CD11c+DC and CD86+DCs

compared to the control group (20.8% ± 2.18% vs.15.1% ± 3.57%,

P= 0.0350; Figure 3D).
A

B

D E

C

FIGURE 1

Chemotherapy inhibit tumor growth and affect the expression of HMGB1. (A) Schematic diagram of the mice tumor model. First, 5×105 B16F1 cells
were inoculated subcutaneously into C57BL/6 mice. Nine days after inoculation, mice were divided into 4 groups (PBS group, doxorubicin group,
gemcitabine group, and combined treatment group), and treated with doxorubicin at 5mg/Kg, gemcitabine at 25mg/Kg, and combination with two
for 6 days. (B) After 17 days, mice were sacrificed and tumors were photographed. (C) Tumor length and width were measured every day, and tumor
volumes were quantified as (length×width×width)/2. Results were expressed as mean ± SD (n=5), and represented as tumor volume-time curves
(**P<0.01, *** P<0.001). (D) Representative images of HMGB1 immunohistochemical staining in the four groups. (E) HMGB1 expression levels were
calculated by adding the percentage score of positive staining cells (0-25%, 1 point; 26-50%, 2 points; 51-75%, 3 points; 76-100%, 4 points) and the
intensity score (negative staining, 1point; light-yellow, 2 points; yellow-brown, 3 points; dark-brown, 4 points) to calculate the total
immunohistochemical score. A statistical bar chart was drawn based on the calculated results.
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3.4 Doxorubicin promotes HEV and
TLS formation

The HEV is the main portal for lymphocytes entering the tumor

tissues and is the most important component of TLSs (25). We

measured the proportion of PNAd+ HEV in CD45- cells by flow

cytometry. The proportion of PNAd+ HEV in the doxorubicin

group was significantly higher than that in the control, gemcitabine,

and combination treatment groups (P< 0.0001, P= 0.0002, and P=

0.0016, respectively; Figure 4A).

Multiple immunofluorescence staining was used to evaluate the

formation of TLSs (Figure 4B). Five fields were randomly selected
Frontiers in Immunology 05
from multiple immunofluorescence-stained samples, and the

proportion of T and B cells was quantified using the inForm

software. The proportion of CD3+ T cells was significantly increased

in the doxorubicin group than in the control and gemcitabine groups

(1.55% ± 0.83% vs. 0.31% ± 0.35%, P< 0.0001; 1.55% ± 0.83% vs.

0.31% ± 0.35%, P< 0.0001, Figure 4C). Moreover, the combination

treatment group showed similar increase in T-cell infiltration

compared with the control group (1.13% ± 0.65% vs.0.31% ± 0.35%,

P< 0.0001, Figure 4C). The proportion of B220+B cells was

significantly increased in the doxorubicin group than in the control,

gemcitabine and combination treatment groups (2.67% ± 1.01%

vs.0.55% ± 0.42%,P< 0.0001; 2.67% ± 1.01% vs.0.68% ± 0.67%,P<
A

B

D

E

F

C

FIGURE 2

Effects of doxorubicin on T cell Subsets. Mice with melanoma were treated with doxorubicin, gemcitabine, and combination of both, and tumors
were harvested to produce a single-cell suspension at day 17, which was analyzed by flow cytometry. (A) Representative plots of CD3+ cells gated
on CD45+ cell population, and histogram of percentage of CD3+ cells in CD45+ cells from the four groups (n=5). (B) Representative plots of CD4+

cells, CD8+ cells gated on CD3+ cell population, and histogram of percentage of CD4+ cells and CD8+ cells in CD3+ cells from the four groups
(n=5). (C, D) Histogram of positive percentage of IFN-g, granzyme B and perforin in CD4 and CD8 cells, respectively. (E) Representative dot plot of
Foxp3+ cells within the CD4+ gate and histogram of percentage of Foxp3+ cells in CD4+ cells from the four groups (n=5). (F) Representative dot plot
of CD103+ cells within the CD3+ gate and histogram of percentage of CD103+ cells in CD3+ cells from the four groups (n=5).
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0.0001; 2.67% ± 1.01% vs.1.16% ± 0.79%,P< 0.0001, Figure 4D). We

also measured the density of PNAd+ HEV in the samples to quantify

the TLS formation. The results showed that doxorubicin treatment

significantly promoted TLS formation compared with the control,

gemcitabine, and combination treatment (0.91% ± 0.40% vs.0.14% ±

0.07%, P= 0.0008; 0.91% ± 0.40% vs.0.17% ± 0.09%, P= 0.0011; 0.91%

± 0.40% vs.0.28% ± 0.26%, P= 0.0050, Figure 4E). These data are

consistent with the flow cytometry results.
3.5 Doxorubicin upregulates PD-1/PD-
L1 expression

Finally, we analyzed the changes in PD-1 expression in CD4+

and CD8+ T cells after different treatments. The flow cytometry

results showed that doxorubicin significantly increased the

expression of PD-1 on CD8+ T cells compared with the control

and combination treatments (41.9% ± 7.17% vs.22.1% ± 9.27%, P=

0.0046; 41.9% ± 7.17% vs.17.1% ± 7.66%, P= 0.0006, Figure 5A). No
Frontiers in Immunology 06
statistically significant differences were noted in the expression PD-

1 in CD4+ T cells among the four groups.

Next, we observed the expression of PD-L1 on CD45- tumor

cells. The results showed that the doxorubicin significantly

increased the PD-L1 expression compared with the control and

the gemcitabine treatments (15.3% ± 4.83% vs.7.53% ± 1.29%,P=

0.0022; 15.3% ± 4.83% vs. 7.10% ± 2.06%,P= 0.0013, Figure 5B). The

combination treatment group also showed increased proportion of

PD-L1 on tumor cells compared with the control and the

gemcitabine group (13.0% ± 1.26% vs.7.53% ± 1.29%,P=

0.0290;13.0% ± 1.26% vs.7.10% ± 2.06%,P= 0.0178, Figure 5B).

These findings indicate that combining doxorubicin treatment with

anti-PD1 immunotherapy may yield potential benefits.
4 Discussion

The immune system plays a crucial role in the elimination of

tumors. In the TIME, TLSs, which include B-cells- and T-cell-
A

B

D

C

FIGURE 3

Doxorubicin promoted antigen-presenting cells recruitment and activation. B cells, and DCs were gated by CD19, and CD11c respectively. The
activated cells were labeled with CD86. (A) Representative dot plot of CD19+ cells within the CD45+ gate and histogram of percentage of CD19+

cells in CD45+ cells from the four groups (n=5). (B) Representative dot plot of CD86+ cells within the CD19+ gate and histogram of percentage of
CD86+ cells in CD19+ cells from the four groups (n=5). (C) Representative dot plot of CD11c+ cells within the CD45+ gate and histogram of
percentage of CD11c+ cells in CD45+ cells from the four groups (n=5). (D) Representative dot plot of CD86+ cells within the CD11c+ gate and
histogram of percentage of CD86+ cells in CD11c+ cells from the four groups (n=5).
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enriched areas, may be the local site of initiation and maintenance

of humoral and cellular immune responses against cancers (26, 27).

Numerous studies have evaluated the formation of TLSs in different

cancers and their association with patient prognosis (5–13).

Moreover, the presence of TLS in the TIME is an important

indicator of the effectiveness of immune checkpoint therapy (28).

Therefore, exploring strategies that can induce TLS formation is

crucial for proposing combination therapies to improve the efficacy

of immune checkpoint therapy.

ICD induction in tumor cells is a promising approach for

activating anti-tumor immune responses (16). Chemotherapeutics

that can promote ICD can recruit and promote DC maturation and

cross-initiation of tumor-specific CD8+ T cells via DAMP release

(29, 30). HMGB1 plays a crucial role in this process. Via binding to

toll-like receptor 4 (TLR-4) on DCs, HMGB1 promotes DC

maturation and releases pro-inflammatory cytokines to trigger an

effective immune response (31). Another study showed that

HMGB1, synergistically with ATP, could induce DCs to release
Frontiers in Immunology 07
interleukin‐1b (IL-1b), and HMGB1-specific antibodies can block

the ability of IL-1b production in DCs after exposure to dying

tumor cells (32). In the present study, doxorubicin as a

representative chemotherapeutics of ICD was used as the study.

Doxorubicin treatment promoted the infiltration and activation of

DCs and enhanced the function of infiltrated CD8+ T cells, such as

the expression of IFN-g, granzyme B and perforin, which is

consistent with the previous reports (33).

The role of B cells in cancer immunity and their implications in

new immunotherapies have garnered significant interest. B cell

function includes not only antibody secretion but also antigen

presentation to T cells. In human cancers, antigen-presenting

B cells are defined as a subset of CD86+CD21- B cells (34).

CD86+ B cells colocalize with T cells in TLSs and are enriched in

tumors with increased numbers of TLSs (35). Compared to CD8+

T cells alone, the co-localization of B cells with CD8+ T cells

increases patient survival (14, 36). One study showed that

oncolytic viruses acting as ICD inducers can increase the
A

B

D EC

FIGURE 4

Doxorubicin promotes HEV and TLS formation. (A) Representative dot plot of PNAd+ cells within the CD45- gate and histogram of percentage of
PNAd+ cells in CD45- cells from the four groups (n=5). (B) Representative images of multiple immunofluorescence staining (magnification, ×200) in
control group, doxorubicin group, gemcitabine group, and combination treatment group, respectively. The slide was stained with CD3 (red), B220
(green), PNAd (yellow), and DAPI (blue). (C-E) Five fields were randomly selected for each sample, and the proportion of T and B cells occupying
nuclear cells was quantified using inForm software (PerkinElmer) based on immunofluorescence signals. (E) The density of PNAd+ HEV was used to
quantify TLS formation.
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expression of CD86 in B cells; however, it is unclear whether this is

related to ICD (37). In this study, the flow cytometry data showed a

significant increase in the total number of B and CD86+ B cells after

doxorubicin treatment.

Furthermore, the present results showed that doxorubicin

treatment can significantly increase the proportion of CD103+ TRM.

They can conveniently perform local immune monitoring functions

in tumors and exhibit tumor-specific immune protective effects.

CD103+ TRM cells can directly kill epithelial-derived tumor cells by

producing a large number of cytotoxic particles and cytokines, such

as granzyme-B, perforin, and IFN-g (38). TRM cells may also produce

chemokines, leading to the recruitment of XCR1+BATF3+DC and

activation of T cells (39). These results further indicate that

chemotherapeutics with the capacity of ICD induction might be

more beneficial for combination immunotherapy.

PNAd is a hallmark of HEV that facilitates the recruitment of

lymphocytes to lymphoid organs and serves as a marker of TLS

formation (40). DCs promote the maturation of HEV endothelial

cells via lymphotoxin-b, which plays an important role in

monitoring the entry of lymphocytes into TLS (41, 42). Whether

chemotherapeutics with an ICD induction impact the formation of

TLS remains unclear. In the present study, we compared the levels

of HEV formation between doxorubicin and gemcitabine and found

that doxorubicin induced high PNAd expression and promoted TLS

formation. The increased proportion and maturity of DCs in the

doxorubicin treatment group confirmed the positive effects of

doxorubicin on TLS formation. This may be the link between the

onset of ICD and TLS induction.

Additionally, PD-1 expression in CD8+ T cells and PD-L1

expression in tumor cells was elevated after doxorubicin treatment.

The high expression of PD-L1 on tumor cells in the TIME may

be related to the inflammatory signals, such as IFN-g, generated
during the anti-tumor immune response (43). Our results verify

the aforementioned conclusions and provide a theoretical basis

for combined anti-PD-1/PD-L1 therapy. In addition, some

chemotherapeutics inhibit Treg production with ICD (44–46),
Frontiers in Immunology 08
which is consistent with our results. This suggests that therapeutics

mediating ICD reaction can disrupt the immunosuppressive state of

the tumor microenvironment.

Although our experiment showed that doxorubicin promoted

the infiltration of immune cells and the formation of TLS

simultaneously, this study still has some limitations. First, only

one ICD inducer was used. Secondly, the results were examined

only using a mouse model of melanoma. Therefore, additional

chemotherapeutics with ICD reactions and additional experimental

models should be used for further confirmation. In conclusion, the

results elucidated that doxorubicin, with an ICD reaction, promoted

TLS formation and increased PD-1/PD-L1 expression in tumor

tissues, which may be advantageous for combined immune

checkpoint therapy.
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