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Redox processes are major
regulators of leukotriene
synthesis in neutrophils exposed
to bacteria Salmonella
typhimurium; the way to
manipulate neutrophil swarming
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and Galina F. Sud’ina1*

1Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University,
Moscow, Russia, 2National Research Center for Hematology, Russia Federation Ministry of Public
Health, Moscow, Russia, 3Department of Genetics and Molecular Biology, Gamaleya National
Research Centre of Epidemiology and Microbiology, Moscow, Russia, 4The “Russian Clinical Research
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Neutrophils play a primary role in protecting our body from pathogens. When

confronted with invading bacteria, neutrophils begin to produce leukotriene B4,

a potent chemoattractant that, in cooperation with the primary bacterial

chemoattractant fMLP, stimulates the formation of swarms of neutrophils

surrounding pathogens. Here we describe a complex redox regulation that

either stimulates or inhibits fMLP-induced leukotriene synthesis in an

experimental model of neutrophils interacting with Salmonella typhimurium.

The scavenging of mitochondrial reactive oxygen species by mitochondria-

targeted antioxidants MitoQ and SkQ1, as well as inhibition of their production

by mitochondrial inhibitors, inhibit the synthesis of leukotrienes regardless of the

cessation of oxidative phosphorylation. On the contrary, antioxidants N-

acetylcysteine and sodium hydrosulfide promoting reductive shift in the

reversible thiol-disulfide system stimulate the synthesis of leukotrienes.

Diamide that oxidizes glutathione at high concentrations inhibits leukotriene

synthesis, and the glutathione precursor S-adenosyl-L-methionine prevents this

inh ib i t ion . D iamide-dependent inh ib i t ion is a lso prevented by

diphenyleneiodonium, presumably through inhibition of NADPH oxidase and

NADPH accumulation. Thus, during bacterial infection, maintaining the reduced

state of glutathione in neutrophils plays a decisive role in the synthesis of

leukotriene B4. Suppression of excess leukotriene synthesis is an effective

strategy for treating various inflammatory pathologies. Our data suggest that

the use of mitochondria-targeted antioxidants may be promising for this
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purpose, whereas known thiol-based antioxidants, such as N-acetylcysteine,

may dangerously stimulate leukotriene synthesis by neutrophils during severe

pathogenic infection.
KEYWORDS

neutrophil, Salmonella typhimurium, leukotriene B4, reactive oxygen species,
glutathione, neutrophil swarming
1 Introduction

The main effector functions of polymorphonuclear leukocytes

(PMNLs, neutrophils) in the fight against pathogens include

phagocytosis, oxidative burst, degranulation. They eliminate

pathogens through the production of reactive oxygen species (ROS)

and releasing azurophilic granules containing antimicrobial proteins

such as neutrophil elastase and myeloperoxidase (MPO) (1, 2). Nitric

oxide (NO) production in human PMNLs, along with ROS andMPO

is important to execute antimicrobial activity (3). In cases where these

weapons are not effective enough to kill pathogens, a program of

collective behavior known as swarming can be initiated. This

program involves the production of leukotriene B4 (LTB4) as a

potent chemoattractant and the gathering of neutrophils into dense

clusters surrounding pathogens (4). In these clusters, neutrophils

activate suicidal production of extracellular chromatin traps (NETs),

which enhance pathogen fixation (5). Both swarming and NETs

formation (NETosis) programs are subject to complex

redox regulation.

Early neutrophil recruitment is initiated by pathogen-associated

molecular patterns (PAMPs), including N-formyl peptides, and

damage-associated molecular patterns (DAMPs) (6). This

interaction of “pioneer” neutrophils with pathogen (or danger

signal from damaged tissue) results in leukotriene B4 (LTB4)

synthesis, and started the next step, swam attractant release (7),

leading to exponential accumulation of neutrophils at infection/

damage loci (8). At this stage, LTB4 and the receptors BLT1 for

LTB4 coordinate cellular responses by neutrophils with each other,

and the swarm is formed. Also, the coordinated transcellular

biosynthesis of LTB4 drives swarming responses (9). The

initiation of swarming converges on the synthesis of LTB4.

During this swarm recruitment NETs could not be observed. On

the timeline of major events in neutrophil swarming, the onset of

NETs forming proceeds later, on the aggregation phase of the

swarming response when neutrophils clusters surrounding

pathogens has been formed, and activated cells release chromatin,

which is accompanied with the loss of integrity of cellular

membrane (5, 10).

Leukotrienes play role also in inhibition of neutrophil swarming

(6). w-OH-LTB4 and w-COOH-LTB4 compete with LTB4 for

BLT1 receptor binding (11) and act as inhibitors of LTB4-

mediated responses. When LTB4 is easy transformed to w-OH-
02
LTB4, this decreases neutrophil swarming. We recently found that

stimulation by fMLP of neutrophils after preincubation with

bacteria Salmonella typhimurium strongly increased leukotriene

synthesis; but when the bacteria:neutrophil ratio increased, the

transformation of LTB4 to w-OH-LTB4 was suppressed (12),

which support increased level of LTB4. LTB4 is the strongest

chemoattractant and works at sub nanomolar concentrations

(13). The increased formation of LTB4 during the interaction of

neutrophils with bacteria works as a signal of neutrophils for help

with an increase in bacterial load. In this study we explored

intervention of redox processes in neutrophil on fMLP-induced

leukotriene synthesis in the experimental model of neutrophil

interaction with bacteria Salmonella typhimurium.

NADPH-oxidase (NOX2) is the primary source of ROS which is

not only responsible for oxidative burst but also involved in

phagocytosis (14), degranulation (15) and NETosis (16). ROS

were required for PMNLs antimicrobial activity against S.

pneumoniae; however the NADPH oxidase was dispensable for

that (17). S. pneumoniae infection induced mitochondrial ROS

production in PMNLs. And mitochondrial ROS were critical for

the ability of PMNLs to kill S.pneumoniae. DPI which inhibits ROS

production by the NADPH oxidase, did not blunt the ability of

PMNs to kill S. pneumoniae, but MitoTempo did. Dunham-Snary

et al. (18) were first who showed that neutrophil mitochondria

actively participate in phagocytosis and killing of Staphylococcus

aureus, and antimycin and MitoTempo increased bacterial survival

(18). Human pathogen Shigella dramatically changed neutrophils

toward enhanced microbial recognition and mitochondrial ROS

production (19). What is the role of mitochondrial ROS in

leukotriene synthesis in infected neutrophils?

Mitochondria are an important source of ROS in various cell

types, but their role in ROS production in neutrophils has long been

underestimated. Only our recent studies (20–22) using the

mitochondria-targeted antioxidant SkQ1 [10-(6’-plastoquinonyl)

decyltriphenylphosphonium bromide] (23) have demonstrated the

important role of mitochondrial ROS (mtROS) in NADPH oxidase

activation, degranulation, extracellular trap formation (NETosis),

and leukotriene synthesis. These studies analyzed the activation of

neutrophils by the Ca2+ ionophore A23187 and the chemoattractant

N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP), while the

role of mtROS in the interaction of neutrophils with bacteria

remains unknown.
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Neutrophils control the infection, in turn, microorganisms

affect the functions of neutrophils, controlling phagocytosis, the

production of oxidants and the lifespan of neutrophils (24).

Pathogens antagonize neutrophils, for example, by secreting

catalase to reduce ROS (25, 26). To protect from ROS, the fungal

pathogen Histoplasma capsulatum infects both neutrophils and

macrophages producing a superoxide dismutase (SOD) (27).

Gram-negative pathogen Coxiella burnetii (28) and Pseudomonas

aeruginosa (26), as well as E.coli producing enterobactin (29) inhibit

NADPH oxidase in human neutrophils. Microbial avoidance

strategies can target not only ROS production but also

degranulation and synthesis of leukotriene B4 (30). Decreased

intracellular GSH correlates with the susceptibility to infections.

Glutathione reductase (Gsr) catalyzes the reduction of glutathione

disulfide to glutathione using NADPH as an electron donor (31).

Glutathione reductase promotes Candida albicans clearance (32).

As NADPH is a cofactor required for GSH regeneration from

GSSG, the consumption of NADPH affects the regeneration of

GSH (33). One can propose that NADPH-oxidase inhibition can

support GSH level. These processes certainly affect LT synthesis and

neutrophil swarming around pathogens.

5-Lipoxygenase (5-LOX) is a key enzyme in synthesis of LTB4

involved in chemical cell-to-cell communication. LTB4 is critical for

enhancing chemotactic responses to primary chemoattractants,

such as fMLP (34) increasing clustering and surface mobility of

adhesion receptors integrins (35). Thus, LTB4 is not only a

chemotactic, but also a neutrophil aggregating substance (36) that

promotes local neutrophil interactions during swarming (4). Initial

neutrophil–neutrophil contacts are critical to initiate swarming

(37). We recently found, that the synthesis of LTB4 in

neutrophils in the presence of bacteria and fMLP correlates with

the appearance of cell-cell contacts (12), which can serve as a signal

conductor to further clustering and swarming.

In the current study, we observed that redox processes can

either activate or inhibit fMLP-induced leukotriene synthesis in an

experimental model of neutrophil interaction with the bacteria

Salmonella typhimurium . Our study demonstrated that

mitochondrial ROS are crucial for 5-LOX activation and LT

synthesis, and mitochondria-targeted antioxidants inhibited LT

synthesis. On the other hand, inhibition of NOX2-dependent

ROS supported LTB4 synthesis, and potentiated the stimulating

effect of thiol oxidant diamide on LT synthesis.
2 Materials and methods

Hank’s balanced salt solution with calcium and magnesium but

without Phenol Red and sodium hydrogen carbonate (HBSS),

Dulbecco’s phosphate-buffered saline (PBS) with magnesium but

without ca lc ium, N-Formyl-L-methionyl-L-Leucyl-L-

Phenylalanine (fMLP), Ellman’s reagent [5,5′-Dithiobis(2-

nitrobenzoic acid)], oxythiamine, and fibrinogen from human

plasma, were purchased from Sigma (Steinheim, Germany).

Dextran T-500 was from Pharmacosmos (Holbæk, Denmark).

ROS indicator Carboxy-H2DCFDA and Pierce™ Avidin,

Fluorescein (FITC) conjugated were from Thermo Fisher
Frontiers in Immunology 03
Scientific (Waltham, MA USA). Mitochondrial ToxGlo™ Assay

was from Promega Corp. (Madison, WI USA). Biotinylated murine

IgG1 antibodies CD11b and CD54 were from Ancell Corp.

(Bayport, MN USA). Bacteria (S. typhimurium IE 147 strain)

were obtained from the Collection of Gamaleya National

Research Center of Epidemiology and Microbiology (Moscow,

Russia). Bacteria were grown in Luria–Bertani broth to a

concentration of 1 × 109 colony-forming units (CFU)/mL. In this

study not opsonized bacteria were used.
2.1 Neutrophil isolation

Human polymorphonuclear leukocytes (PMNL) were isolated

from freshly collected blood with citrate anticoagulant. Leukocyte-

rich plasma was obtained from donated blood by sedimentation in

the presence of dextran T-500. Granulocytes were obtained as

described (38). Cell viability was checked by trypan blue

exclusion. Control suspension samples were stained in parallel

with Hoechst and Romanovsky-Giemsa dyes to assess the

homogeneity of the cell population. PMNLs (95–97% purity, 98–

99% viability) were stored at room temperature in Dulbecco’s PBS

containing 1 mg/mL glucose (no CaCl2) until use.
2.2 Determination of 5-LOX product
formation in cells

PMNLs [(1.2-1.5)x107/6 ml HBSS with 10 mM HEPES (HBSS/

HEPES)] were pre-incubated for 10 min at 37°C, 5% CO2. At this

stage, 2-deoxy-D-glucose (2-DG) was added to the samples, in those

cases where this was provided for in the experimental protocol.

Then, maintaining incubation conditions, S. typhimurium (bacteria

per cell ratio ~25:1) and indicated reagents were added for 30 min,

followed by 10 min exposure to 0,1 µM fMLP. The treatment was

stopped by adding of an equal volume of methanol (-18°C) with 90

ng PGB2 as internal standard. Major 5-LOX metabolites, 5S, 12R-

dihydroxy-6,14-cis-8,10-trans-eicosatetraenoic acid (LTB4), iso-

LTB4 (5S, 12SR-all-trans-diHETE), w-OH-LTB4, w-COOH-LTB4

and 5S-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid (5-

HETE) were identified as previously described (12).
2.3 ATP assessment

ATP detection component from Mitochondrial ToxGlo™

Assay kit was used. In accordance with the manufacturer’s

protocol, the lyophilized enzyme/substrate mixture (ATP

Detection Substrate) was reconstituted by lysis buffer (ATP

Detection Buffer) to obtain ATP Detection Reagent. Just before

the experiment PMNLs were resuspend in HBSS/HEPES, seeded in

solid white F-bottom 96-well plates (4 × 105 cells/well), pre-

incubated for 10 min at 37°C, 5% CO2. 2-DG was added at this

stage if prescribed by the protocol. Then S. typhimurium (bacteria

per cell ratio ~25:1) and reagents were added, according to

experimental protocol. Samples were incubated for 20 min under
frontiersin.org
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the same conditions. After the treatment was complete, plates were

equilibrated to room temperature for 5 min followed by adding an

equal volume of ATP Detection Reagent to the contents of each

well. After 3 min orbital shaking luminescence intensity was

measured on a CLARIOstar microplate reader (BMG Labtech,

Ortenberg, Germany) and MARS data analysis software package

from BMG Labtech was used to process the data obtained.
2.4 Cytosolic ROS assessment

ROS accumulation in the cytosol was quantified by measuring

the green fluorescence intensity of 2’,7’-dichlorofluorescein (DCF).

According to manufacturer’s recommendation, neutrophils were

loaded with 5 mM carboxy-2’,7’-dichlorodihydrofluorescein

diacetate (H2DCF-DA) for 60 min at room temperature followed

by washing with PBS, suspended in D-PBS and then stored at room

temperature in the dark until use. Immediately before the

experimental treatment cells were resuspended in HBSS/HEPES,

seeded in fibrinogen-coated wells of the 96-well plate (4 × 105 cells/

well) and pre-incubated for 10 min at 37°C, 5% CO2. Then S.

typhimurium (bacteria per cell ratio ~25:1) and indicated reagents

were added for 30 min followed by 0,1 µM fMLP stimulation.

Fluorescence intensity at excitation and emission wavelengths of

488 and 525 nm was measured using a CLARIOstar

microplate reader.
2.5 Thiol redox state assessment

Ellman’s assay was used for quantitating reduced sulfhydryl

groups. Neutrophils were resuspended in HBSS/HEPES (2 × 106

cells/1 mL probe) and pre-incubated for 10 min at 37°C, 5% CO2.

After the treating according to experimental protocol cells were

centrifuged for 7 min at 600 g, 4°C. Permeabilizing buffer (67 mM

Na2HPO4, 35 mM citric acid and 0.1% Triton X-100; 100 µL/probe)

was added to packed cell pellets, shaken and kept on ice for 10 min.

Lysates were centrifuged at 10000 g, 4°C for 10 min. 50 µL

supernatant (in duplicate for each probe) was mixed with 100 µL

DTNB solution (0.1 mg/mL in 0.1 M NaH2PO4/Na2HPO4, 1M

EDTA, pH 7.8) in 96-well plate. Equal volumes of reduced

glutathione solutions from 1 to 500 µM were used to generate

standard curve. The samples were allowed to stand for 15 min at

room temperature followed by absorbance reading at 412 nm on

CLARIOstar microplate reader.
2.6 Adhesion assessment

Spectrophotometric detection of 2,3-diaminophenazine, which

is a product of myeloperoxidase-catalyzed oxidation of o-

phenylenediamine dihydrochloride (OPD) by hydrogen peroxide,

was used to assess neutrophil substrate adhesion (39). PMNLs (2 ×

105 cells/sample) were seeded onto fibrinogen-coated 96-well plates

containing pre-warmed HBSS/HEPES and agents required by

experimental protocol. Samples were incubated at 37°C, 5% CO2
Frontiers in Immunology 04
after which the plate was washed twice to remove unattached cells. 4

mM H2O2 and 5.5 mM OPD in permeabilizing buffer (67 mM

Na2HPO4, 35 mM citric acid and 0.1% Triton X-100) were added

for 5 min. The reaction was stopped with 1 M H2SO4. The

percentage of attached neutrophils was determined by measuring

the absorption (490 nm) of 2,3-diaminophenazine and comparing

the obtained values with the calibration ones.
2.7 Scanning electron microscopy

For scanning electron microscopy, cells were fixed for 30 min in

2.5% glutaraldehyde, postfixed for 15 min with 1% osmium

tetroxide in 0.1 M cacodylate (pH 7.3), dehydrated in an acetone

series, and processed by conventional scanning electron

microscopic techniques, as described (40).
2.8 Cell adhesion molecules
expression assessment

CD11b, alpha subunit of the Mac-1 integrin, and intercellular

adhesion molecule-1 (CD54) proteins expression were determined

by flow cytometry. Neutrophils were resuspended in HBSS/HEPES

(106 cells/1 mL probe) and pre-incubated for 5 min at 37°C, 5%

CO2. After the treating according to experimental protocol cells

were centrifuged while cooled for 10 min at 200 g, 4°C. Then

biotinylated mouse CD11b (20 µg/mL HBSS/HEPES) or CD54 (30

µg/mL HBSS/HEPES) antibodies were added for 45 min, on ice.

After being washed with cold PBS cells were stained with avidin-

FITC (30 µg/mL HBSS/HEPES) for 30 min on ice followed by flow

cytometry on Amnis FlowSight Imaging Flow Cytometer (Luminex

Corp., Austin, Texas, USA) at 488/525 ex/em filter set. IDEAS

Image Data Exploration and Analysis Software (Luminex Corp.,

ustin, Texas, USA) was used for data analyzing.
2.9 Statistics

Results are presented as mean ± SEM. Analysis of statistical

significance for multiple comparisons was performed using

GraphPad Prism 10.0.1 software. Differences with P-values <0.05

were considered statistically significant.
3 Results

3.1 Mitochondrial ROS production is critical
for fMLP-induced leukotriene synthesis
induced in neutrophils stimulated with
Salmonella typhimurium

We have previously found that preincubation of human

neutrophils with S. typhimurium strongly stimulates fMLP-

induced LTB4 synthesis (12). These conditions modeled the

collective behavior of neutrophils known as swarming (4). We
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1295150
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Golenkina et al. 10.3389/fimmu.2024.1295150
have shown that S. typhimurium stimulates 5LOX, but the

mechanism of the enhancing effect of bacteria upon subsequent

addition of fMLP remains unclear. We have recently shown that

LTB4 synthesis induced by fMLP (as well as some other stimuli) is

dependent on mtROS production (22). However, the effect of

fMLP in this study was artificially stimulated by cytochalasin,

which disrupts the actin cytoskeleton. In the present study, we

analyzed the possible role of mtROS in the stimulation of

fMLP-induced LTB4 synthesis in neutrophil interaction with

bacteria S. typhimurium. Separate addition of fMLP (Control w/

o Salm) or bacteria S. typhimurium (Control w/o fMLP) to

neutrophils produced very slight effect on leukotriene synthesis

(Supplementary Figure 1).

As shown in Figure 1A, mitochondria-targeted antioxidants

SkQ1 and MitoQ inhibit fMLP-induced LTB4 synthesis in

neutrophils exposed to S. typhimurium at 50 nM and 200 nM,

respectively. The synthesis of the omega-hydroxylation product of

LTB4 (w-LTB4) and total leukotrienes (SLT=LTB4+isomers of

LTB4+w-OH-LTB4) were also inhibited by SkQ1 and MitoQ.

These leukotrienes are the main 5-LOX products in our

experimental model (Supplementary Figure 1).

We have previously shown that mtROS production in

neutrophils can be stimulated by the accumulation of Ca2+ in
Frontiers in Immunology 05
mitochondria (21). Ca2+ uptake into the mitochondrial matrix is

driven by the transmembrane electrical potential at the inner

membrane (DY), which is maintained by the activity of the

respiratory chain. In the present model, the respiration inhibitor

antimycin A, as well as the oxidative phosphorylation uncoupler

FCCP, which dissipates DY, effectively inhibited leukotriene

synthesis (Figure 1A). Inhibition of respiration and dissipation of

DY lead to the cessation of mitochondrial ATP synthesis. Since

mitochondria-targeted cationic antioxidants such as SkQ1 and

MitoQ have also been shown to dissipate DY (41), we analyzed

the possible role of ATP depletion in the inhibition of leukotriene

synthesis. Measurements of ATP content in infected neutrophils

revealed no effect of antimycin A or FCCP (Figure 1B). These data

are consistent with the leading role of glycolysis in ATP production

known for neutrophils and other granulocytes (42, 43). In support

of this conclusion, inhibition of glycolysis by 2-deoxy-D-glucose (2-

DG) led to a decrease in ATP content (Figure 1B) and inhibition of

leukotriene synthesis (Figure 1C).

Stimulation of neutrophils by bacteria and fMLP is

accompanied by activation of NADPH oxidase (NOX2) and

subsequent massive production of ROS (1, 44). To study the

possible role of NOX2 in leukotriene synthesis in our model, we

used diphenyleneiodonium (DPI), an effective inhibitor of various
A B

D EC

FIGURE 1

(A–C). Effect of mitochondria-targeted compounds and 2-DG treatment on leukotriene synthesis and ATP generation in neutrophils. (A, C) After 10
min pre-incubation without (A) or in the presence of indicated concentrations of 2-DG (C) PMNLs were exposed for 30 min to either bacteria alone
(Control) or bacteria in combination with reagents indicated on X-axis. Then fMLP was added (0.1 µM sample concentration) for 10 min. After the
reaction was terminated, the 5-LOX products were analyzed. Presented are absolute values of LTB4, w-OH-LTB4 and the sum of LTs (SLTs) in ng
per 107 PMNLs. (B) PMNLs were pre-incubated for 10 min without additives or in the presence of 2-DG (where indicated). Bacteria were then added,
either alone (Control, 2-DG probes) or in combination with the indicated stimuli. After 20 min, cells were lysed, and ATP content was determined
using the bioluminescent method. Presented are relative values of ATP content in samples as average percentages of control luminescence intensity
values (mean ± SEM of luminescence intensity in control samples was 105326 ± 4596 RLU, while 10 µM ATP, used as a positive control, provided
397233± 2187 RLU). (D, E). Effect of NADPH oxidase inhibitors and inhibitors of MAP kinases on leukotriene synthesis in neutrophils. After 10 min
pre-incubation, PMNLs were exposed for 30 min to either bacteria alone (Control) or bacteria in combination with reagents indicated on X-axis,
followed by 10 min of 0.1 µM fMLP stimulation. When incubations stopped, the 5-LOX products were analyzed. (A–E). Values shown are means ±
SEM of three independent experiments performed in duplicate. *p < 0.05, **p < 0.01, ***p < 0.001, for pairs of data compared to corresponding
control values as shown by two-way ANOVA with Tukey’s multiple comparison test (A, C–E) or by one-way ANOVA with Dunnett’s multiple
comparison test (B).
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flavin enzymes, including NADPH oxidase. DPI stimulated the

accumulation of LTB4 and total leukotrienes (Figure 1D). This

effect was observed previously when leukotriene synthesis was

induced by various stimuli and was attributed to inhibition of

LTB4 omega-hydroxylation (22). In fact, the ratio of LTB4 to w-
LTB4 with DPI is higher, than in other treatments (Figures 1, 2).

But the sum of LTs is also increased, therefore inhibition of NOX2

contribute to stimulation of leukotriene synthesis. It was

demonstrated that chronic granulomatous disease (CGD)

neutrophils have an increased LTB4 production (45). But the

authors determined only LTB4, so this effect may include as 5-

LOX stimulation by downregulation of ROS in CGD neutrophils, as

well as inhibition of LTB4 omega-hydroxylation in experiments

with DPI.

From these data we can see that mitochondria targeted

antioxidant SkQ1 inhibits LT synthesis. We checked the effects of

SkQ1 on mtROS production in neutrophils. Measurements of

mitochondrial ROS production using the mitochondria-targeted

superoxide-sensitive probe MitoSOX (Supplementary Figure 2)

showed a significant increase in mtROS upon subsequent

stimulation of neutrophils with S. typhimurium and fMLP. This

increase in mtROS was inhibited by SkQ1. These data support our

conclusion that mtROS production is required for stimulation of

fMLP-induced LTB4 synthesis in neutrophil interaction with

bacteria S. typhimurium.

In the search for possible targets of mtROS-dependent

regulation of leukotriene synthesis, we previously showed that

activation of the MAP kinases Erk1/2 and p38 (associated with

their phosphorylation) is prevented by SkQ1 (22). Erk1/2 and p38

kinases are known to phosphorylate 5-LOX and stimulate its

translocation to the nuclear envelope, which is required for 5-

lipoxygenase activity (46), so they may be critical targets of mtROS.

In our experimental model, the Erk1/2 inhibitor U0126 and p38

inhibitor SB203580 suppressed 5-LOX activity (Figure 1E). Thus, it

can be assumed that these kinases are important in the mtROS-

dependent regulation of leukotriene synthesis induced by the

combined action of bacteria and fMLP.
3.2 Redox processes modulate fMLP-
induced leukotriene synthesis in
neutrophils exposed to bacteria
Salmonella typhimurium

To further study the role of the redox balance in the activation

of leukotriene synthesis under the combined action of S.

typhimurium and fMLP, we used the classical antioxidant Trolox,

a water-soluble analogue of vitamin E. It was shown that it inhibits

leukotriene synthesis, although at a much higher concentration

than SkQ1 and MitoQ (Figure 2A).

Unexpectedly, another known antioxidant N-acetylcysteine

(NAC) strongly stimulated fMLP-induced leukotriene synthesis in

S. typhimurium-activated neutrophils (Figure 2A). A similar effect

was observed in the case of sodium hydrosulfide (NaSH)

(Figure 2A), an H2S donor that promotes a reductive shift in the

redox balance of various cells (47). We hypothesized that this
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stimulation may be associated with a shift in the redox

equilibrium of the reversible thiol-disulfide system and, first of all,

with an increase in the ratio of reduced/oxidized glutathione (GSH/

GSSG). In fact, NAC is a direct precursor of GSH, and H2S donors

can also increase the GSH/GSSG ratio. To analyze this possibility,

we used diamide, which penetrates cell membranes and reacts with

thiols to form disulfides (48). Diamide at a concentration of 50-200

mM significantly reduced the level of non-protein thiols (Figure 2B)

but did not affect the level of cytosolic ROS measured as the

oxidation of 2’,7’-dichlorofluorescein (Figure 2C). 50-150 mM
diamide slightly increased fMLP-induced leukotriene synthesis in

neutrophils pre-incubated with S. typhimurium, while 200-250 mM
diamide, without affecting cell viability (Supplementary Figure 3),

significantly inhibited leukotriene synthesis (Figure 2D). These data

indicate that a decrease in reduced GSH may limit leukotriene

synthesis under our conditions. In support of this assumption, we

observed a strong stimulation of leukotriene synthesis by the GSH

precursor S-adenosyl-L-methionine (SAMe) (Figure 2D). This

effect was especially strong in the presence of an inhibitory

concentration of diamide (200-250 mM) and reaches

approximately 400%. Interestingly, SAMe also reversed inhibitory

effect of FCCP or antimycin A on leukotriene synthesis (Figure 2E).

Although in our experimental model we were unable to detect a

significant effect of antimycin A and FCCP on GSH/GSSH ratio

either at the stage of PMNLs interaction with bacteria or after

stimulation with fMLP (Supplementary Figure 4), studies on cell

lines indicate that they both can reduce GSH intracellular level (49–

51), which can be compensated by SAMe. Measurements of mtROS

in stimulated neutrophils (Supplementary Figure 2) showed some

increase by diamide, which may be partially responsible for the

stimulation of LT synthesis observed at low doses of diamide.

As shown in Figure 2B, under conditions of interaction between

neutrophils and bacteria, 50 to 200 mM diamide reduced

intracellular -SH amount. The decrease in reduced thiol content

caused at 50 and 100 mM diamide was prevented by DPI. Under the

same conditions DPI decreased the level of cytosolic ROS,

presumably due to inhibition of NOX2, and diamide did not

modulate this effect (Figure 2C). These data suggest that the

decrease in GSH/GSSG ratio by low doses of diamide may be

compensated by the decrease in oxidative stress and increase in

NADPH levels caused by inhibition of NADPH oxidase. This effect

may explain the DPI stimulation of leukotriene synthesis

(Figure 1D), which is especially pronounced in the presence of

diamide (Figure 2D), with maximal stimulation at 100 mM diamide

(Figure 2F). DPI did not reverse the decrease in reduced thiols at

200 mM diamide but abolished inhibiting effect of diamide on LT

synthesis at 200 mM (Figure 2D). We can only propose that effect of

DPI is more complex than we determined and need

further elucidation.

Biosynthesis of GSH is dependent on ATP, so inhibition of

leukotriene synthesis due to 2-DG-dependent ATP depletion

(Figure 1B) may be mediated by a decrease in GSH content. 2-

DG also inhibits the synthesis of leukotrienes stimulated by DPI

alone (Figure 2G). Interestingly, the synthesis of leukotrienes

stimulated by DPI in the presence of diamide is practically

insensitive to 2-DG (Figure 2G). This may be explained by the
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1295150
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Golenkina et al. 10.3389/fimmu.2024.1295150
A B

D

E F

G H

C

FIGURE 2

Effect of oxidants and antioxidants on intracellular reduced thiols level, ROS formation and leukotriene synthesis in human neutrophils. (A, D-H).
After 10 min pre-incubation without additives or in the presence of indicated concentrations of 2-DG, PMNLs were exposed for 30 min to either
bacteria alone (Control) or bacteria in combination with reagents indicated (10 µM DPI and 10 µM SAMe were used), followed by 10 min of 0.1 µM
fMLP stimulation. After the reaction was terminated, the 5-LOX products were analyzed. Presented are absolute values of LTB4, w-OH-LTB4 and the
sum of LTs (SLTs) in ng per 107 PMNLs. (B) PMNLs were pre-incubated for 10 min, then S. typhimurium alone (Control) or bacteria together with
indicated stimuli were added for 20 min; resting PMNLs samples were incubated without any additives. After the exposure time, the cells were
pelleted while cooling and assayed for reduced -SH content with Ellman’s reagent. Values are given as the averages of the content of reduced thiols
in the samples, nM per 106 PMNLs. (C) PMNLs loaded with H2DCFDA were pre-incubated for 10 min, then either S. typhimurium alone (Control) or
bacteria together with indicated stimuli were added. After 30 min 0,1 µM fMLP was added. Presented are the average values of DCF fluorescence
intensity measured immediately before (black bars) and 20 minutes after (grey bars) fMLP addition. (A–H). Values shown are means ± SEM of three
independent experiments performed in duplicate. ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 for pairs of data compared
to corresponding control values; #p < 0.05, ##p < 0.01 for the specified data pairs as shown by one-way ANOVA with Dunnett’s multiple comparison
test (B) or two-way ANOVA followed by Tukey’s multiple comparison test (A, C–H).
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known ability of diamide to reduce glucose metabolism through

glycolysis in favor of the pentose phosphate pathway (PPP) (52).

This pathway is the main source of NADPH (42), which supports

the reduction of glutathione. This effect probably underlies the

stimulation of leukotriene synthesis observed at low doses of

diamide (Figure 2D).

Full pentose cycle, including non-oxidative PPP with enzyme

transketolase (TKT), provides maximal NADPH yield (6 NADPH

from one molecule of glucose) (53). In our assay TKT inhibitor

oxythiamine (OT) suppressed LT synthesis (Figure 2H). The effect

was observed with and without diamide in incubations. It is known

that blockage of glycolysis can help cells divert more flux into

oxPPP under oxidative stress (54, 55). With diamide, LT synthesis

was increased in the presence of intermediate concentrations of 2-
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DG (Figure 2H), and not in control incubations (Figure 1C). We did

not observe it in the presence of DPI (Figure 2G).

Under the influence of fMLP, neutrophil adhesion is

significantly enhanced (Figure 3A). In addition, this chemotactic

peptide induces noticeable morphological changes in both resting

and interacting with bacteria neutrophils. In addition to

pronounced cellular polarization, special mention should be made

to the formation of numerous thread-like cell outgrowths

(Figure 3B, control/fMLP, S.typhimurium+fMLP, red arrows). It

is known that such outgrowths are a kind of “transport highways”

that allow intercellular exchange over long distances (56), and also

perform a structural function, promoting cell clustering (57).

Mitochondria-targeted antioxidant SkQ1 significantly reduced the

substrate adhesion of neutrophils (Figure 3A). Preincubation with
A

B

FIGURE 3

(A) SkQ1 influence on the pro-adhesive effects of fMLP and LTB4. PMNLs (2 × 105 cells/sample) were seeded onto fibrinogen-coated 96-well plates
containing pre-warmed HBSS/HEPES without additives, with S. typhimurium (bacteria per cell ratio ~20:1) or S. typhimurium supplemented with 0.1
µM SkQ1. After 30 min incubation at 37°C, 5% CO2, 0.1 µM fMLP or/and 0.1 µM LTB4 were added for next 10min. Values shown means ± SEM of the
percentage of cells attached to the substrate obtained from three independent experiments performed in triplicates; *p < 0.05, **p < 0.01, ***p <
0.001 for indicated pairs of data or compared to resting PMNLs sample (black bar) as shown by ordinary one-way ANOVA with Sidak’s multiple
comparison test. (B) Effect of SkQ1 and LTB4 on neutrophil morphology upon (co-)stimulation with bacteria S. typhimurium and fMLP. PMNLs (106/
ml HBSS/HEPES) were preincubated on coverslips in culture dishes for 10 min and then cultured for 20 min without additives (line medium) or in the
presence of 100 nM SkQ1 (lines SkQ1, SkQ1+LTB4) without additional stimulation (control) or with the addition of bacteria (bacteria per cell
ratio ~25:1) (S. typhimurium). LTB4 (100 nM sample concentration) was added to (control) and (S. typhimurium) samples for next 5 minutes
(line SkQ1+LTB4). Columns fMLP and S. typhimurium+fMLP represent PNMLs incubated for 20 min without additives (line medium) or with 100 nM
SkQ1 (lines SkQ1, SkQ1+LTB4) without bacteria (fMLP) or with the addition of bacteria (S. typhimurium+fMLP), followed by fMLP (0.1 µM sample
concentration) (lines medium, SkQ1) or fMLP together with LTB4 (100 nM sample concentration of each) (line SkQ1+LTB4) treatment for 5 minutes.
At the end of each stage, PMNLs samples were fixed and subsequently visualized using scanning electron microscopy. Thread-like cell outgrowths
are marked by red arrows.
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SkQ1 not only reduce the pro-adhesive effect of fMLP but also

prevents fMLP-induced morphological changes, in particular, it

diminishes the formation of cell outgrowths (Figure 3B), in parallel

with suppression of leukotriene synthesis (Figure 1A). The addition

of LTB4 to samples pretreated with SkQ1 increased the

adhesiveness of neutrophils, promoting cell spreading (Figure 3,

SkQ1+LTB4). In addition, supplementation of fMLP influence on

cells preincubated with SkQ1 and bacteria with exogenous

leukotriene B4 restored the ability of neutrophils to form thread-

like filaments (Figure 3, SkQ1+LTB4/S.typhimurium+fMLP, red

arrows). These data support our earlier suggestion that the

emergence of cell-cell contacts is dependent on LTB4 (12). 50 µM

diamide also increased adhesiveness of neutrophils (Supplementary

Figure 5A). At high diamide concentration, when leukotriene

synthesis was inhibited, the cells change morphology to more

spherical shape, and the adhesiveness of neutrophils decreased

(Supplementary Figure 5).

Activation of neutrophil adhesive properties can be reflected by

adhesive receptor expression, first of all CD11b, a component of

Mac-1 (CD11b/CD18) b2 integrin (58). In experiments with
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binding of fluorescently labelled antibodies to CD11b it was

shown that both fMLP and LTB4 increased CD11b density on the

surface of the cells, and diamide potentiated effect of fMLP. SkQ1

did not influence fMLP-induced expression, but decreased LTB4-

induced effects (Figures 4A, B). The surface CD54 (ICAM-1)

expression on neutrophils correlates with neutrophil migration,

i.e. with cell-cell communication (59); and anti-CD54 monoclonal

antibody inhibited neutrophil aggregation and formation of inter-

cellular contacts (60). CD54 increased significantly on migrated

PMNs; with rather low CD54 expression on adherent neutrophils

(61). In our experimental model CD54 plays role as counter-

receptor for integrins during homotypic adhesion; and SkQ1

decreased CD54 surface expression on neutrophils, as in the

presence of the “first” chemoattractant fMLP, as well as at adding

of the “second” chemoattractant LTB4 (Figures 4C, D). These data

indicate that SkQ1 affects not only LTB4 synthesis but also LTB4-

dependent signaling. The increased adhesiveness of neutrophils

induced by LTB4 provided the possibility of forming tight

intercellular contacts, which can support swarming and clustering

around pathogens.
A B

DC

FIGURE 4

Effect of SkQ1 and diamide on adhesion molecules externalization upon (co-) stimulation with bacteria S. typhimurium and fMLP or LTB4. PMNLs
(106/mL HBSS/HEPES) were incubated for 20 min without additives (resting PMNLs), in the presence of bacteria (control) or bacteria in combination
with 100 nM SkQ1 or 50 µM diamide (bacteria per cell ratio ~25:1). Then 0.1 µM fMLP (+ fMLP) or 0.1 µM LTB4 (+ LTB4) were added for 10 min
followed by staining of surface CD11b and CD54 proteins and flow cytometry. Presented are the average values of three independent experiments
(means ± SEM) (A, C) and typical histograms (B, D) of fluorescence for PMNLs stained with avidin-FITC in addition to biotynilated CD11b (A, B) and
CD54 (C, D) antibodies. *p < 0.05 for pairs of data compared to corresponding control values; ##p < 0.01 for the specified data pairs as shown by
one-way ANOVA with Dunnett’s multiple comparison test.
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4 Discussion

Redox regulation plays an important role in the activation of 5-

LOX and the regulation of leukotriene synthesis in neutrophils.

Specifically, enzymatic activity requires the oxidation of Fe2+ to Fe3+

at the 5-LOX active site. Lipid hydroperoxides are involved in the

activation of 5-LOX, at least in part through the oxidation of Fe2+

(62, 63). 5-LOX catalyzes the biosynthesis of leukotrienes using

arachidonic acid (AA) as a substrate. Phospholipase A2, which

produces AA from phospholipids, can be activated by ROS and

lipid hydroperoxides (64), promoting the activation of leukotriene

synthesis through oxidative processes. At the same time, excess

hydrogen peroxide has been shown to inhibit 5-LOX activity in

alveolar macrophages in parallel with ATP depletion (65).

Our previous work (22) using the mitochondria-targeted

antioxidant SkQ1 demonstrated the important role of

mitochondrial ROS in leukotriene synthesis induced by the Ca2+

ionophore A23187, the chemoattractant fMLP, and the opsonized

yeast cell wall components zymosan. Here, we showed (Figure 1)

that mitochondria-targeted antioxidants suppress fMLP-induced

leukotriene synthesis in neutrophils exposed to S. typhimurium. We

also showed that leukotriene synthesis is inhibited by the respiration

inhibitor antimycin A and the oxidative phosphorylation

uncoupler FCCP, presumably due to inhibition of mtROS

production stimulated by voltage-dependent Ca2+ accumulation

in mitochondria. Inhibition of respiration or dissipation of

membrane potential prevents the synthesis of mitochondrial ATP,

but measurements of ATP content did not reveal the effect of

antimycin A or FCCP in infected neutrophils (Figure 1B).

Inhibition of glucose metabolism by 2-deoxy-D-glucose (2-DG)

led to a decrease in ATP content and, in parallel to inhibition of

leukotriene synthesis (Figure 1C) consistently with earlier data on

the requirement of energy metabolism for the synthesis of

leukotrienes (66). Glucose is catabolized by two fundamental

pathways: glycolysis to produce ATP and the oxidative pentose

phosphate pathway (PPP) to produce reduced nicotinamide

adenine dinucleotide phosphate (NADPH). Very recently, it was

shown that activation of the oxidative burst in neutrophils depends

on a switch from glycolysis to a unique form of PPP called the

“pentose cycle” (53). In this mode, all glucose-6-phosphate is

consumed through PPP, while the initial steps of glycolysis are

reversed to support pentose phosphates recycling. It has been

proposed that this switch is required to maximize the supply of

NADPH to fuel NADPH oxidase.

Another important NADPH-dependent enzyme is glutathione

reductase, which reduce oxidized glutathione disulfide to sulfhydryl

glutathione (67, 68). The main function of glutathione is the

detoxification of electrophilic xenobiotics through condensation

reactions catalyzed by glutathione S-transferases. Another

protective function is mediated by the reduction of hydroperoxides

catalyzed by glutathione peroxidase. This process appears to underlie

the inhibition of 5-LOX by GSH observed in neutrophil homogenate

(69). However, protein S-glutathionylation, activated by oxidative

stress, may represent a more important regulatory mechanism.

The 5-lipoxygenase requires activation by fatty acid

hydroperoxides (62). Hydroperoxides are inactivated in cells by
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GSH-dependent reduction by glutathione peroxidase, but diamide

has the ability to non-enzymatically oxidize intracellular thiols (48).

On this way diamide creates a demand for glutathione reduction by

NADPH (70), and DPI provides high NADPH/NADP+ ratio (53)

increasing stimulating effect of diamide (Figures 2D, F). The

pentose phosphate pathway (PPP) is the major mechanism to

maintain high NADPH/NADP+ ratio (71), and it was recently

shown that PPP controls ROS production in crowding neutrophils

(72). In accordance of the ability of diamide to switch glycolysis-

dominant metabolism to pentose phosphate pathway (53), effects of

diamide were less sensitive to glucose deprivation (Figures 2G, H).

Effects of DPI were inhibited by glucose deprivation (Figure 2G).

Protein S-glutathionylation likely limits leukotriene synthesis in

fMLP-activated neutrophils in the presence of S. typhimurium. This

may be the reason that the GSH precursor NAC and the H2S donor

sodium hydrosulfide, which increase the GSH/GSSG ratio, stimulate

the synthesis of leukotrienes, in contrast to some other antioxidants

(Figure 2A). In support of this proposal, we observed that thiol-

oxidizing diamide (48), which oxidizes GSH, as detected by depletion

of non-protein thiols (Figure 2B), at high concentrations (200-250

µM) significantly inhibits leukotriene synthesis (Figure 2D). This

inhibition was effectively reversed by the GSH precursor SAMe

(Figure 2D). Inhibition of leukotriene synthesis by FCCP or

antimycin A may also be due in part to the GSH depletion caused

by these agents (49–51). Accordingly, inhibition by FCCP and

antimycin A was partially prevented by SAMe (Figure 2E).

Importantly, diamide-induced thiol depletion was prevented by

DPI (Figure 2B), indicating that inhibition of NADPH oxidase and

subsequent decrease of oxidative stress and increase in NADPH levels

may compensate for diamide-dependent GSH oxidation.

Accordingly, DPI stimulated the synthesis of leukotrienes in the

presence of diamide (Figure 2D). Inhibition of leukotriene synthesis

by 2-DG-dependent ATP depletion may also be mediated by a

decrease in GSH content. This may explain why the synthesis of

leukotrienes in the presence of non-inhibitory doses of diamide,

which is known to stimulate PPP-dependent NADPH production

(52), was not inhibited by 2-DG in the presence of DPI (Figure 2G).

Neutrophils are the first cells in the foci of infection, and they

have developed a set of mechanisms to turn on defense very quickly.

To potentiate ROS production, they activate NADPH-oxidase, and

NADPH is necessary for reduction of oxygen (73). To support

NADPH-dependent ROS formation, neutrophils turn on PPP shunt

(74). Activation of PPP is extremely important in supplying of

NADPH (75). Inhibition of NADPH-oxidase shifted neutrophils

from PPP cycle with ultra-high NADPH yield to glycolysis-

dominant glucose metabolism (74). At the same time, neutrophil

responses to pathogens include activation of glycolysis (76, 77).

Upregulation of PPP during oxidative stress contributes

significantly to neutrophil responses, including not only oxidative

burst (74) but also NETs formation (78). Redox regulation may

involve various signaling pathways, including the MAP kinase-

dependent pathway (79). We previously showed that activation of

the MAP kinases Erk1/2 and p38, responsible for phosphorylation

and activation of 5-LOX (46), is prevented by SkQ1 in neutrophils

stimulated with A23187, fMLP, or opsonized zymosan (22). In

neutrophils stimulated with S. typhimurium in combination with
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fMLP, the Erk1/2 inhibitor U0126 and the p38 inhibitor SB203580

inhibited leukotriene synthesis (Figure 1E). It is important to note

that the GSH/GSSG ratio may also be involved in the regulation of

Erk1/2, as S-glutathionylation, activated by oxidative stress, has been

shown to play a key role in regulating MAP kinase kinase (MEKK1),

that is an upstream kinase in the cascade of Erk1/2 activation (80).

Using MS analysis, the authors demonstrated that oxidative stress

induces glutathionylation of Cys1238 in the ATP-binding domain of

MEKK1. This modification is easily reversible once the cell’s redox

balance is restored. Thus, increasing the GSH/GSSG ratio with NAC

or sodium hydrosulfidemay improve Erk1/2 activation by preventing

MEKK S-glutothionylation in neutrophils exposed to S. typhimurium

and fMLP. Thus, redox regulation of Erk1/2 may be an important

element in both mtROS-dependent and GSH-dependent regulation

of leukotriene synthesis. Moreover, this regulation provides insight

into why mitochondria-targeted antioxidants and NAC have

opposing effects on leukotriene synthesis.

Our data (Figure 3) showed that Salmonella typhimurium in

combination with fMLP stimulates the appearance of intercellular

contacts in parallel with the synthesis of LTB4. The mitochondria-

targeted antioxidant SkQ1 reduced this intercellular communication,

as well as the synthesis of leukotrienes. Thus, during bacterial

infection, redox processes in neutrophils play a decisive role in the

synthesis of LTB4, ensuring neutrophil swarming - the influx of

neutrophils to places of large microbial accumulations.

Excessive synthesis of leukotrienes and especially of LTB4 plays

important role in pathogenesis of various inflammatory diseases

(81–88). Mitochondria-targeted antioxidants, such as SkQ1, have

been proposed as a promising therapy the same range of pathologies

(89, 90). SkQ1 demonstrated strong anti-inflammatory activity in

acute bacterial infection (91) and in the systemic inflammatory

response syndrome (SIRS) model (92). The inhibition of

leukotriene synthesis demonstrated above under conditions of

pronounced activation of neutrophils can significantly contribute

to the therapeutic effect of SkQ1. Importantly, our data indicate that

administration of known thiol-based antioxidants such as NAC can

dangerously stimulate leukotriene synthesis by neutrophils under

the same conditions that mimic severe pathogenic infection.
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