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Cancer cells and viruses
share common glycoepitopes:
exciting opportunities toward
combined treatments
René Roy*

Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, Montréal, QC, Canada
Aberrant glycosylation patterns of glycoproteins and glycolipids have long been

recognized as one the major hallmarks of cancer cells that has led to numerous

glycoconjugate vaccine attempts. These abnormal glycosylation profiles mostly

originate from the lack of key glycosyltransferases activities, mutations, over

expressions, or modifications of the requisite chaperone for functional folding.

Due to their relative structural simplicity, O-linked glycans of the altered mucin

family of glycoproteins have been particularly attractive in the design of tumor

associated carbohydrate-based vaccines. Several such glycoconjugate vaccine

formulations have generated potent monoclonal anti-carbohydrate antibodies

useful as diagnostic and immunotherapies in the fight against cancer.

Paradoxically, glycoproteins related to enveloped viruses also express analogous

N- and O-linked glycosylation patterns. However, due to the fact that viruses are

not equippedwith the appropriate glycosyl enzymemachinery, they need to hijack

that of the infected host cells. Although the resulting N-linked glycans are very

similar to those of normal cells, some of theirO-linked glycan patterns often share

the common structural simplicity to those identified on tumor cells. Consequently,

given that both cancer cells and viral glycoproteins share both commonN- andO-

linked glycoepitopes, glycoconjugate vaccines could be highly attractive to

generate potent immune responses to target both conditions.
KEYWORDS

O-glycans, vaccines, cancer, viruses, glycobiology, glycoepitopes, tumor associated
carbohydrate antigens (TACAs), SARS-CoV-2
1 Introduction

Tumor-associated carbohydrate antigens (TACAs) have long been recognized as key

targets toward prophylactic vaccines against cancer (1–5). The corresponding

glycoepitopes originate from either glycolipids and gangliosides in particular (6–8) or

from their glycoprotein counterparts, in particular cell-surface mucins (9). They are all

constitutive members of the glycan structures found on the extracellular membranes of cells
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where they orchestrate cellular recognition, adhesion, and signaling

(10) as well as several other functions, not yet fully exploited (11).

As such, carbohydrates add to the arsenal of encoded information

analogous to those attributed to nucleotides and amino acids, now

referred to as glycocodes (12). Therefore, and not surprisingly, the

overall information encoded by carbohydrates holds great promises

for cancer (13) and cancer-associated glycosylation for the

discovery of effective new cancer drugs (14, 15). As a result,

TACAs are important members of the prioritization of cancer

antigens which have been included in the National Cancer

Institute (NCI) pilot project for accelerated translational research

(16). Unfortunately, the targeting of O-linked tumor glycans for

generating anti-cancer vaccines has had limited successes in clinical

Phase III trials (17) and a thorough analysis of the post mortem data

might be useful to explain the numerous failures (18).
2 Glycan biosynthesis and structures
of TACAs on tumor cells

As mentioned, the transformation from normal to malignant

phenotype in human cancers is associated with aberrant cell surface

glycosylation (Figure 1) (13–15). The biosynthesis of O-linked

glycans is initiated and completed in the Golgi apparatus. In

normal cells, mucin-type O-glycans are represented by

structurally complex branched and linear arrangements of

monosaccharides that are sequentially assembled by appropriate

glycosyltransferases to glycoproteins on serine/threonine residues

within the Golgi apparatus. The synthesis of mucin-type O-glycans

is complex and depends on many factors. Alternatively, the mucin-

type O-glycans are constituted by shorter saccharide sequences in

cancer cells due to glycoenzymes mis-regulations.
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N-linked carbohydrates on glycoproteins are built in three key

steps from a l ipid- l inked (dol ichol-phosphate) a-N-

acetylglucosamine (GlcNAc) residue to which multiple saccharide

chains are attached for transfer, followed by a transfer to nascent

proteins through attachment to asparagine residues via an inverted

b-GlcNAc linkage, and final processing of complex glycan chains

(19, 20). Sialylated Lewis X, over sialylated glycans (21), together

with the most common polylactosamine elongation, represent

typical members of this class of TACAs (22).

The biosynthesis of O-linked glycans, pertinent to this report

and their relation to viruses, are rather initiated by an a-N-
acetylgalactosamine (GalNAc) linked to either Serine or

Threonine (GalNAc-Ser/Thr) that is also a post-translational

modification that occurs after the protein has been synthesized.

Overall and in both cases, N-/O-glycosylation is the most

commonly occurring post-translational protein modifications. A

malfunctioning in glycan processing is due to the lack of key

glycosyltransferases activities, mutations, over expressions, or

modifications of the requisite chaperone for functional folding.

Alteration of several types of O-glycan core structures has been

widely implicated in multiple forms of cancers (Figure 2) (23–28).

Approximately twenty GalNAc-transferase isoenzymes (GalNAc-

Ts) have been identified in this initial key step (29). They are

organized into nine subfamilies according to the similarity of their

sequences. GalNAc-Ts select their sites of O-linked glycosylation

depending on several structural differentiations of the peptide

sequences. The biosynthesis of the ensuing abnormally O-

glycosylated proteins is schematically illustrated in Figure 2.

Elongation to core-2 glycans is prohibited by loss of an important

b-GlcNAc transferase activity, resulting in buildup of the core-1

disaccharide, also known as the Thomsen Friedenreich (TF)

antigen, Galb1-3GalNAca1-Ser/Thr. Biosynthesis of the TF

antigen is through an essential C1bGal transferase, whose activity
FIGURE 1

Typical glycan structures as they usually appear on normal and cancer cells. For N-linked glycans, altered and increased branching and/or capping
by fucosylation and sialylation occurs. Of particular interest is the most simplified structural architectures of O-linked glycans in comparison to those
identified on healthy cells. N-linked carbohydrates on glycoproteins are built from b-N-acetylglucosamine (GlcNAc) attached to asparagine (Asn)
while O-linked glycoproteins are initiated by an a-N-acetylgalactosamine (GalNAc) to either Serine or Threonine (Ser/Thr).
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is dependent on the molecular chaperone called Cosmc.Mutation of

Cosmc halts mucin type glycosylation at a single a-GalNAc residue,
also known as the Thomsen nouveau or Tn antigen. Consequently,

the buildup of the so-called O-linked monosaccharide Tn antigen

(GalNAca1-Ser/Thr) is overexpressed. The over expression of the

ensuing Thomsen–Friedenreich disaccharide antigen (Galb1-
3GalNAca1-Ser/Thr) (TF) is the consequence of other glycosyl

transferases lack of integrity (30).

Moreover, overexpression of a2,6- and a2,3-sialyl transferases
result with the accumulation of the sialylated forms of the above two

antigens resulting in 5 predominantly expressed TACAs structures

illustrated in Figure 3: Tn, TF, sTn, (2,3)-sTF, and (2,3)-, (2,6)-di-

sTF. These TACAs are usually present on 90% of carcinomas (31)

and have been proposed as key glycoepitopes in various forms of

cancer (32–35).
3 Glycan structures on
enveloped viruses

Comprehensive identification, structural characterization,

location, and impact of glycosylation on virus biology triggered

new strategies to treat viral infections and has an increasing

contribution on widespread vaccine design (36, 37) .

Documentation of consensus glycoepitopes in native viral
Frontiers in Immunology 03
glycoproteins and tumor cells is particularly useful in the

conception of shared vaccination approaches (38).

Viral protein glycosylation is a pervasive post-translational

modification that is responsible for virus protective shielding, host

cell targeting, adhesion, and spreading (37). As obligate parasites such

as some plants, fungi, and bacteria, viruses also exploit host-cell

metabolic machinery to glycosylate their own proteins during

replication (Figure 4) (36–39). Viral envelope glycoproteins from a

variety of human pathogens, including influenza virus (40, 41), HIV-1

(42–44), Lassa virus (45), coronavirus (46–48), Zika virus (49), Dengue

virus (50, 51), Ebola virus (52, 53), human respiratory syncytial virus

(hRSV) (54), andmore recently SARS-CoV-2 (55–58), have progressed

to have been shown to be broadly glycosylated by both N- and O-

linked glycoepitopes. These host cell-derived glycoforms facilitate

diverse structural and functional roles during the viral life-cycle

mostly related to immune evasion since these extensive glycosylation

sites usually mask peptide sequences that would be otherwise useful

targets for vaccine design (38, 39, 59). Importantly, whether the

envelope glycoproteins of most of these viruses are expressed in

human cells, their expression into other vectors lead to identical

glycoform patterns (60).

Comprehensive structural investigations of the glycoepitopes of

viral envelope glycoproteins have been investigated for a long time,

particularly for N-linked glycans whose structural analysis were

simpler (36–39). However, given the inherent technical difficulties

encountered for the structural analysis of O-linked glycans, detailed

studies of the latter have lagged behind (61, 62). Mass spectrometry

has played and continues to play a vibrant role in chemical

characterizations of both N- and O-linked glycans amongst

glycomic and glycoproteomic analytical methodologies (62). As

seen in Figure 5, N-glycans of enveloped viruses are so abundant

that they clearly masked key amino acid epitopes (39), thus

preventing the efficacy of several anti-peptide antibody

approaches generated through common vaccinations of

glycoproteins of enveloped viruses: human coronavirus: HKU1 S,

SARS S, MERS S; Lassa virus glycoproteins (LASV GPC); influenza

virus (H3N2); human immunodeficiency viruses (HIV-1; simian

immunodeficiency viruses (SIV). Analogously to TACAs expressed

on cancer cells, viral protein glycosylation patterns follow the same

trends with typical fucosylation, sialylation, branching, and
FIGURE 2

Biosynthetic pathways leading to O-linked tumor-associated
carbohydrate antigens (TACAs) in tumor cells.
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FIGURE 3

Structural details of the most common O-linked glycans present on
both tumor cells and virus envelop glycoproteins.
FIGURE 4

Viral glycosylation pathways hijacked from the infected host cells.
Knock down MGAT1 and C1GalT1 glycosyltransferases inhibits
viral entry.
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polylactosaminylation (22, 63, 64) in addition to their simplified O-

linked glycan patterns.

Glycan-Binding Proteins (Lectins) in Antiviral Therapies: The

Envelope Glycoproteins of Influenza Virus.

Lectins, i. e. carbohydrate-binding proteins of non-immune

origin, play several key roles in biological processes, including

innate immunity (65–67). In this regard, lectins act as pattern

recognition receptors (PRRs) that can bind pathogen-associated

molecular patterns (PAMPs). Consequently, like antibodies of the

adaptative immune system, lectins greatly contribute to the

protective immune responses. The major classes of lectins in

innate immunity are represented by C-type lectin receptors (ex.

Dectin-1, Langerin, Mincle, Ficolins, Dendritic Cell-Specific ICAM-

3 Grabbing Integrin (DC-SIGN, L-SIGN, Mannose-Binding Protein

(MBP), Galectins, and Siglecs (65–67). Alternatively, several

leguminous lectins are also capable of binding glycans on both

cancer cells and viruses (68).

The envelope glycoproteins of influenza viruses are mainly

represented by their hemagglutinins (HA) and neuraminidases

(NA) (69). Their N-glycosylation by the host machinery implies,

like all other viruses, the attachment of oligosaccharides to the side-

chain amide Asn at the Asn-X-Ser\Thr sequon, where X can be any

amino acid except proline (70). The resulting glycan sequences

involves high-mannose oligosaccharides, galactose and/or N-acetyl

galactosamine/fucose (complex glycans) or a combination there of

(hybrid glycans) (Figures 1, 5). Consequently, typical lectins

implicated in the innate immunity can bind, trigger viral

neutralization, and prime the immune system. Unlike most

antibodies, these lectins can bind to a wide range of influenza

strains, implying that they would be attractive candidates for

antiviral (“immuno’’) therapies (65, 67, 68, 71).

As mentioned above, most enveloped viral glycoproteins

express the typical glycan structures detected on cancer cells. As

such, they are inherently recognized by the endogenous lectins of

the innate immune system with mannosides, galactosides, and sialic

acid-ending glycans being the major players. Several such viral

glycoproteins can also bind to leguminous lectins (Table 1). Thus, in

spite of historically inadequate analytical mass spectrometry tools,

leguminous lectins, together with C-type lectins of the innate

immunity system have played central roles in the structural

elucidation of glycans on viruses. The high mannose

oligosaccharide (Man9GlcNAc2) of HIV-1 gp120 glycoprotein is

highly representative of noteworthy efforts directed at generating

glycoconjugate anti-viral vaccines (79).
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4 Detailed O-Linked glycans of the
spike glycoproteins of SARS-CoV-2

The scarcity of O-linked glycans on viral glycoproteins

coupled with early difficulties in detailed structural analytical

methodologies have impeded the progress of their detailed

compositional and positional analyses (61, 62). However, the

global pandemic of the SARS-CoV-2 in 2019 (80) has triggered

tremendous efforts toward the discoveries of a wide range of

new therapeutics strategies leading to investigations toward
FIGURE 5

Typical high shielding effects of N-linked glycoepitopes (colored) of common viral envelope glycoproteins (the illustration shows mainly the N-
glycosylation sites modeled on the Man5GlcNAc2 motif anchoring glycans). Reproduced with permission from reference (39).
TABLE 1 Human and plant lectins binding to glycoepitopes of viral
envelop proteins.

Virus Lectins Sugar
recognition

References

RSV DC- & L-SIGN
Lentil lectin
Helix pomatia
Vicia villosa B4
Arachis hypogaea
Lens culinaris

Glycine Max (Soybean
agglutinin) (SBA

Mannose, LeX
Mannose

aGalNAc (Tn)
aGalNAc (Tn)
Gal-b(1-3)-

GalNAca (TF)
Mannose

aGalNAc (Tn)

(72)
(72)

(54, 73)
(54, 73)
(54, 73)
(73)
(74)

HIV, HCV DC- & L-SIGN
Griffithsin; Banana

lectin
Jacalin

Mannose
Mannose
Gal-b(1-3)-

GalNAca (TF)

(68)
(75)
(68)

HMPV Arachis hypogaea Gal-b(1-3)-
GalNAca (TF)

(76)

SARS-
CoV-2

DC-SIGN
Banana Lectin

MGL
Galectin-7
Galectin-3
Galectin-8
Siglec-8
Siglec-10

Mannose, LeX
Mannose
GalNAc
LacNAc
LacNAc
3’SLN

6’Sulfo-SLeX
SLN

(77)
(55–58)
(77)
(77)
(77)
(77)
(77)
(77)

Nipah virus Galectin-1 Gal, GalNAc (78)

Influenza A Galectin-9, Galectin-1
Jacalin

Gal, GalNAc
Gal-b(1-3)-

GalNAca (TF)

(78)
(68)

Lassa virus
Zika virus
Ebola
Dengue

Coronavirus

DC- & L-SIGN, Ficolin,
MBL, MGL,
Banana lectin

Mannose, Gal (45)
(49)

(52, 53)
(50, 51)
(46–48)
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several potential targets, including glycan structures, and

particularly in the field of vaccines (81, 82). The virion

particles of SARS-CoV-2 are 91 ± 11 nm wide and covered

with approximately 24 highly glycosylated fusion S-proteins

which contain the binding site for its host cell receptor (RBD)

– the angiotensin-converting enzyme 2 (ACE2) (Figures 6, 7)

(83). Further evidences for the key roles of proteins glycosylation

on viruses were illustrated by the knocking out of two key

enzymes responsible for the build-up of both N- and O-linked

glycan biosynthesis (84). Yang et al. showed that the SARS-CoV-

2 viral entry mechanism was inhibited by blocking a-1,3-
mannosyl-glycoprotein 2-b-N-acetylglucosaminyl transferase

(MGAT1) and the core 1 synthase, glycoprotein-N-

acetylgalactosamine 3-b-galactosyltransferase 1 (C1GALT1)

enzymes (Figure 4) using CRSP-Cas9 knockout cells (84).

Initially, it has been strongly speculated that sialic acid-ending

residues acted as auxiliary co-receptor (85, 86), thus opening the

door to sialic acid-based anti-adhesion inhibitors (87). More

recently, sialylated glycolipids (gangliosides) have now been more

accurately identified as the key natural host co-receptors (88). The

heavily N-glycosylated spike protein of SARS-CoV-2 masked
Frontiers in Immunology 05
potentially immunogenic peptide sequences by forming dense

shielding (see Figures 5, 6).

Detailed site-specific glycan profiling of the betacoronavirus

SARS-CoV-2 spike (S) glycoprotein has unraveled 17 N-glycan

chains per monomer out of the 22 potential sites (55–58) thus

covering 42% of the surface potentially accessible toward

antibodies, much less than the surface covered by the glycans on

HIV-1. The complete N-glycoform mapping has been thoroughly

investigated using high-resolution LC-MS/MS (58). The same

investigation (58) unambiguously revealed that the O-glycoforms

were clearly identified at sites Thr323 and Ser 325, near the hinge

region of the receptor-binding domain (RBD) domain of the S1

protein. Remarkably, the usual O-linked TACAs identified on

tumor cells were also identified (Tn, TF, sTn, (2,3)-sTF, and

(2,3)-, (2,6)-di-sTF) (Figures 3, 7), together with some more

elaborated chains. The presence of additional O-glycans at Ser673,

Thr678, and Ser686 has also been postulated based on

glycoinformatics (89). Deeper insights into the chemical details of

the SARS-CoV-2 architectures with respect to the shielding of the

glycans illustrate the effects of the carbohydrate glycoforms and the

relative positioning of the TACAs of interest (90–94).
FIGURE 6

SARS-CoV-2 virus nanoparticles are coated by a large number of trimeric spike glycoproteins shielded by several N-linked glycans (red) and a few
O-linked glycoepitopes (not shown) (see Figure 7 for details). Right adapted from: https://charmm-gui.org/?doc=archive&lib=covid19.
FIGURE 7

SARS-CoV-2 spike protein showing the dense shielding effect of the N-linked glycans (as CPK balls) and the region where the O-linked TACAs have
been clearly identified using high-resolution LC-MS/MS 320VQPT*ES*IVR328, adapted from https://charmm-gui.org/?doc=archive&lib=covid19.
frontiersin.org
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5 Joint strategies in the design of
both TACAs and viruses
therapeutic agents

As indicated, TACAs have long been identified on viral

glycoproteins (36–39). Therefore, using viral carbohydrates as

targets for neutralizing antibodies is offering several advantages

for group-specific vaccine development since this approach could

alleviate viral mutations commonly and rapidly occurring as it has

been witnessed with the SARS-CoV-2 pandemic. One of the early

reports of the presence of TACAs (sTn) on enveloped viruses has

been reported on the gp120 of HIV isolates and anti-sTn antibodies

were shown to neutralize infection of lymphocytes (95). Later, the

same group also demonstrated that the related anti-Tn monoclonal

antibodies (Mab) IgG2a (1E3) and an IgM (TKH6) inhibited both

HIV-1 and HIV-2 infection in vitro (96). The antibodies showed a

dose-dependent inhibition of viral infections together with

syncytium formation in cultures inoculated with free virus. In

addition, the infection was not prevented when synthetic a-
GalNAc-Ser hapten was pre-incubated with the Mab 1E3 used to

block the interaction. These findings are very relevant to our

postulate since the presence of other O-linked glycans have been

identified on other retroviral envelope glycoproteins (97).

Importantly, it is well documented that human serum contains

substantial amounts of a wide range of anti-carbohydrate antibodies.

These have been identified using modern glycan microarrays (98–

100) and has been postulated to originate from prior exposures of
Frontiers in Immunology 06
humans to various pathogenic agents, including viruses (101) and

their relative contents and specificities depends on age and ethnicity

(102). Interestingly, anti-TACAs antibodies were identified in the sera

of healthy individuals (103) and it has been hypothesized that such

antibodies might confer protection against COVID-19, as shownwith

the anti-Tn glycoepitope mentioned above (104). The study showed

that lower levels of anti-Tn antibodies were specifically low in

COVID-19 patients in comparison to those of the healthy group.

These findings are not without precedent since the aGal glycoantigen
constitute one of most extensively studied example of a carbohydrate

epitope that can lead to the elimination of viruses through natural

antibodies (105, 106). This glycoepitope is expressed by many cell

types in mostmammalian species, but is lacking in humans due to the

lack of the cognate galactosyl transferase. Overall, natural anti-Tn

antibodies could benefit from a natural immunity conferred by these

antibodies against COVID-19 (and likely other viral infections) and

corresponding vaccines would offer an attractive prophylactic

perspective (Figure 8).

There are several other potential sources of carbohydrate-binding

proteins (lectins) that could also be used against viral infections.

Naturally occurring lectins from various organisms have been shown

to inhibit viral entry mechanisms. These lectins are present in

bacteria, plants, and marine algae (68). Lectins can block

replications of viruses through binding with viral envelope

glycoproteins. The molecular interactions rely on monosaccharides

as well as complex branched glycans with a particular activity against

high-mannose oligosaccharides as found on viral N-linked

glycoproteins (Figure 4). However, the challenge in using
FIGURE 8

Raising anti-Tumor-Associated Carbohydrate Antigen (TACAs) antibodies may offer wide protection against both cancer and several forms of
viral infections.
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heterologous lectins in clinical settings is limited by the complications

of administrating foreign proteins into human system. Indeed, not

only can they be immunogenic on their own but several lectins have

displayed toxicity and mitogenic activities (107). Fortunately, a recent

investigation demonstrated that a single amino acid substitution in a

banana lectin (BanLec), replacing histidine 84 with a threonine, had

significantly reduced its mitogenicity while preserving its broad-

spectrum antiviral potency in HIV isolates (75). Interestingly,

BanLec is known to be a mannose-specific lectin. In addition,

studies have shown that BanLec can inhibit HIV-1 reverse

transcriptase activity, suppress influenza viral fusion, and provide

protective activity against herpes simplex virus (HSV) type 1 (108).

Additionally, it has been observed to suppress cancer cell

proliferation (109). Furthermore, and in line with the above

relationships between TACAs on cancer cells and the ability of

leguminous lectins to recognize tumors, a recent report described

the use of BanLec CAR-T cells to target pancreatic tumors (110).

Most significantly, human innate immunity, conferred by the

family of mannose-binding lectins (MBLs) such as the ficolins and

the membrane-bound CD209 (DC-SIGN) similarly constitute

protective activities against viral infections (67). The complement

cascade of activation is also playing a key role in the initial defense

mechanism against viral infections (111). These mannose-binding

lectins are usually abundant in healthy human serum (1340 ng/mL)

(112). Humans deficient in their serum concentrations of MBLs

were shown to be more susceptible to SARS-CoV-2 infections (113).

Interestingly, non-peptidic carbohydrate binding agents (CBAs)

such as pradimicin A and benanomicin A family of antibiotics

produced in the actinomycetes strain Actinomadura hibisca and

Actinomodura spadix, respectively, known to bind mannose-

containing oligosaccharides, have also been shown to be potent

inhibitors of viral infections (114, 115). They can also inhibit

syncytia formation as well as DC-SIGN-mediated transmission of

HIV to lymphocytes.
6 Conclusion

There are an increasing number of evidences clearly pointing

toward common glycoepitopes present on both cancer cells and

viral envelope glycoproteins. Several studies have established

beneficial effects of monoclonal anti-carbohydrate antibodies

against tumor-associated carbohydrate antigens (TACAs) as well

as specific carbohydrate-binding lectins to protect entry and viral

replications from a wide-range of envelope viruses. This report

illustrated numerous examples wherein leguminous lectins were
Frontiers in Immunology 07
used to identify the presence of O-linked glycans (TACAs) on a

wide range of viruses. However, further evidences are required to

demonstrate that antibodies equivalent to lectin-recognition

domains would be as efficacious as immunoprophylactics.

Therefore, this report highlights the necessity to deepen our

understanding on the vaccinal applications of existing MAbs

against TACAs that can be potentially and equally useful as anti-

viral vaccine prophylactics (Figure 8).
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