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Background: Extensive evidence suggests a link between alterations in serum

metabolite composition and various autoimmune diseases (ADs). Nevertheless,

the causal relationship underlying these correlations and their potential utility as

dependable biomarkers for early AD detection remain uncertain.

Objective: The objective of this study was to employ a two-sample Mendelian

randomization (MR) approach to ascertain the causal relationship between serum

metabolites and ADs. Additionally, a meta-analysis incorporating data from

diverse samples was conducted to enhance the validation of this causal effect.

Materials and methods: A two-sample MR analysis was performed to investigate

the association between 486 human serum metabolites and six prevalent

autoimmune diseases: systemic lupus erythematosus (SLE), rheumatoid arthritis

(RA), inflammatory bowel disease (IBD), dermatomyositis (DM), type 1 diabetes

(T1D), and celiac disease (CeD). The inverse variance weighted (IVW) model was

employed as the primary analytical technique for the two-sample MR analysis,

aiming to identify blood metabolites linked with autoimmune diseases.

Independent outcome samples were utilized for further validation of significant

blood metabolites. Additional sensitivity analyses, including heterogeneity test,

horizontal pleiotropy test, and retention rate analysis, were conducted. The

results from these analyses were subsequently meta-integrated. Finally,

metabolic pathway analysis was performed using the KEGG and Small

Molecule Pathway Databases (SMPD).

Results: Following the discovery and replication phases, eight metabolites were

identified as causally associated with various autoimmune diseases, encompassing

five lipid metabolism types: 1-oleoylglycerophosphoethanolamine, 1-

arachidonoylglycerophosphoethanolamine, 1-myristoylglycerophosphocholine,

arachidonate (20:4 n6), and glycerol. The meta-analysis indicated that three out

of these eight metabolites exhibited a protective effect, while the remaining five

were designated as pathogenic factors. The robustness of these associations was

further confirmed through sensitivity analysis. Moreover, an investigation into
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metabolic pathways revealed a significant correlation between galactose

metabolism and autoimmune diseases.

Conclusion: This study revealed a causal relationship between lipid metabolites

and ADs, providing novel insights into the mechanism of AD development

mediated by serum metabolites and possible biomarkers for early diagnosis.
KEYWORDS

autoimmune diseases, biomarkers, Mendelian randomization, meta-analysis,
serum metabolites
Introduction

Autoimmune diseases (ADs) arise from a disruption in the

immune system’s ability to tolerate self-antigens and its subsequent

response to these antigens (1). Epidemiological studies have shown

a gradual increase in the global prevalence of ADs over the years (2).

Individuals with ADs often experience persistent symptoms that

significantly impact their quality of life, leading to long-term

debilitation, organ dysfunction, reduced work productivity, and

substantial medical expenses (3). These challenges not only affect

patients but also have a significant impact on the social and

economic aspects of society. Despite numerous studies attempting

to understand the nature of ADs, their pathogenesis and risk factors

remain elusive (4–6). The preclinical phase of AD is characterized

by an initial asymptomatic stage of varying duration, followed by

non-specific signs and symptoms. Most AD cases have a

considerably long prodromal phase with either no symptoms or

mild symptoms that can last for several years. Additionally, various

inflammatory manifestations may occur and often intensify in the

months to years leading up to a clinical diagnosis (7, 8). A

promising strategy for preventing ADs could involve addressing

adverse lifestyle factors through public health initiatives at the

population level, highlighting the importance of effective early

screening strategies for ADs.

Controlling inflammation remains a pivotal aspect of ADs

therapy, including conditions like RA (9) and SLE (10). A

growing body of evidence indicates that immune cell regulatory

mechanisms are intricately connected to metabolic pathways, with

various subpopulations of immune cells having distinct metabolic

requirements that are influenced by disease-specific

microenvironments (11–13). For example, effector T cells rely on

glycolytic metabolism for their development and function, while

regulatory T cells primarily use lipids to generate energy through

mitochondrial beta-oxidation, leading to ATP production via

oxidative phosphorylation (OXPHOS) (14). Furthermore,

inflammatory M1 macrophages predominantly utilize glycolysis,

whereas anti-inflammatory M2 macrophages favor beta-oxidation

(15). In ADs, the autoinflammatory response is characterized by

high energy consumption and involves processes such as
02
adipogenesis, altered glucose metabolism, and glutamine

metabolism, resulting in a shift from OXPHOS to glycolysis for

energy production. In specific scenarios, such as in RA, hypoxia in

the synovial membrane triggers chronic mitochondrial

hyperpolarization in T cells, leading to increased glucose

metabolism and ATP synthesis (16). Additionally, chronically

activated T cells in individuals with SLE and lupus-prone mice

exhibit heightened mitochondrial glucose oxidation and

hyperpolarization. Individuals with multiple sclerosis (MS) have

been found to have elevated plasma levels of acetoacetic acid,

acetone, and 3-hydroxybutyric acid, along with altered profiles of

circulating lipids and lipoprotein metabolism (17, 18). Additionally,

metabolites are compounds that act as intermediates or end

products in metabolic pathways. Detecting metabolites in the

bloodstream provides a robust method for early disease diagnosis,

owing to their accessibility and ease of detection (19).

Consequently, understanding the underlying mechanisms linking

metabolic changes to AD pathogenesis could lead to the

development of new early screening tools and therapeutic

interventions (3).

Indeed, while cross-sectional studies have identified

associations between blood metabolites and ADs, establishing

causality remains a crucial area of investigation. Further research

is required to determine if altered metabolite levels are a cause or

consequence of ADs. Longitudinal studies incorporating both

healthy individuals and those at risk of developing ADs could

help elucidate the causal relationships between metabolites and

ADs. In addition, interventional studies that examine the effects of

lifestyle changes on metabolite levels and disease outcomes may also

provide valuable insights into the role of metabolites in ADs.

Ultimately, determining the causality of metabolite-AD

associations could lead to the identification of novel therapeutic

targets and personalized treatment options for individuals

with ADs.

The advancement of high-throughput techniques has enabled

the simultaneous assessment of a broad range of circulating serum

metabolites and genotyping in parallel populations. Genome-wide

association studies (GWAS) provide valuable insights into the

complex molecular interactions between environmental and
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genetic factors in disease pathogenesis. Numerous single nucleotide

polymorphisms (SNPs) have shown strong associations with serum

metabolites. Mendelian randomization (MR), an epidemiological

statistical analysis tool, utilizes genetic variation linked to exposure

as an unconfounded instrumental variable to assess the relationship

between exposure and clinical disease outcomes (20). GWAS have

expanded to include metabolic phenotypes, producing maps of

genetically determined metabolites (GDM) (21). Several MR causal

analyses have explored the link between blood metabolite levels and

disease. For example, Huang et al. used MR to identify key

pathogenic metabolites influencing both T2D and more severe

COVID-19 phenotypes in obese patients (22). Additionally, a

study from Gu (23) investigated the causal relationship between

osteoarthritis at different sites and blood metabolites. Likewise, Xiao

et al. discovered 11 metabolites with a significant causal association

with anxiety disorders (24). Furthermore, Angela Ge et al.

conducted an MR analysis to examine the causal relationship

between serum metabolite composition and MS (25). However,

there is still a lack of in-depth research on large-scale blood

metabolites and multiple autoimmune diseases.

Therefore, the main aim of this research was to investigate the

potential causal relationships between serum metabolites through a

two-sample MR and meta-analysis involving six autoimmune

diseases: SLE, RA, IBD, DM, T1D, and CeD.
Materials and methods

Ethics statement and MR design

This research exclusively relied on publicly available GWAS

data, and all necessary ethical approvals, participant consents, and

permissions from the original GWAS study are readily accessible.

No new data were collected for this investigation, rendering any

additional ethical approvals unnecessary.
Frontiers in Immunology 03
The flow chart outlining themethodology of this study is illustrated

in Figure 1. In summary, serum metabolites function as exposure

indicators, while ADs represent the outcomes. Rigorous inclusion and

exclusion criteria guided the selection of single nucleotide

polymorphisms (SNPs) strongly associated with specific serum

metabolites as instrumental variables (IVs). The samples included

both discovery and validation cohorts, with significant associations

identified through various sensitivity analyses. Furthermore, reverse

MR analysis was performed tomitigate potential confounding effects of

ADs on the pathogenic serum metabolites.
Serum metabolites datasets

The metabolomics GWAS server (http://metabolomics.helmholtz-

muenchen.de/gwas/) was utilized to obtain genetic association

information for serum metabolites. Shin et al. conducted a study

involving a total of 7,824 participants from two European population

cohorts (21). This cohort consisted of 1,768 participants from the

German KORA F4 study and 6,056 from the UK Twin study. Fasting

serum samples were subjected to non-targeted mass spectrometry

analysis. Following stringent quality control measures, the researchers

successfully identified 486 metabolites (comprising 309 known

metabolites and 177 unknown metabolites) that demonstrated a genetic

influence on serum metabolites. The 309 known metabolites were

systematically categorized into eight distinct biochemical classifications,

encompassing lipids, peptides, nucleotides, energy, amino acids, cofactors

and vitamins, carbohydrates, and exogenous substances.
Autoimmune disease discovery and
validation datasets

During the discovery phase, GWAS summary statistics were

obtained from publicly available analyses for each of the six AD
FIGURE 1

The overview of the research workflow.
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types and Table 1 provides additional information about the

dataset. The GWAS meta-analysis for IBD encompassed 12,882

cases of European ancestry and 21,770 controls (26). Furthermore,

for RA, the pooled data included information from 1,605 RA cases

and 359,589 controls of European ancestry across 18 studies. In the

case of SLE, the pooled measurements were derived from a GWAS

meta-analysis involving 1,311 SLE cases and 1,783 controls of

European ancestry (27). Additionally, summary statistics for T1D

were sourced from the discovery phase of the latest GWAS meta-

analysis conducted in Finland, involving 1,238 T1D cases and

183,185 controls of European ancestry. Similarly, pooled

measurements of DM) were obtained from the GWAS and

included 208 DM cases and 213,145 controls of European

ancestry. Finally, a pooled genetic measure for CeD was derived

from a GWAS meta-analysis that incorporated data from five

different sample groups, comprising 4,533 CeD cases and 10,750

controls (28).

Furthermore, repeated MR analyses were performed on 486

serum metabolites to facilitate validation of the findings in the

discovery database. The validated outcome samples for IBD

comprised 25,042 case and 25,042 control samples of European

ancestry (29). The validation samples for RA were sourced from the

UK Biobank, which included 1,401 cases and 359,793 control

samples. Similarly, the local replicate samples for SLE consisted of

7,219 and 15,991 control GWAS of European ancestry (30).

Moreover, the duplicate samples for T1D and DM were obtained

from the FINNGEN database, which included 5,928 and 201 cases

and 183,185 and 172,834 control samples. The GWAS meta-

analysis of replicated CeD samples involved 12,041 CeD cases

and 12,228 controls of European ancestry (31). More specific

in format ion about the da ta used can be found in

Supplementary Table 1.

Quality control measures were implemented for SNPs to ensure

the validity of the analysis. These measures involved removing non-

dual allelic SNPs, SNPs with duplicate rsID or base pair locations,

SNPs lacking rsID, SNPs with strand ambiguous alleles, SNPs not
Frontiers in Immunology 04
present in Phase 3 of the 1000 Genomes Project, SNPs with base

pair locations or allele mismatches in Phase 3 of the 1000 Genomes

Project, SNPs with interpolated information scores below 0.9, and

all SNPs located on the X and Y chromosomes.
Selection of instrumental variables

In this MR analysis, the selection of IVs was predicated on three

fundamental assumptions. SNPs associated with the metabolite at the

genome-wide significance threshold P < 1� 10−5 were chosen as

potential IVs. Eligible IVs were further refined through a series of

quality control steps. Initially, SNPs with inconsistent alleles (e.g., T/C

vs. T/G) between the exposure and outcome samples were excluded.

Subsequently, palindromic alleles (A/T or G/C) were also excluded.

Thirdly, SNPs within each metabolite were subjected to clumping in

order to retain only independent variants. The linkage disequilibrium

(LD) threshold for clumping was set at R2 < 0:001 within a 500

kilobase distance, utilizing the European-based 1,000 Genome

Projects reference panel for estimation. Finally, the MR pleiotropy

residual sum and outlier (MR-PRESSO) test was utilized to detect

potential horizontal pleiotropy, addressing it by removing outliers

(32). To quantitatively ascertain the strength of the selected SNPs as

instruments, the ratio of phenotypic variation explained for each

metabolite and F-statistics of the instrument were calculated (33):

F =
r2(n − 1 − k)
(1 − r2)k

Here, r2   represents the part of the exposure variance explained

by IVs, n is the sample size, and k is the number of IVs. A statistic of.

signifies a lack of strong evidence for weak instrument bias (34). In

this research, IVs with F -statistics less than 10 were classified as

weak IVs and were thus excluded. Finally, a coordinated analysis

was performed to compare exposure and outcome SNP alleles,

excluding the alleles with intermediate effects (EAF > 0:42) of

palindromic SNPs or SNPs with incompatible alleles (35).
TABLE 1 Autoimmune diseases GWAS samples used in this study.

Stage Trait Consortium N.case N.controls SNPs

Discovery IBD IIBDGC 12,882 21,770 12,716,084

RA UK Biobank 1,605 359,589 10,079,899

SLE IEU 1,311 1,783 489,877

T1D NA 9,266 15,574 12,783,129

DM FINNGEN 208 213,145 16,380,451

CeD NA 4,533 10,750 523,399

Validation IBD NA 25,042 25,042 9,619,016

RA UK Biobank 1,401 359,793 9,944,222

SLE NA 5,201 9,066 7,071,163

T1D FINNGEN 2,542 182,573 16,380,230

DM FINNGEN 201 172,834 16,380,281

CeD IEU 3,796 8,154 231,359
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Mendelian randomization analysis

In this MR analysis, several tests were conducted to evaluate the

causal relationship between metabolites and AD. These tests

included fixed/random effects inverse variance weighting (IVW)

tests (36), weighted median (WM) (37), and MR-Egger (38). The

IVW method, known for providing the most accurate estimate for

valid SNPs, was utilized as the primary analysis to assess the causal

relationship between serum metabolites and ADs, with a

significance level set at P< 0.05. Additionally, complementary

analyses such as WM and MR-Egger were performed to enhance

the confidence of the estimates and offer advantages under different

assumptions. The WM method yields a consistent causal estimate

when at least 50% of the weight comes from valid instrumental

variables (37). On the other hand, the MR-Egger regression helps to

address pleiotropy when all instrumental variables are invalid (30).
Sensitivity analysis

The IVW method provides a robust estimate of the causal effect

of exposure when all three IV assumptions are met, and it is

considered the most reliable MR method. However, if certain

instrumental variables contradict the IV assumptions, the analysis

may produce erroneous results. Therefore, the following sensitivity

analyses were conducted: 1) Cochrane’s Q test for IVW and MR-

Egger was employed to investigate potential violations of the

assumptions due to heterogeneity in the association among

individual IVs (36). 2) The intercept estimate of horizontal

pleiotropy in MR-Egger was used to assess any independent

association of genetic variation with exposure and outcome. 3)

Additional MR methods with varying modeling assumptions and

strengths were used to enhance the stability and robustness of the

results. 4) MR-PRESSO was utilized to identify outliers and correct

for horizontal pleiotropy. 5) Individual SNP analysis and leave-one-

out (LOO) analysis were employed to evaluate whether individual

SNPs influenced the observed associations.

The following principles guided the identification of potentially

suitable candidate metabolite IVs associated with ADs: 1) Ensuring

amplitude and directional consistency across the results from the

four MR analysis methods; 2) Confirming the absence of pleiotropy

and heterogeneity; 3) Using LOO analysis to confirm the absence of

any influential data points exerting substantial influence on

the outcomes.
Genetic correlation and direction validation

The MR results may potentially generate false positives as a

result of genetic correlations between traits (39). Throughout the

process of IV selection, SNPs associated with ADs were deliberately

excluded. Nonetheless, it is crucial to acknowledge that

combinations of SNPs that are not significantly correlated with

ADs could still contribute to the genetic predisposition for ADs

(40). Furthermore, the Steiger test was utilized to ascertain whether
Frontiers in Immunology 05
reverse causality had an impact on the observed causality. This test

evaluates whether the selected SNPs explain the variance in ADs

more effectively than the identified metabolites. In cases where the

collective SNPs were determined to not pose a genetic risk for ADs

in comparison to the metabolites, the results indicated the absence

of bias in causal inference (Steiger P< 0.05).
Meta-analysis and metabolic
pathway analysis

The robustness of the candidate metabolites, identified based on

the aforementioned criteria, was thoroughly assessed by replicating

the IVW analysis in an additional six AD cohorts. In essence, the

initial analysis employed GWAS datasets designated as discovery,

while supplementary GWAS datasets were utilized for the

replication analysis. A meta-analysis of two MR analyses was

conducted to determine the serum metabolites with causal effects

on ADs. This meta-analysis employed a random-effects IVWmodel

using the meta package (41).

To identify the final candidates from the additional GWAS data

of ADs, significant associations (PIVW< 0.05) were evaluated

through replication analysis and meta-analysis. MetaboAnalyst

5.0 (https://www.metaboanalyst.ca/) was employed for the

metabolic pathway analysis of known metabolites. Two databases,

namely the KEGG database and the Small Molecule Pathway

Database (SMPDB), were utilized in this study. The significance

threshold value for pathway analysis was set at 0.10.
Statistical analysis

The statistical analysis was conducted using R4.2.2 software,

and the MR analysis was primarily performed using the

TwoSampleMR (42) package. Additionally, error detection rate

(false discovery rate; FDR) correction was employed to mitigate

false positives in multiple tests. A given metabolite’s estimated

causal effect was considered statistically significant when it had an

FDR< 0.05, it was considered statistically significant. The data and

source code can be downloaded from https://github.com/

wewen1996/Two-sample-Mendelian-Randomization-and-

Meta-Analysis.
Results

Selection of instrumental variables

A total of 486 metabolites were selected, with the number of

instrumental variables (IVs) ranging from 3 to 485, and a median of

27 (Supplementary Table 4). These IVs accounted for a variance in

their corresponding metabolites ranging from 0.0082% to

188.8405%. The MR-PRESSO global test did not provide any

evidence of pleiotropic effects (P > 0.05). Importantly, all the

minimum F-statistics for the validity test exceeded 10, ranging
frontiersin.org
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from 17.64 to 21.00 (Supplementary Table 4). This indicates that

weak instrument bias was unlikely to have occurred.
Causal effects of metabolites on
autoimmune diseases

To gain a more comprehensive understanding of metabolic

changes, this analysis excluded 177 unidentified metabolites and

focused on the 309 metabolites with known structures and

functions, estimating the causal relationship between these

metabolites and six AD phenotypes using the selected IVs.

In the discovery phase, the first one or two serum metabolites

most associated with the risk of CeD, DM, IBD, SLE, RA, SLE, and

T1D were screened using six MR methods. Assumption checks were

conducted for all 309 regulators to determine the most suitable

analytical tools, with the IVW method being selected as the

primary approach due to the absence of heterogeneity and weak

instruments. Following multiple test adjustments using the false

discovery rate (FDR) P-value threshold, eight metabolic exposures

were identified as statistically significant at a threshold of PFDR< 0.05
Frontiers in Immunology 06
(Figure 2). It is noteworthy that exposure factors associated with CeD

and RA, represented by SNPs 3 and 6, were incorporated into the

results (Table 2). Despite the limited number of SNPs, which may

lead to reduced statistical power or the presence of weak instrumental

variables, subsequent statistical analysis confirmed that these two

exposure factors met the criteria for strong instrumental variables,

with their statistical power values aligning with the standard

requirements for exposure factors. The statistical robustness of our

findings aligns with the standard requirements for exposure factors,

resulting in the retention of the results. These associations

encompassed five metabolites from the lipid pathways, two from

the lipid metabolism pathways, one from the amino acid pathways,

and two from the xenobiotic pathways. Notably, our results revealed a

substantial causal association between a heightened susceptibility to

CeD and an elevated level of 1-oleoylglycerophosphoethanolamine

(odds ratio [OR] = 11.271, 95% confidence intervals [CI]: 2.053-

61.882, P = 0.005, PFDR = 0.032). Furthermore, we observed that the

onset of DM could elevate the level of betaine (OR = 0.014, 95% CI:

0.001-0.318, P = 0.007, PFDR = 0.042). Additionally, 1-

arachidonoylglycerophosphoethanolamine (OR = 0.411, 95% CI:

0.264-0.642, P = 9.034×10-5, PFDR = 5.420×10-4) and arachidonate
FIGURE 2

Heatmap of mendelian randomized association effect values for known metabolites with significant differences in phenotypic risk for six
autoimmune diseases (from fixed effects IVW analysis). (*: P<0.05; **: P<0.01; ***: P<0.001).
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TABLE 2 Significant MR analysis results in the discovery samples.

Methods Outcome Exposure Category No.
SNP

OR 95% CI P PFDR

IVW CeD 1-oleoylglycerophosphoethanolamine Lipid 3 11.271 2.053-61.882 0.005 0.032

Weighted
Median

10.380 1.255-85.843 0.030 0.060

MR-Egger 1.076 0.000-3.156 0.684 0.684

Simple Mode 21.886 1.015-
471.939

0.144 0.215

Weighted Mode 7.261 0.516-
102.194

0.238 0.286

MR-PRESSO 11.271 1.393-91.160 0.023 0.060

IVW DM betaine Amino acid 22 0.014 0.001-0.318 0.007 0.042

Weighted
Median

0.119 0.002-0.456 0.028 0.056

MR-Egger 0.002 0.000-3.585 0.121 0.242

Simple Mode 0.282 0.000-
466.990

0.741 0.741

Weighted Mode 0.119 0.000-
121.643

0.553 0.664

MR-PRESSO 0.014 0.000-0.422 0.014 0.042

IVW IBD 1-
arachidonoylglycerophosphoethanolamine

Lipid 26 0.411 0.264-0.642 9.034×10-
5

5.420×10-
4

Weighted
Median

0.352 0.180-0.686 0.002 0.004

MR-Egger 0.143 0.044-0.465 0.004 0.004

Simple Mode 0.598 0.160-2.226 0.450 0.450

Weighted Mode 0.207 0.080-0.535 0.003 0.004

MR-PRESSO 0.411 0.253-0.669 3.511×10-4 0.001

IVW IBD arachidonate (20:4n6) Lipid 20 0.352 0.195-0.635 5.132×10-
4

0.002

Weighted
Median

0.285 0.148-0.549 1.750×10-4 0.001

MR-Egger 0.216 0.081-0.579 0.007 0.008

Simple Mode 0.596 0.124-2.856 0.525 0.525

Weighted Mode 0.255 0.128-0.509 0.001 0.002

MR-PRESSO 0.352 0.179-0.693 0.003 0.004

IVW RA 1-myristoylglycerophosphocholine Lipid 6 1.009 1.004-1.014 0.001 0.003

Weighted
Median

1.010 1.003-1.017 0.005 0.010

MR-Egger 1.013 1.000-1.026 0.129 0.129

Simple Mode 1.010 1.000-1.020 0.105 0.126

Weighted Mode 1.010 1.002-1.018 0.050 0.075

MR-PRESSO 1.009 1.004-1.014 0.001 0.003

IVW RA glycerol Lipid 18 0.991 0.986-0.997 0.005 0.031

(Continued)
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(20:4n6) (OR = 0.352, 95% CI: 0.195-0.635, P = 5.132×10-4, PFDR =

0.002) were found to be elevated in IBD patients. The causal effect of

RA on 1-myristoylglycerophosphocholine was estimated at 1.009

(95% CI: 1.004-1.014, P = 0.001, PFDR = 0.003), while glycerol was

estimated at 0.991 (OR = 0.991, 95% CI: 0.986-0.997, P = 0.005, PFDR
= 0.031). A positive association was observed between 2-

methoxyacetaminophen sulfate and SLE (OR = 0.945, 95% CI:

0.920-0.971, P = 4.008×10-5, PFDR = 1.477×10-4). Conversely,

glycerol 2-phosphate exhibited a negative association with T1D

(OR = 3.382, 95% CI: 1.897-6.027, P = 3.599×10-5, PFDR =

2.159×10-4). It is important to note that the values of OR of 1-

my r i s t o y l g l y c e r opho sphocho l i n e , g l y c e r o l , and 2 -

methoxyacetaminophen sulfate are very close to 1, implying a

limited clinical impact despite their statistical significance. This

discrepancy can potentially be attributed to substantial variation in

the independent variable. Therefore, it is imperative to conduct

further in vivo investigations to ascertain the clinical relevance of

these three exposure factors.
Sensitivity analyses

To mitigate the horizontal pleiotropy of MR estimates,

sensitivity analyses were conducted. A series of six tests were
Frontiers in Immunology 08
implemented for metabolites associated with multiple SNPs54t,

including fixed-/random-effects IVW test, weighted median

method, and MR-Egger regression test. The results of these

sensitivity analyses for eight metabolites and their causal

relationships with ADs are detailed in Table 2, demonstrating

statistically significant findings. Notably, robust causality was

frequently observed to exhibit statistical significance in two

additional MR tests (P< 0.05), specifically the weighted median

test and the MR-PRESSO test. All eight pairs of associations are

considered robust (Table 2). Furthermore, an evaluation for

potential horizontal pleiotropy in all these associations was

undertaken using the MR-Egger intercept term and the MR-

PRESSO global test (Supplementary Table 3). Heterogeneity

among SNPs related to each metabolite was assessed using

Cochrane’s Q test. In instances where heterogeneity was detected

(P< 0.05), the random-effects IVW test was employed to offer a

more conservative yet robust estimate. Additionally, scatter plots

(Figure 3) and funnel plots (Figure 4) were utilized to rule out

potential outliers and horizontal pleiotropy for all identified

metabolites. Furthermore, the LOO analysis did not reveal

substantial variation in estimates of causality between the eight

metabolites and ADs, suggesting that none of the identified causal

relationships were influenced by any single instrumental variable

(Supplementary Figure 1).
TABLE 2 Continued

Methods Outcome Exposure Category No.
SNP

OR 95% CI P PFDR

Weighted
Median

0.993 0.986-1.000 0.048 0.096

MR-Egger 1.000 0.988-1.012 0.972 0.972

Simple Mode 0.996 0.985-1.007 0.451 0.542

Weighted Mode 0.995 0.987-1.002 0.166 0.249

MR-PRESSO 0.991 0.985-0.998 0.012 0.037

IVW SLE 2-methoxyacetaminophen sulfate Xenobiotics 97 0.945 0.920-0.971 4.008×10-
5

1.477×10-
4

Weighted
Median

0.943 0.907-0.980 0.003 0.006

MR-Egger 0.921 0.853-0.995 0.038 0.056

Simple Mode 0.903 0.811-1.006 0.066 0.079

Weighted Mode 0.935 0.862-1.014 0.104 0.104

MR-PRESSO 0.945 0.920-0.971 4.924×10-5 1.477×10-4

IVW T1D glycerol 2-phosphate Xenobiotics 21 3.382 1.897-6.027 3.599×10-
5

2.159×10-
4

Weighted
Median

1.980 0.894-4.382 0.092 0.184

MR-Egger 1.226 0.410-3.668 0.718 0.718

Simple Mode 1.591 0.412-6.144 0.505 0.607

Weighted Mode 1.801 0.683-4.749 0.244 0.366

MR-PRESSO 3.382 1.757-6.509 2.654×10-4 0.001
fro
The bold font is the P-value of IVW algorithm, the main analysis method used in this study, and the P-value after FDR correction.
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Moreover, the significant metabolites identified in the initial

discovery stage were successfully replicated in independent

replication datasets. The replication MR analysis followed the

same rigorous methodology as applied in the discovery samples,

ensuring consistency and reliability in the findings.
Replication and meta-analysis

To enhance the robustness of the estimates, validated metabolites

showing significant causal links with ADs were subjected to

validation in independent replication samples (Supplementary

Table 2). As anticipated, similar patterns were observed for the

identified metabolites in replicated GWAS data for ADs. Notably,

beyond SLE and T1D, statistical significance persisted for other AD-

related metabolites even following FDR correction (P< 0.05). The

meta-analysis further confirmed the impact of eight blood

metabolites on ADs (Figure 5). Specifically, genetic predisposition

for elevated levels of betaine (OR 0.02, 95% CI: 0.002-0.16, P =

0.0004), 1-arachidonoylglycerophosphoethanolamine (OR 0.50, 95%

CI: 0.37-0.67, P< 0.0001), arachidonate (20:4n6) (OR 0.43, 95% CI:

0.29-0.66, P< 0.0001), glycerol (OR 0.99, 95% CI: 0.987-0.995, P<

0.0001), and 2-methoxyacetaminophen sulfate (OR 0.96, 95% CI:

0.93-0.98, P = 0.0006) was associated with reduced susceptibility to

ADs. Conversely, genetic predisposition for higher levels of 1-

oleoylglycerophosphoethanolamine (OR 12.39, 95% CI: 3.29-46.75,

P = 0.0002), 1-myristoylglycerophosphocholine (OR 1.0089, 95% CI:

1.0051-1.0126, P< 0.0001), and glycerol 2-phosphate (OR 3.45, 95%

CI: 2.24-5.31, P< 0.0001) was associated with increased susceptibility

to ADs. Importantly, the Steiger test results confirmed the accuracy of

the selected IVs, with a P-value significantly below 0.05.
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Metabolic pathway analysis

Although shared causal metabolites were identified across the

six ADs, it is noteworthy that five out of the eight significantly

associated metabolites were lipid compounds. This finding suggests

the potential role of lipids as key components among plasma

metabolites associated with ADs. Analysis based on the eight

identified metabolites revealed enrichment of six metabolic

pathways in the KEGG and SMPDB databases, which could play

a role in the pathogenesis of ADs (Supplementary Tables 5, 6).

Within the KEGG database, these metabolites were primarily

enriched in pathways such as glycerolipid metabolism, galactose

metabolism, glycine, serine, and threonine metabolism,

biosynthesis of unsaturated fatty acids, glycerophospholipid

metabolism, and arachidonic acid pathways. Particularly

noteworthy was the significant enrichment of glycerolipid

metabolism pathway with a P-value below 0.05, indicating its

potential relevance to common ADs. In contrast, analysis using

the SMPDB database showed enrichment of metabolites in

pathways including betaine, glycerolipid, galactose, methionine,

glycine, serine, and arachidonic acid metabolism.
Discussion

The early-stage symptoms of ADs often go unnoticed, with the

detection of antibodies being relatively costly (43). As a result,

patients are frequently diagnosed when they have already reached

an advanced and irreversible stage of the disease. Early screening for

ADs can serve as a proactive measure, alerting individuals at risk to

consider lifestyle adjustments and prioritize efforts to prevent
A B D

E F G H

C

FIGURE 3

Scatter plot showing the genetic associations of seven metabolites on the risk of 6 AD phenotypes. (A) 1-oleoylglycerophosphoethanolamine on
CeD, (B) betaine on DM, (C) 1-arachidonoylglycerophosphoethanolamine on IBD, (D) arachidonate (20:4n6) on IBD, (E) 1-
myristoylglycerophosphocholine on RA, (F) glycerol on RA, (G) 2-methoxyacetaminophen sulfate on SLE, (H) glycerol 2-phosphate on T1D.
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disease progression (44). Serum metabolites, which are relatively

easy to obtain and can be detected using less invasive methods, can

serve as biomarkers for the early screening of ADs. However, prior

MR studies examining the relationship between ADs and serum

metabolites were limited to specific GWAS samples, lacking

replication and integrated analyses (45). Therefore, in order to

obtain more robust results, MR and meta-analyses were conducted

to evaluate the association between serum metabolites and ADs.

Blood, recognized as a reliable source for assessing metabolite

levels, contains numerous detectable metabolites and can be easily

obtained in substantial sample sizes, facilitating the screening of

circulating risk markers for AD. This two-sample MR study

represents a significant advancement in elucidating the causal

relationship between 73 metabolites and six AD phenotypes.

Eight of these metabolites exhibited strong associations that

persisted even after correction for multiple testing, underscoring

their promise as dependable biomarkers or targets for therapeutic

intervention. These results were substantiated through sensitivity

analyses, bolstering their reliability. This study provides further

analytical perspectives on the impact of gene-environment

interactions in the development of ADs. Delving into the

functional implications of these metabolites within metabolic

pathways may pave the way for future precision medicine

strategies. Furthermore, this study in question affirmed the

presence of an AD-specific metabolic profile and identified critical

metabolites and metabolic pathways causally associated with the

development of ADs.

Over the past decade, numerous studies have underscored the

close relationship between AD onset and human metabolism. This

association is evident not only through its co-occurrence with

various symptoms of metabolic disorders but also due to the

emergence of metabolite-related dysfunctions within immune

cells in metabolomics studies (46–49). Furthermore, research has
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demonstrated that intracellular metabolism can significantly impact

the state of immune cells, suggesting potential avenues for

developing novel therapeutic targets to counter dysfunctional

antigen-induced immune responses in ADs, which are closely

linked to blood metabolite concentrations. Published research has

illuminated the role of L-Arginine in regulating T cell metabolism,

thereby influencing T cell differentiation and outcomes (50).

Additionally, studies have revealed the protective function of

Selenium-GPX4 on follicular helper T cells (51). Notably, in the

study, five out of the eight metabolites identified as causally

associated with the pathogenesis of ADs belong to the category of

lipid metabolites, including 1-oleoylglycerophosphoethanolamine,

1-arachidonoylglycerophosphoethanolamine, arachidonate

(20:4n6), 1-myristoylglycerophosphocholine, and glycerol.

Circulating lipids play a significant role in immune cell function.

Lipid uptake or efflux influences cellular lipid burden and function,

which is particularly notable in autoimmunity, where dyslipidemia

and cardiovascular complications are common. The metabolism of

lipids is crucial in a range of ADs (52–54). Elevations in both cell

membrane glycosphingolipids and cholesterol are associated with

heightened T cell and B cell receptor signaling, leading to activation

and inflammation. Immune cells generate lipoxins, resolvins, and

protectins through the enzymatic conversion of omega-3 fatty acids,

playing a role in resolving inflammation and restoring tissue

homeostasis. Their levels are linked to reduced joint pain in

patients with RA and are decreased in experimental models of RA

with persistent joint inflammation (52).

Lysophospholipids, characterized by a single fatty acid, play a

role in regulating the five primary indicators of inflammation: rubor

(redness), tumor (swelling), calor (fever), dolor (pain), and functio

laesa (loss of function) (55). Currently, research mainly focuses on

lysophospholipic acid (LPA) and sphingosine 1-phosphate (S1P)

among lysophospholipids. Advances in lysophospholipid research
A B D

E F G H

C

FIGURE 4

The funnel plot represents IVs for each significant causal association between metabolites and OA phenotypes. (A) 1-
oleoylglycerophosphoethanolamine on CeD, (B) betaine on DM, (C) 1-arachidonoylglycerophosphoethanolamine on IBD, (D) arachidonate (20:4n6)
on IBD, (E) 1-myristoylglycerophosphocholine on RA, (F) glycerol on RA, (G) 2-methoxyacetaminophen sulfate on SLE, (H) glycerol 2-phosphate
on T1D.
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have led to the development of novel treatment strategies for ADs,

with numerous therapies currently in the early stages of

development for various conditions, including fibrotic disorders,

vascular diseases, and cancer. Among the two types of

lysophospholipids, our research results indicate that 1-

oleoylglycerophosphoethanolamine plays a protective role in CeD,

while 1-myristoylglycerophosphocholine provides protection in
Frontiers in Immunology 11
RA. Several observational and experimental studies have reported

the involvement of lysophospholipids in regulating immune cells.

Lysophospholipids are involved in the resolution processes that

counteract the protective mechanisms of normal inflammation. For

example, lysophospholipids can influence the activity of traditional

regulators of vascular permeability, such as histamine, serotonin,

and bradykinin, to positively or negatively control vasodilation,
A
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E

F

G

H

C

FIGURE 5

Meta-analysis of significantly associated (IVW derived P< 0.05) between metabolites and CeD (A), DM (B), IBD (C–D), RA (E–F), SLE (G), and T1D (H).
95% CI, 95% confidence interval; OR, odds ratio.
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vasoconstriction, and vascular leakage. G-protein-coupled S1PRs

expressed by endothelial cells mediate vasodilation and inhibit

vascular leakage by promoting the assembly of adherens

junctions. On the other hand, vascular smooth muscle expresses

Gq- and G12/13-coupled S1PRs and LPARs, which induce

vasoconstriction and promote vascular leakage under

inflammatory conditions. Additionally, lysophospholipids also

regulate hematopoietic and immune cells during inflammation.

Platelet aggregation, neutrophil phagocytosis, macrophage fate

switching, innate immunity, natural killer cell release into

circulation, and the trafficking and tissue residence of adaptive (T

and B) cells are all regulated by lysophospholipid signaling via G

protein-coupled receptors (GPCRs), impacting inflammatory and

resolution responses (55). Although the two metabolites identified

in this study have not been extensively investigated, they hold great

research potential considering the function of relatively mature

lysophospholipids in the immune process.

Moreover, our study identified two arachidonic acids, 1-

arachidonoylglycerophosphoethanolamine and arachidonate

(20:4n6), which showed a significant causal association with the

onset and progression of IBD, highlighting their potential role in

promoting susceptibility to this condition. Arachidonic acid is

converted into active metabolites by enzymes such as cyclooxygenase

(COX), lipoxygenase, and cytochrome P450 (CYP). Downstream

eicosanoid signaling can directly impact the metabolism of immune

cell subsets by regulating PPAR, controlling the liver X receptor (LXR),

and mediating anti-inflammatory effects. Prostaglandin signaling can

either stimulate or inhibit the anti-inflammatory ability of PPARg to
counteract NF-kB in various immune cells (52). Additionally,

eicosanoids produced by arachidonic acid metabolism are crucial

mediators of inflammation, and some of their metabolic network

proteins have become important targets for anti-inflammatory drug

design (56). Among these metabolites, prostaglandin E2 (PGE2) is the

most widely studied in IBD, with elevated levels observed in individuals

with active ulcerative colitis (57). Recent research has highlighted the

involvement of the 12-lipoxygenase pathway, one of the metabolic

pathways of AA, in intestinal inflammation (58). Although the pro-

inflammatory effect of arachidonic acid in the pathogenesis of IBD is

established, the clinical utilization of non-steroidal anti-inflammatory

drugs (NSAIDs) to block its metabolites suggests that its mechanism of

action needs further investigation (59). Moreover, while 1-

arachidonoylglycerophosphoethanolamine is associated with

dermatologic diseases, and arachidonate (20:4n6) is linked to various

ADs, their potential role in IBD has not been previously documented.

Given the close relationship between lipid metabolites and the

development of IBD, further research on these two metabolites may

represent a promising avenue for future investigation.

Another significant finding from our study is the detrimental

effect of 2-methoxyacetaminophen sulfate in SLE, while glycerol 2-

phosphate demonstrates a protective effect in T1D. It is noteworthy

that both of these metabolites are classified as xenobiotics, which are

foreign substances not naturally present in the body. Exogenous

metabolism, as a crucial pathway in the body, plays a vital role in

regulating and detoxifying such chemicals to prevent potential harm

caused by environmental substances . Specifical ly , 2-

methoxyacetaminophen belongs to the class of acetamides and is a
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paracetamol sulfate derivative with a methoxy group substitution at

position 3 (60). On the other hand, glycerol 2-phosphate is a bacterial

metabolite produced during a metabolic reaction within Escherichia

coli (61). The discovery of xenobiotics further emphasizes the

intricate relationship between ADs, heredity, and the environment.

It highlights the need for future research on ADs to move beyond

solely focusing on individual genetic or environmental factors in

isolation. Instead, it suggests that the pathogenesis of ADs likely arises

from complex interactions between genes and the environment.

Furthermore, the study findings indicated that betaine serves as

a pathogenic risk factor for DM. Betaine is acknowledged for its

essential roles as an osmoprotectant and methyl group donor in

physiological processes. Numerous pieces of evidence have

highlighted the anti-inflammatory properties of betaine in various

conditions, including obesity, diabetes, cancer, and Alzheimer’s

disease (62). Surprisingly, limited research has explored the

impact of betaine on DM specifically. Given the well-known anti-

inflammatory attributes of betaine, there is a clear necessity for

further investigation to uncover the precise mechanisms through

which betaine influences the development of DM.

In this study, we identified metabolic pathways that play a

causal role in the development of ADs. Some of these pathways have

been extensively studied experimentally and are well-documented

to contribute to the pathogenesis of ADs. Moreover, our analysis of

KEGG and SMPDB data revealed a robust association between the

pathogenesis of ADs and glycerolipid metabolism, as well as

galactose metabolism pathways. Furthermore, it was observed that

the differentiation and function of immune cells involved in the

inflammatory response are intricately linked to the process of

glycerol and lactose metabolism (63–65). These findings suggest

that targeting this interconnected metabolic network could offer a

promising approach for intervening in the autoimmune state and

ultimately treating ADs.

The present study offers several notable advantages. Firstly, its

main strength lies in the broad range of genetic variables considered

to investigate the association between blood metabolites and various

phenotypes of ADs. Specifically, this study encompassed a

comprehensive panel of 486 metabolites, excluding those yet to be

identified. Additionally, genetic variables for each AD were sourced

from two separate datasets, and a meta-analysis was conducted to

combine the analytical outcomes from these dual databases. This

approach enabled a relatively comprehensive and systematic

analysis of the metabolic profile associated with the development

of ADs. Secondly, the utilization of the MR Design in this study

significantly mitigated issues related to reverse causality and

residual confounding factors. The extensive sensitivity analysis

effectively accounted for potential influences of variable

polymorphisms. Consequently, the inference of a causal

relationship between metabolites and the risk of ADs in this

study is considered robust.

However, the study also has certain limitations. Firstly, the MR

analysis was based on blood metabolomics data, and although it

identified some serum metabolites with a causal relationship to

ADs, further clinical empirical studies are needed to identify more

promising biomarkers and potential drug targets. Secondly, the

metabolite data predominantly originated from European
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populations, limiting the generalizability of these findings to

different ethnic groups. Thirdly, while this study encompassed a

relatively comprehensive metabolite profile, the functions and

mechanisms of certain metabolites in the context of disease

remain incompletely understood. This limitation affects the full

interpretation of the results of this MR analysis.
Conclusion

In summary, this study presents a systematic MR and meta-

analysis utilizing GWAS data to evaluate the causal relationship

between serum metabolites and various AD phenotypes. It offers

preliminary evidence for the impact of circulatory metabolic

disorders on AD risk. By employing the IVW method and

conducting multiple sensitivity analyses, robust causal

relationships were established between eight metabolites and six

AD phenotypes. Furthermore, the analysis of metabolic pathways

revealed that these eight metabolites are enriched in six significant

metabolic pathways. Our findings suggest that elevated levels of

lipid metabolites may contribute to the development of ADs. This

implies that specific metabolites and genetic susceptibilities may

serve as biomarkers for the risk of ADs, potentially enabling earlier

diagnosis and more effective treatment options.
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