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Single-cell disulfidptosis
regulator patterns guide
intercellular communication of
tumor microenvironment that
contribute to kidney renal clear
cell carcinoma progression
and immunotherapy
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Background: Disulfidptosis, an emerging type of programmed cell death, plays a

pivotal role in various cancer types, notably impacting the progression of kidney

renal clear cell carcinoma (KIRC) through the tumor microenvironment (TME).

However, the specific involvement of disulfidptosis within the TME

remains elusive.

Methods: Analyzing 41,784 single cells obtained from seven samples of KIRC

through single-cell RNA sequencing (scRNA-seq), this study employed

nonnegative matrix factorization (NMF) to assess 24 disulfidptosis regulators.

Pseudotime analysis, intercellular communication mapping, determination of

transcription factor activities (TFs), and metabolic profiling of the TME subgroup

in KIRC were conducted using Monocle, CellChat, SCENIC, and scMetabolism.

Additionally, public cohorts were utilized to predict prognosis and immune

responses within the TME subgroup of KIRC.

Results: Through NMF clustering and differential expression marker genes,

fibroblasts, macrophages, monocytes, T cells, and B cells were categorized

into four to six distinct subgroups. Furthermore, this investigation revealed the

correlation between disulfidptosis regulatory factors and the biological traits, as

well as the pseudotime trajectories of TME subgroups. Notably, disulfidptosis-

mediated TME subgroups (DSTN+CD4T-C1 and FLNA+CD4T-C2) demonstrated

significant prognostic value and immune responses in patients with KIRC.

Multiple immunohistochemistry (mIHC) assays identified marker expression
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within both cell clusters. Moreover, CellChat analysis unveiled diverse and

extensive interactions between disulfidptosis-mediated TME subgroups and

tumor epithelial cells, highlighting the TNFSF12-TNFRSF12A ligand-receptor

pair as mediators between DSTN+CD4T-C1, FLNA+CD4T-C2, and

epithelial cells.

Conclusion: Our study sheds light on the role of disulfidptosis-mediated

intercellular communication in regulating the biological characteristics of the

TME. These findings offer valuable insights for patients with KIRC, potentially

guiding personalized immunotherapy approaches.
KEYWORDS

kidney renal clear cell carcinoma, single-cell, disulfidptosis, tumor microenvironment,
prognosis, immunotherapy, multiple immunohistochemistry
Introduction

According to Cancer Statistics for, 2023, kidney cancer stands as

the second most prevalent tumor within the urinary system,

demonstrating an annual growth rate of approximately 1%.

Estimates for the year, 2023 project diagnoses of 52,360 cases among

males and 29,440 among females in the United States, accounting for

nearly half of all urinary system cancers. Additionally, it is anticipated

that 14,890 patients will succumb to kidney cancer (1). Within the

various histological subtypes of renal cell carcinoma (RCC), kidney

renal clear cell carcinoma (KIRC) stands out as the most prevalent,

constituting approximately 75%-80% of all RCC cases (2). KIRC

tumors exhibit heterogeneity, high metastatic potential, and a poor

prognosis (3). Therefore, comprehending the molecular mechanisms

underlying KIRC is crucial, holding the potential to significantly

enhance survival outcomes for patients.

Programmed cell death (PCD) encompasses metabolic, structural,

and functional cellular disorders that result in irreversible damage. It is

associated with cellular homeostasis, tissue remodeling, and tumor

development (4). Within KIRC, various PCD forms have been

identified, including anoikis (5), pyroptosis (6), necroptosis (7), and

cuproptosis (8). Disulfidptosis, a recently discovered form of PCD, is

characterized by inadequate cellular uptake of cysteine and NADPH

supply. Upon NADPH depletion, abnormal disulfide bonds accumulate

in the cell cytoskeleton, leading to actin filament disruption and eventual

collapse of the actin cytoskeleton, culminating in cell death (9). Actin, a

multifunctional cytoskeletal protein involved in cellular morphology,

maintenance, differentiation, and intracellular transport, is also linked to

disulfide formation (10, 11). Alterations in the cytoskeleton of animal

and plant cells may positively influence the initiation and regulation of

PCD (12, 13). Crucially, disulfidptosis-related genes play vital roles in

tumor growth, development, invasion, and are closely associated with

KIRC’s pathogenesis and prognosis (14, 15).

The tumor microenvironment (TME) significantly influences

KIRC tumor progression and metastasis (16, 17). Mass cytometry
02
analysis revealed extensive infiltration of CD8+ PD-1+ T cells within

KIRC tumors, indicating heightened lymphocyte presence in the

TME (18). Immunotherapy targeting the TME, primarily

employing immune checkpoint inhibitors (ICIs) like anti-PD-1/

PD-L1 and CTLA-4 inhibitors (19, 20), has revolutionized cancer

treatment. In KIRC, T cell exhaustion is strongly linked to poor

prognosis, potentially contributing to the immunosuppressive

nature of the TME (21). In addition, the presence of tumor-

infiltrating lymphocytes (TILs) is associated with a favorable

prognosis in ccRCC. ccRCC also contains a significant number of

myeloid-derived suppressor cells (MDSCs), which possess the

ability to hinder tumor immune responses (22). Single-cell

transcriptomics, unlike traditional bulk analysis, can uncover

intercellular communication among different TME cell subtypes,

including CAFs, tumor-associated macrophages (TAMs), B cells,

and T cells (23, 24). Aleksandar et al. identified upregulated tumor-

specific macrophage subsets involving TREM2/APOE/C1Q as

potential prognostic biomarkers and therapeutic targets for KIRC

recurrence (25). Recently, Songyun et al. revealed a strong

correlation between disulfidptosis-related genes and tumor-

infiltrating immune cells (TIICs), particularly macrophages linked

to SLC7A11 and SLC3A2 (26). However, there is limited research

on specific disulfidptosis-mediated TME subgroups and their effect

on patient prognosis and intercellular communication.

This study investigated the effect of disulfidptosis on major TME

components—epithelial cells, fibroblasts, myeloids, B cells, and T cells

(27)—utilizing single-cell RNA-seq (scRNA-seq) data from 7 KIRC

tumor samples comprising 41,784 cells. Applying nonnegative matrix

factorization (NMF) clustering to major KIRC subgroups using

disulfidptosis regulatory factors, this study investigated the intricate

interplay between these disulfidptosis-mediated TME subgroups and

tumor epithelial cells. This study aimed to explore signaling

pathways, functional enrichments, transcriptional features, immune

characteristics, metabolic pathways, and prognostic implications

within these distinct subgroups. Although TME has been shown to
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play an important role in tumor progression, the signaling molecules

involved in intercellular communication in TME are poorly

understood. Consequently, this study sheds light on the potential

role of disulfidptosis in governing intercellular communication

among various TME subgroups and tumor cells, thereby

influencing KIRC progression.
Materials and methods

Data source

To explore the intratumor heterogeneity of KIRC, tumor scRNA-

seq data were gathered from 7 patients with KIRC, aiming to

scrutinize the landscape of 24 disulfidptosis regulators. These

regulators were pinpointed using a genome-wide CRISPR-Cas9

screen and proteomic analyses conducted by Liu et al. (9) on

SLC7A11high cells. The complete dataset, comprising a total of

41,784 single-cell scRNA-seq gene expression matrices from tumor

samples of 7 patients, was acquired from the Gene Expression

Omnibus (GEO) dataset (GSE210038) (www.ncbi.nlm.nih.gov/geo).

Additionally, bulk RNA-seq data from 646 patients with KIRC were

sourced from The Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/) and the GEO dataset (GSE29609). All data

utilized or produced in this study are publicly accessible through

previous publications or in the public domain.
Visualization of TME cell types and
subtypes in KIRC

Using the “Seurat” package within R software, Seurat objects were

individually created based on scRNA-seq data from the 7 patients

utilizing the CreateSeuratObject function. Subsequently, these objects

were merged using the merge function to construct a comprehensive

scRNA-seq gene expression matrix. Cells of subpar quality, including

those containing less than 200 genes/cell, more than, 4000 genes/cell,

or more than 15% mitochondrial genes, were filtered out. The

scRNA-seq data underwent normalization using the NormalizeData

function. Moreover, the FindVariableFeatures function was applied

to identify the top, 2000 genes for data normalization. Additionally,

the principal components (PCs) were computed based on the Seurat

objects using the ScaleData and RunPCA functions. For this study,

PC=12 and resolution=1.2 were chosen. The “t-SNE (t-distributed

stochastic neighbor embedding)” algorithm was utilized to condense

the topPCs for dimensionality reduction. Finally, the Idents function

was employed to label the cells according to the TME cell types or

subtypes, and the DimPlot function was used for visualization.
Pseudotime trajectory analysis of
disulfidptosis regulators for TME cells

To delve into the relationship between cell pseudotime trajectories

and disulfidptosis regulators, the “Monocle” R package was used to

analyze single-cell RNA data across all cell types in KIRC (28). Highly
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variable genes were selected based on the following thresholds:

mean_expression ≥ 0.1 and dispersion_empirical ≥ 1 * dispersion_fit.

The DDRTree method was employed for dimensionality reduction,

with the parameter max_components set to 2. Subsequently, the

function “plot_pseudotime_heatmap” was used to illustrate the

pseudotime heatmap, showcasing temporal expression patterns of

disulfidptosis regulators. Furthermore, the “plot_cell_trajectory”

functions were utilized to visually represent pseudotime trajectories

of diverse cell types within the KIRC TME. Thus, these analyses

effectively demonstrate the dynamic regulation of disulfidptosis and

its implications in the complex TME.
NMF of disulfidptosis-mediated
disulfidptosis regulators in TME cells

NMF unsupervised clustering represents a widely adopted

technique in both data mining and machine learning. It functions

by decomposing a data matrix into non-negative basis vectors and

coefficient matrices (29). This method proves highly effective in

unraveling the intricacies of the TME and identifying heterogeneity

among tumor cells (30). To further investigate the influence of

disulfidptosis-mediated regulator expression on various TME cell

types, the “NMF” algorithm was employed along with the “snmf/r”

method. This allowed for a comprehensive dimensionality

reduction analysis involving 24 disulfidptosis regulatory factors

across all TME cell types, enabling the identification of distinct

cell subtypes within these groups. Noteworthy, these steps were

performed using approaches that closely align with methodologies

used previously (23, 31).
Identification of the marker genes of
disulfidptosis-related cell subtypes in TME

The FindAllMarkers function was utilized to determine the

characteristic markers for each NMF cluster and discern different

cell subtypes within these types. Genes were filtered based on a log-

fold change threshold of 0.5 and a p-value below 0.01, with default

parameters applied for the remaining settings. Additionally,

employing the AddModuleScore function, module scores were

computed using differentially expressed genes (DEGs) specific to

each NMF cluster. The Dotplot visualization method was then

utilized to represent the expression levels of top characteristic genes

within each NMF cluster. Furthermore, the FeaturePlot was

employed to illustrate the distribution of NMF cluster scores in

the TME of KIRC. Supplementary Table S1 provides detailed

information on the specific gene sets used for comparing

disulfidptosis-mediated TME subgroups.
Functional enrichment analysis for NMF
disulfidptosis-related subtypes

The “clusterProfiler” R package was utilized to identify marker

genes within NMF clusters based on the Kyoto Encyclopedia of Genes
frontiersin.org
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and Genomes (KEGG) pathway database. Significance was determined

by a corrected p.adjust < 0.05. Additionally, gene set variation analysis

(GSVA) using 24 disulfidptosis regulatory factors was conducted to

calculate enrichment scores for these NMF clusters. The

“scMetabolism” R package, employing VISION methods, enables

metabolic activity quantification at a single-cell resolution. This

package comprises 85 KEGG pathways and 82 REACTOME

pathways, facilitating comprehensive analysis (32). scMetabolism was

employed to assess metabolic activity across different NMF clusters,

and results were visualized using the DotPlot.metabolism function.
SCENIC analysis for NMF disulfidptosis-
related subtypes

SCENIC analysis was employed to investigate the gene regulatory

network of transcription factors (TFs) in KIRC (33) using the aertslab

database (https://resources.aertslab.org/). The database provided

crucial files, namely, “hg19-500bp-upstream-7species.mc9nr.feather”

which contained the genomic coordinates of the 500bp upstream

regions of all human genes in the human genome based on the hg19

version, and “hg19-tss-centered-10kb-7species.mc9nr.feather” which

encompassed the genomic coordinates of the 10 kb regions

centered around the transcription start site (TSS) for the same

genomic version. These files enabled TSS identification within

KIRC scRNA-seq data, allowing recognition of potential TF-target

relationships and construction of a co-expression gene network.

Further analysis focused on TFs with a Benjamini-Hochberg false

discovery rate corrected p-value < 0.05.
Cell-cell communication analysis for NMF
disulfidptosis-related subtypes

Utilizing the human and mouse ligand-receptor interaction

database, the “CellChat” R package was employed to analyze

intercellular communication networks in scRNA-seq data across

various cell clusters (34). Initially, overexpressed genes in NMF

clusters were identified, focusing on ligands or receptors, and their

expression data were projected into a protein-protein interaction

network. The collective intercellular communication network was

computed using the computeCommunProbPathway and

aggregateNet functions. Subsequently, the cell-cell communication

network and visualized communication strength were analyzed using

the netVisual_circle functions. Finally, leveraging the human ligand-

receptor pairs database, the interactions between cell types and

visualized ligand-receptor interactions’ strength across different cell

clusters were examined using the netVisual_bubble function.
Survival analyses with disulfidptosis-related
signatures in RNA-seq

Bulk RNA-seq offers substantial clinical information. Thus,

bulk RNA-seq data were integrated to explore the effect of

disulfidptosis-related clusters on patient prognosis. To pinpoint
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distinct disulfidptosis-related genes for each NMF cluster, the

FindAllmarker function was used, setting a logfc threshold at 0.5.

Next, employing the GSVA method, gene scores for these identified

genes were calculated from two publicly available KIRC datasets:

TCGA-KIRC and GSE29609. Subsequently, this study investigated

the association between disulfidptosis-related NMF signatures and

the prognosis of patients with KIRC using Kaplan-Meier (K-M)

analysis and univariate Cox regression. Cutoff values for different

NMF clusters were determined utilizing the “survminer” R package,

aiming to elucidate the link between disulfidptosis-related gene

signatures and clinical outcomes in patients with KIRC.
Immunotherapeutic analyses for NMF
disulfidptosis-related subtypes

The TIDE database offers an integrated analysis of immune

dysfunction and exclusion mechanisms in tumor immune evasion,

aiding in predicting immunotherapy responses (35). The TIDE

database was utilized, and logistic regression analysis was

performed to assess immunotherapy response among different

disulfidptosis-mediated TME patient subgroups in the TCGA-

KIRC and GSE29609 datasets. This study then evaluated the

likelihood of implementing immunotherapy responses for specific

disulfidptosis-related NMF subtypes.
Multiplex immunohistochemistry assay

Multiple immunohistochemistry (mIHC) was performed to detect

three different antibodies on tissue sections. The primary antibodies

used were rabbit monoclonal (1:500 dilution, ab186754, EPR15827(B);

Abcam) to DSTN, rabbit monoclonal (1:200 dilution, ab76289,

EP2405Y; Abcam) to FLNA, and rabbit monoclonal antibody (1:200

dilution, ab133616, EPR6855; Abcam) to CD4. The cancerous or

adjacent normal tissues used for mIHC experiments were obtained

from archived paraffin-embedded surgical specimens of patients with

KIRC who provided prior informed consent. Employing the TSA

method, the primary antibodies were stained. The procedure involved

deparaffinization, antigen repair, labeling, inactivation of endogenous

peroxidases, and antigen blocking on the first day. The first primary

antibody, CD4, was applied, incubating overnight at 4°. On the second

day, after treatment with goat antirabbit IgG (H+L; 1:50 dilution)

labeled with horseradish peroxidase, Cyanine 5 Tyramide was used for

detection. The steps were then repeated with DSTN or FLNA primary

antibodies, incubating overnight at 4°. On the third day, following

treatment with goat anti-rabbit IgG (H+L; 1:50 dilution) labeled with

horseradish peroxidase, the sections were incubated with fluorescein

tyramide working solution. Finally, nuclei were stained with DAPI.
Cell culture, transfection, and cell
scratch assay

The human KIRC cells (786-O) were cultured in RPMI-1640

(BI, Israel) supplemented with 1% streptomycin and penicillin,
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along with 10% fetal bovine serum (BI, Israel). siRNA transfection

utilized riboFECT™ CP (RiboBio, China). The target sequences for

TNFRSF1A-siRNA were as follows: GAACCTACTTGTAC

AATGA. Cultured cells were grown to 95% confluence in 24-well

dishes. Subsequently, scratches were vertically created in each well

using a 10-mL lance tip. Cells were then washed thrice with

phosphate-buffered saline to remove any shed cells. To assess the

trauma area at the scratch areas, photographs of the si-TNFRSF1A

group and the normal group were captured at 0 and 24 hours,

followed by the analysis of the resulting images using

ImageJ software.
Statistical analysis

R version 4.2.1 was employed for statistical analysis. To evaluate

differences in continuous and categorical variables within cellular

subgroups, various tests (Mann-Whitney U test, t-test, Kruskal-

Wallis test, and log-rank test) were conducted. Furthermore, to

compare distinct characteristics of disulfidptosis-mediated TME

subgroups in KIRC, relevant disulfidptosis-related regulators and

TME-related genes were obtained from prior literature. The

“pheatmap” R package was utilized to visualize the NMF cluster.

Statistical significance was determined at a threshold p-value of less

than 0.05, indicating significant differences.
Results

Landscape of disulfidptosis regulators in
the TME of KIRC

A concise flowchart was presented to illustrate the exploration

of disulfidptosis regulators based on scRNA-seq data from patients

with KIRC (Figure 1A). The GSE210038 dataset encompassed

41,784 TME cells from 7 patients with KIRC. Following a single-

cell analysis workflow, these cells were annotated into major cell

types—epithelial cells, stromal cells, myeloids, mast cells, B cells,

and T cells (Figure 1B). Additionally, CellChat analysis revealed

intercellular interactions among different cell types (Figure 1C).

Furthermore, a heatmap was generated to visualize the expression

differences of 24 disulfidptosis regulators across diverse cell

types (Figure 1D).
Novel disulfidptosis-mediated fibroblasts
contributed to the TME of KIRC

The TME is known to be a complex network where stromal cells

play a crucial role by releasing various growth factors, cytokines, and

signaling molecules. These molecules, such as platelet-derived growth

factor, fibroblast growth factor, transforming growth factor-b (TGF-

b), and interleukin (IL)-6, bind to receptors on tumor cells,

promoting tumor growth, differentiation, and metastasis (36).

Stromal cells encompass various types, including fibroblasts,

endothelial cells, smooth muscle cells, and others (Figure 2A).
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CAFs in the KIRC TME are often linked with poor prognosis and

resistance to immune checkpoint inhibitor therapy (37). To gain

insights into the development and dynamics of the TME, pseudotime

analysis was employed, which has proven to be a valuable tool in

studying cell development, stem cell differentiation, and TME

processes (38). By utilizing pseudotime analysis, the essential role

of disulfidptosis regulators in the developmental trajectory of TME

fibroblasts was unraveled. Specifically, genes related to disulfidptosis

—OXSM, GYS1, FLNB, SLC7A11—were expressed at the beginning

of the developmental process, while SLC3A2 expression was observed

toward the end (Figures 2B, C). These genes may act as crucial

mediators in TME subpopulation development and differentiation.

Furthermore, intercellular communication and ligand-receptor

interactions between subpopulations and tumor cells significantly

influence tumor progression (39). CellChat analysis revealed varying

ligand-receptor pairs links among clusters—ACTN4+CAF-C1

(n=466), PDLIM1+CAF-C2 (n=389), NDUFA11+CAF-C3 (n=266),

Non-Dis-CAF-C4 (n=320), and Unclear-CAF-C5 (n=501)—and

epithelial cells. Notably, disulfidptosis-mediated CAFs clusters

exhibited stronger communication with tumor cells (Figure 2D).

Additionally, based on DEGs, KEGG enrichment analysis

indicated associations of the ACTN4+CAF-C1 cluster with

vascular smooth muscle contraction, regulation of actin

cytoskeleton, and the PPAR signaling pathway. Meanwhile, the

PDLIM1+CAF-C2 cluster showed involvement in the HIF-1

signaling pathway, focal adhesion, and ECM-receptor interaction

(Figure 2E, Supplementary Table S2). Previous research

underscores the role of iCAF in tumor progression and its

influence on immune infiltration in bladder and breast cancers

(40). Using Pan-CAF signatures from prior literature (41), a strong

correlation existed between PDLIM1+CAF-C2 cell cluster scores

and the pan-inflammatory CAF-2 (pan-iCAF-2; Figure 2F).

TFs play a pivotal role in either promoting or repressing

downstream genes by recognizing specific DNA sequences. In

renal cancer, TFs activation closely relates to somatic gene

mutation and tissue-specific cancer risk (42). SCENIC analysis

revealed distinct expression patterns of 26 TFs among the five

clusters. Notably, TFs such as JUNB, FOS, EGR3, JUND, JUN, and

CEBPD were upregulated in the NDUFA11+CAF-C3 cluster

(Figure 2G). Given that JunB had a role in promoting cell

invasion and angiogenesis in VHL-deficient RCC (43), we

hypothesize that a close association between this CAFs cluster

and tumor invasion. Finally, pathway heatmaps highlighted

significant differences in gene expression levels, particularly in the

contractile and RAS pathways, among ACTN4+CAF-C1,

NDUFA11+CAF-C3, and unclear-CAF-C5 clusters (Figure 2H).
Disulfidptosis-mediated macrophages
exhibit distinct metabolism features

Within the TME, myeloid cells play a crucial role in both innate

and adaptive immunity and demonstrate significant heterogeneity

(44). To delve into the functionality of disulfidptosis regulators

within myeloid cells, this population was meticulously classified

into distinct subgroups—comprising macrophages, monocytes, and
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other cellular entities (Figure 3A). Notably, our NMF clustering of

macrophages uncovered four major clusters: FLNA+Mac-C1

(n=556), DSTN+Mac-C2 (n=326), Non-Dis-Mac-C3 (n=258),

and Unclear-Mac-C4 (n=697). CellChat analysis revealed diverse

ligand-receptor interactions between these clusters and epithelial

cells (Figure 3B). Pseudotime analysis underscored the crucial

involvement of disulfidptosis regulators in shaping the trajectory

of TME macrophages (Figures 3C, D).
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Similarly, for monocytes, CellChat analysis delineated distinct

ligand-receptor connections between clusters: RPN1+MON-C1

(n=127), ACTN4+MON-C2 (n=100), Non-Dis-MON-C3

(n=220), and Unclear-MON-C4 (n=235) in relation to epithelial

cells (Figure 3E). Monocyte pseudotime analysis mirrored the

trends observed in macrophages (Figures 3F, G). Furthermore,

SCENIC analysis of macrophages and monocytes unveiled unique

activation patterns of potential TFs within the FLNA+Mac-C1,
A

B

D

C

FIGURE 1

Overview of disulfidptosis regulators in the single-cell data for kidney renal clear cell carcinoma (KIRC). (A) Flowchart of the workflow used in this
study. (B) Main cell type annotations using the Seurat uniform manifold approximation and projection (UMAP) plot of 41,784 cells. (C) Cell-cell
communications between the main cell types by CellChat analysis. (D) Heatmap distribution of disulfidptosis regulators in T cells, epithelial cells,
stromal cells, myeloids, mast cells, and B cells.
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DSTN+Mac-C2, RPN1+MON-C1, and ACTN4+MON-C2 clusters

(Figures 3H, I).

As the TME is closely associated with tumor metabolism and

because tumors establish acidic and hypoxic environments by

exploiting resources from the surrounding microenvironment,

tumor cells undergo metabolic reprogramming to fulfill the

specific demands necessary for their growth, proliferation, and
Frontiers in Immunology 07
survival (45). Lastly, to assess the relationship between the

disulfidptosis-mac cluster with metabolic pathways. GSVA and

scMetabolism were utilized to gauge single-cell metabolic activity,

revealing notable differences in 30 metabolic pathways among the

four clusters (Figure 3J). Particularly, the FLNA+Mac-C1 cluster

exhibited heightened activation of sulfur metabolism, suggesting its

potential significance in regulating disulfidptosis.
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FIGURE 2

Disulfidptosis regulators modifying the features of fibroblast cells. (A) Presence of fibroblasts in stromal cells. (B) Heatmap of pseudotime trajectory
analysis revealing the role of disulfidptosis-related genes in fibroblast cells (2,398 cells). (C) Trajectory analysis of fibroblast cells. (D) Cell-cell
communications from disulfidptosis-related fibroblast subgroups to epithelial cells. (E) Activation of KEGG signaling pathways by the main
disulfidptosis fibroblast subgroups, as depicted in the heatmap based on differentially expressed genes (DEGs; p < 0.05). (F) Correlation between
different disulfidptosis-related fibroblast subgroups and different cancer-associated fibroblasts (CAFs) cluster characteristics (p < 0.05).
(G) Comparison of activities of transcription factors (TFs) among the five disulfidptosis-related fibroblast subgroups, illustrated in the heatmap based
on the average area under the curve (AUC) values (Kruskal-Wallis test, p < 0.001). The activity of TFs was evaluated using AUCell. (H) Heatmap
showing the different average expression levels of common signaling pathway genes in the 5 disulfidptosis-related fibroblast subgroups, including
Proinflammatory, RAS, Contractile, Neo-Angio, TGFb, MMPs, and ECM.
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FIGURE 3

Nonnegative matrix factorization (NMF) clusters of disulfidptosis regulators for tumor-associated myeloid cells. (A) Myeloid cells are further
subpopulated, and they include monocytes and macrophages. (B) Cell-cell communications from disulfidptosis-related macrophages to epithelial
cells. (C) Heatmap of pseudotime trajectory analysis revealing the role of disulfidptosis-related genes in macrophages (1,841 cells). (D) Trajectory
analysis for macrophages. (E) Cell-cell communications from disulfidptosis-related monocytes to epithelial cells. (F) Heatmap of pseudotime
trajectory analysis revealing the role of disulfidptosis-related genes in monocytes (682 cells). (G) Trajectory analysis for monocytes. Comparison of
TF activities among the four disulfidptosis-related macrophages subgroups (H) and four disulfidptosis-related monocyte subgroups (I), illustrated in
the heatmap based on the average area under the curve (AUC) values (Kruskal-Wallis test, p < 0.001). TF activity was evaluated using AUCell.
(J) Heatmap showing significantly different activity of 30 metabolic signaling pathways scores by scMetabolism analysis for 1,841 cells in four
disulfidptosis-related macrophage subgroups (Kruskal-Wallis test, p < 0.001).
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Novel disulfidptosis-mediated B/T cell
immune response in KIRC

Immune cells are fundamental in protecting the body against

pathogens and influencing various disorders, including inflammation,

hematological conditions, and tumors (46). The TME, an intricate

ecosystem, hosts diverse immune cell types, each intricately involved in

modulating tumors (47). To gain a comprehensive understanding of

the dynamics of immune cells in TME, from a total of 25,390 T cells,

subpopulations—CD4+ T cells (n=7818), CD8+ T cells (n=10796),

natural killer (NK) cells (n=5621), and Treg cells (n=1104)—were

further classified (Figure 4A). Subsequently, CD4+ T cells exhibited five

subgroups: DSTN+CD4T-C1 (n=1624), FLNA+CD4T-C2 (n=509),

Other-Dis-CD4T-C3 (n=4909), Non-Dis-CD4T-C4 (n=159), and

Unclear-CD4T-C5 (n=531). The CD8+ T cells were further divided

into NDUFA11+CD8T-C1 (n=3208), FLNA+CD8T-C2 (n=1616),

Other-Dis-CD8T-C3 (n=5009), Non-Dis-CD8T-C4 (n=502), and

Unclear-CD8T-C5 (n=358). Similarly, NK and Treg cells were also

identified to exist as 5 subgroups, including DSTN+NKT-C1 (n=531),

TLN1+NKT-C2 (n=260), IQGAP1+NKT-C3 (n=188), Other-Dis-

NKT-C4 (n=4447), Non-Dis-NKT-C5 (n=178), NDUFA11+Treg-C1

(n=375), FLNA+Treg-C2 (n=157), TLN1+Treg-C3 (n=125), Other-

Dis-Treg-C4 (n=355), and Non-Dis-Treg-C5 (n=85). Among 897 B

cells, 6 subgroups were identified to exist: NDUFA11+B-C1 (n=196),

FLNA+B-C2 (n=174), CAPZB+B-C3 (n=162), TLN1+B-C4 (n=139),

MYH9+B-C5 (n=110), and Unclear-B-C6 (n=113). Pseudotime

analysis highlighted the critical role of disulfidptosis regulators in the

trajectory process of TME B cells, CD4+ T cells, CD8+ T cells, NK cells,

and Treg cells (Figures 4B–F).

Utilizing CellChat, this study unveiled a diverse range of ligand-

receptor interactions between disulfidptosis-related T cell clusters and

tumor epithelial cells (Figure 5A). SCENIC analysis revealed substantial

differences in the expression of TFs among CD4+ T cells, CD8+ T cells,

NK cells, and Treg cells within these disulfidptosis clusters (Figure 5B).

Additionally, to evaluate the collective effect of disulfidptosis-related T

cell subgroups on T cells, notable differences were observed in the

average expression of immune genes associated with co-stimulation,

co-inhibition, and functional markers. Variations were also noted in

the T exhaustion score, T cytotoxic score, T effector score, and T

evasion score among these four disulfidptosis-related T cell subgroups

(Figure 5C). Furthermore, distinctive ligand-receptor interactions were

observed between disulfidptosis-related B cells and T cells (Figure 5D).

The heatmap illustrated distinct TFs among the disulfidptosis-related B

cell clusters (Figure 5E). These findings strongly indicate robust

heterogeneity among disulfidptosis-related T/B cells. Given the

pivotal role of CD4+ T cells in tumor immune responses (46), our

focus was directed toward investigating the significance of

disulfidptosis-mediated CD4+ T cells.
Disulfidptosis-mediated TME patterns
contributed to the KIRC prognosis
and immunotherapy

For a comprehensive evaluation of disulfidptosis in KIRC at the

bulk level, FindAllMarkers was employed to compute all DEGs
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mediated by disulfidptosis in TME cells (Supplementary Table S3).

Subsequently, using GSVA, the scores of different cell subgroups in

tumor (n = 531) and normal (n = 76) samples were calculated from

the TCGA-KIRC cohort. Consequently, significant score differences

between tumor and normal samples were observed within two

disulfidptosis-related CD4+ T cell subgroups, namely, DSTN

+CD4T-C1 and FLNA+CD4T-C2 (Figure 6A). To validate the

differential expression and distribution of these two CD4+ T cell

subgroups within the tumor and adjacent nontumor regions, this

study conducted multiplexed immunohistochemistry (mIHC)

assays. Statistical analysis further indicated a significantly higher

proportion of these CD4+ T cell subpopulations in the tumor

samples than in the adjacent nontumor samples (p < 0.05;

Figure 6B). Subsequent survival analysis, utilizing information

from 531 patients with KIRC in the TCGA-KIRC and GSE29609

public cohorts, revealed that patients with low expression of DSTN

+CD4T-C1 and FLNA+CD4T-C2 subgroups exhibited better

prognoses (Figures 6C, D). Univariate Cox regression analysis

consistently showed prognostic significance for patients in both

subgroups (Figure 6E). Furthermore, the TIDE database was

utilized to investigate the immune response of these two

disulfidptosis-related CD4+ T cell subgroups in patients

undergoing immunotherapy. TIDE scores indicated that patients

with low expression in these subgroups exhibited better responses

to immunotherapy (Figures 6F, G). Logistic regression analysis also

demonstrated consistent immunotherapy response among patients

in both subgroups (Figure 6H). Our ongoing investigation aims to

explore the interaction between these two disulfidptosis-related

CD4+ T cell subgroups and tumor cells, along with their

mechanisms of exerting pro-oncogenic functions.
Disulfidptosis-mediated TME of KIRC
enhances intercellular communication

The interaction between tumor cells and cells in the TME

significantly contributes to tumor progression (48). Through

cellchat analysis, we aimed to elucidate the comprehensive ligand-

receptor interactions between disulfidptosis-mediated TME

subgroups and tumor epithelial cells, involving various signaling

pairs such as TNFSF12-TNFRSF12A, TNF-TNFRSF1A, OSM-

(OSMR+IL6ST), OSM-(LIFR+IL6ST), HBEGF-EGFR, and EREG-

EGFR. Of particular interest, the interactions of signaling pairs

TNFSF12-TNFRSF12A mediated the interaction of both DSTN

+CD4T-C1 and FLNA+CD4T-C2 subgroups with tumor

epithelial cells (Figure 7A). To further investigate this

interaction’s functional significance, knockdown experiments

targeting TNFRSF12A were conducted using siRNA in the KIRC

cell line 786-O. Remarkably, after TNFRSF12A knockdown,

significant inhibition of tumor cell migration was observed (p <

0.05; Figure 7B). These findings suggest that interactions between

the DSTN+CD4T-C1 and FLNA+CD4T-C2 subgroups with tumor

cells through the TNFSF12-TNFRSF12A signaling pairs play a

crucial role in promoting tumor migration. This suggests that the

progression of KIRC could be influenced by the interplay between

disulfidptosis-mediated TME and tumor cells.
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Discussion

Disulfidptosis, a novel manifestation of disulfide stress-

mediated PCD, has garnered attention due to its correlation with

cancer pathogenesis (26, 49). Notably, studies using disulfidptosis

scores have identified the CD96 gene as an independent prognostic

marker for esophageal squamous cell carcinoma (ESCC). Knocking

down CD96 not only significantly suppresses ESCC cell

proliferation but also promotes apoptosis (50). Prognostic

markers consisting of disulfidptosis-related lncRNAs can predict

the survival of patients with different colorectal cancers and the use

of targeted therapies and immunotherapies accordingly to the

patient’s condition (51). Additionally, a prognostic model (Enet),

based on disulfidptosis-related genes, aids in predicting the
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prognosis for patients with thyroid carcinoma (52). Yet, limited

research exists on the role of disulfidptosis in cancer at the single-

cell level. This study performed a comprehensive investigation into

the regulatory factors for disulfidptosis in various cell types within

the KIRC TME, exploring different disulfidptosis-mediated TME

subgroups’ functions and determining cell-cell interactions between

these subtypes. This study aimed to provide detailed insights into

how these distinct TME subgroups influenced by disulfidptosis

influence the prognosis of patients with KIRC.

Tumor tissue consists of tumor cells and various stromal cells,

together forming a complex TME that plays a crucial role in tumor

growth, invasion, and immune evasion (53). Components of tumor

stroma induce inflammatory responses and angiogenesis,

promoting tumorigenesis (54). Although immune cells, including
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FIGURE 4

Pseudotime trajectory analysis of disulfidptosis-related B cells and T cells subgroups of kidney renal clear cell carcinoma (KIRC). (A) Four main types
of T cells (CD4+ T, CD8+ T, natural killer [NK], and Treg cells). Heatmap of pseudotime trajectory analysis of disulfidptosis-related B-cell and T-cell
subgroups of KIRC, including B cells (B), CD4+ T cells (C), CD8+ T cells (D), NK cells (E), and Treg cells (F).
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FIGURE 5

Nonnegative matrix factorization (NMF) clusters of disulfidptosis regulators for B cells and T cells. (A) Cell-Cell communications from disulfidptosis-
related T cells subgroups to epithelial cells. (B) Comparison of TFs activities among the disulfidptosis-related subgroups in CD4+ T cells, CD8+ T
cells, NK cells, and Treg cells, illustrated in the heatmap based on the average area under the curve (AUC) values (Kruskal-Wallis test, p < 0.001). TFs
activity was evaluated using AUCell. (C) Heatmap showing significantly different features among disulfidptosis-related T cells subgroups of CD4+ T,
CD8+ T, NK cells, and Treg cells, including T exhaustion score, T cytotoxic score, T effector score, and T evasion score, as well as some immune co-
stimulators, co-inhibitors, and T-Function markers (Kruskal-Wallis test, p < 0.001). (D) Cell-Cell communications from disulfidptosis-related B cells
subgroups to T cells. (E) Comparison of TFs activities among disulfidptosis-related B cells subgroups, illustrated in the heatmap based on the average
AUC values (Kruskal-Wallis test, p < 0.001). TFs activity was evaluated using AUCell.
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cytotoxic T cells, traditionally exhibit antitumor effects (55), distinct

immune cell subpopulations may harbor both protumor and

antitumor characteristics, possibly influenced by altered metabolic

programs within the TME (56). The interaction between tumor cells

and the TME can positively or negatively regulate tumor growth

(57, 58). This study unraveled various disulfidptosis regulatory

patterns in the TME of KIRC, involving fibroblasts, B cells,

myeloid cells, and T cells, suggesting extensive communication
Frontiers in Immunology 12
with tumor epithelial cells. Moreover, CellChat analysis unveiled

ligand-receptor pairs mediating communication between tumor

epithelial cells and disulfidptosis-related TME subgroups, such as

TNFSF12-TNFRSF12A, TNF-TNFRSF1A, OSM-(OSMR+IL6ST),

OSM-(LIFR+IL6ST), HBEGF-EGFR, and EREG-EGFR.

Compared to normal fibroblasts, CAFs increase the production of

extracellular matrix proteins (59), promoting the secretion of factors

that support tumor growth. Additionally, CAFs impede antitumor
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FIGURE 6

Overall expression, prognosis, and immunotherapy response of disulfidptosis-related cell types. (A) Based on The Cancer Genome Atlas (TCGA)
database for normal and tumor samples to compare the gene set variation analysis (GSVA) scores of two disulfidptosis-related CD4+ T cell
subgroups. (B) Multiple immunohistochemistry shows the localization of DSTN+ CD4+ T cells and FLNA+ CD4+ T cells in tumor or normal tissues of
patients with KIRC (scale bar, 20 mm). Survival analysis of two disulfidptosis-related CD4+ T cell subgroups based on TCGA (C) and Gene Expression
Ominbus (GEO) (D) databases. (E) Bubble heatmap of univariate Cox regression analysis (survival). Immunotherapy response analysis of two
disulfidptosis-related CD4+ T cell subgroups based on TCGA (F) and GEO (G) databases. H Bubble heatmap of logistic regression analysis
(immunotherapy response).
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therapy efficacy by remodeling the extracellular matrix, establishing a

barrier hindering drug or immune cell infiltration into tumor tissues

(60). CAFs activation during cancer progression involves pathways

including recruitment and activation of resident fibroblasts,

epithelial-mesenchymal transition (EMT), endothelial-mesenchymal

transformation (EndMT), and differentiation of bone marrow-

derived mesenchymal cells (61–65). Through secretion of

chemokines and effector molecules such as c-x-c chemokine ligand

5 (CXCL5), IL-1b, matrix metalloproteinases (MMPs), and collagen,

CAFs contribute to immunosuppression and tumor angiogenesis

(66). Moreover, different CAFs subpopulations modulate gene

expression, regulate regulatory T-cell accumulation, and influence

immune and cancer-related pathways by interacting with tumor cells

(67). Despite five identified CAFs subtypes, pan-myCAF, pan-dCAF,

pan-iCAF, pan-iCAF-2, and pan-pCAF (41). Limited research exists

on the potential regulatory role of disulfidptosis mechanisms in

CAFs. Our study revealed that disulfidptosis-related fibroblasts

exhibit extensive communication with tumor epithelial cells

compared to non-disulfidptosis-mediated fibroblasts.

This study revealed a strong correlation between the expression

of ACTN4+CAF-C1 and increased levels of MMPs, particularly

MMP9 and MMP14. This suggests that CAFs potentially

contribute to the formation of the TME conducive to tumor

metastasis through the secretion of MMP9 and MMP14 (68, 69).
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Furthermore, KEGG pathway analysis highlighted the involvement of

CAFs in various pathways such as vascular smooth muscle

contraction, actin cytoskeleton regulation, and the PPAR signaling

pathway. Additionally, PDLIM1+CAF-C2 displayed heightened

expression levels of SERPINE1, CTHRC1, THBS2, SULF1, TGFB1,

FN1, and BGN. Pathway analysis also indicated the participation of

CAFs in the HIF-1 signaling pathway, focal adhesion, and ECM-

receptor interaction. CAFs may participate in the HIF-1 signaling

pathway and ECM pathways through the secretion of TGFB1, FN1,

and BGN (70–72). Tumors are known to exploit ECM remodeling to

create microenvironments conducive to tumorigenesis andmetastasis

(73). Consequently, we suggests that disulfidptosis-mediated CAFs

may potentially enhance tumor invasion and metastasis by

influencing tumor cell motility and ligand-receptor interactions.

CAFs release pro-inflammatory cytokine IL-1 and the chemokine

CXCL1 to recruit macrophages, driving their differentiation into pro-

tumorigenic macrophages (M2-like TAMs) (74). Macrophages have a

crucial role in immune regulation and controlling inflammation.

However, in the context of cancer, their functionality becomes

altered. Upon interaction with the TME, macrophages induce

immunosuppression, which hampers the effector T cell response

(75). Metabolic processes profoundly influence TAMs, regulating

cancer development and immune responses involving glucose,

glutamine, and fatty acid metabolism (76). Under glucose-deficient
A

B

FIGURE 7

Cell-cell communications from disulfidptosis-related tumor microenvironment (TME) subgroups to epithelial cells. (A) Receptor-ligand pairs from
DSTN/FLNA-related TME subgroups to epithelial cells. (B) Scratch healing assay suggesting a significant reduction in 796-O cell migration in
silencing TNFRSF1A (scale bar, 400 mm; p = 0.027). All data are expressed as mean ± standard deviation of three independent experiments.
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conditions, elevated expression of SLC7A11 leads to rapid depletion of

intracellular NADPH, causing abnormal accumulation of disulfides

such as cysteine, which triggers disulfide stress and rapid cell death.

Through NMF clustering, extensive crosstalk occurred between

disulfidoptosis-mediated macrophages and tumor cells. Notably,

disulfidoptosis-mediated macrophages, particularly the FLNA+Mac-

C1 subtype, exhibit significant activation of metabolic pathways

including sulfur metabolism, the pentose phosphate pathway,

oxidative phosphorylation, glycolysis, and gluconeogenesis.

Furthermore, the study identified interactions between

disulfidoptosis-mediated CD4+ T cells, CD8+ T cells, Treg cells, B

cells, and tumor cells were identified, each demonstrating distinct

functional characteristics. These findings collectively underscore the

significant roles of disulfidoptosis-related macrophages and T cells in

tumor biology.

Subsequently, this study investigated the TF activity within each

disulfidoptosis-related subpopulation. Understanding TFs is crucial for

deciphering gene regulatory networks, cellular development, and

tumor occurrences (77). Single-cell level analysis in KIRC revealed

distinct TF characteristics among fibroblasts, macrophages, monocytes,

B cells, and T cell subtypes. NDUFA11+CAF-C3 among CAFs

exhibited activation of several TF genes including CEBPD, JUN,

JUND, EGR3, FOS, FOSB, and JUNB. Previous studies have

highlighted the downregulation of CEBPD in RCC (78) and the

association of FOS and JUNB with renal cancer (43, 79). Similarly,

among monocytes, the RPN1+MON-C1 subtype displayed the

activation of multiple TFs such as NFKB1, REL, RCOR1, BHLHE40,

NFIL3, ATF6, XBP1, MAFG, ELF1, CREM, CHD1, FOSB, FOSL2, and

GTF2B. Hong et al. observed the activation of the transcriptional

repressor BHLHE40 in KIRC. This activation inhibits the mTOR

inhibitor DEPTOR, contributing to tumor growth and drug

resistance (80). Additionally, ATF6 amplifies apoptosis in sunitinib-

resistant KIRC cells through the endoplasmic reticulum stress pathway,

thereby influencing tumor progression (81).

In macrophages, higher activity of TFs including TGIF1, JUND,

FOSB, CEBPB, FOSL2, XBP1, ZBTB1, CREM, BCL3, NFE2L2,

NFIL3, EP300, RUNX1, and HIF-1A was observed in the FLNA-

mac-C1 subtype. BCL3 and EP300 as prognostic factors for KIRC

(82, 83), and upregulated RUNX1 is closely associated with renal

cancer progression (84). Moreover, macrophage HIF-1a has been

identified as an independent prognostic indicator for renal cancer,

being associated with highly invasive or deteriorating renal tumors

(85). This led to the hypothesis that a close association between the

FLNA-mac-C1 subtype and cancer progression. Furthermore,

diverse TF characteristics were noted for disulfidptosis-mediated

B and T cell subgroups. In summary, disulfidptosis-mediated TME

subgroups likely regulate distinct TF networks, reshaping the TME.

Lastly, cellular network analysis revealed significant connectivity

and communication between these disulfidptosis-mediated TME

subgroups and tumor cells.

The effectiveness of tumor therapy heavily relies on the

microenvironment, particularly the tumor immune microenvironment,

intricately linked to treatment prognosis (86). Immunotherapy has

recently emerged as a promising strategy for cancer treatment,

becoming a pivotal component in many cancer treatment regimens

(87). Its therapeutic mechanism involves reactivating the
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immunosuppressive environment caused by cancer cells and boosting

the immune cell-mediated anti-tumor response (88). Chen et al. studied

the tumor immune microenvironment infiltration characteristics of

disulfidptosis-related genes in breast cancer and reported that

TNFRSF14, among disulfidptosis-related genes, serves as a key

regulatory gene. Targeting TNFRSF14 alongside immune checkpoint

inhibition was observed to inhibit tumor proliferation and induce

disulfidptosis in tumor cells (89). Alterations in characteristic tumor

biomarkers are closely related to tumor occurrence and development

(90). By detecting the expression levels of key biomarkers and taking into

account the clinical characteristics of patients, it is important to predict

the prognosis of patients (91). Furthermore, emerging nano-

formulations and tumor antigen vaccines have demonstrated high

specificity and efficiency (92, 93). Guan L et al. synthesized

mesoporous organosilicon nanoparticles exhibiting robust antitumor

abilities and biosafety (94). Nevertheless, because of the complexity of

the TME, the development of more targeted drugs tailored to different

patients remains necessary.

Understanding the complex intrinsic regulatory patterns of

disulfidptosis in the TME of KIRC, a comprehensive analysis using

bulk RNA-seq and scRNA-seq data from TCGA and GEO was

conducted. This analysis aimed to investigate the relationship

between different disulfidptosis-mediated TME subgroups, prognosis,

and immunotherapy. Consequently, significant variations in patient

prognosis were observed based on different disulfidptosis factors.

Specifically, the integrated scores of DSTN+CD4T-C1 and FLNA

+CD4T-C2 subgroups were upregulated in tumor tissues and

associated with unfavorable prognosis. These findings were

corroborated by employing mIHC on tissue sections from patients

with KIRC to confirm the expression and location of these two cell

subgroups. Numerous studies indicate that CD4+ T cells, a major T

lymphocyte subpopulation, play a crucial role in tumor immunity and

exhibit diverse functions (95). Notably, CD4+ T cells effectively impede

tumor cell division by arresting their cell cycle at the G1/S phase,

inhibiting tumor growth (96). Furthermore, an independent study

noted that CD4+ T cells isolated from bladder tumors exhibited

substantial cytotoxicity when cultured in vitro, inducing apoptosis in

tumor cells (97). Our investigation revealed that that DSTN+CD4T

and FLNA+CD4T cells interact with tumor cells through the TNF-

TNFRSF1A signaling pair, thereby facilitating tumor migration. The

TME might influence CD4+ T cells to produce cytokines with pro-

tumorigenic functions, promoting tumor survival (98). Additionally,

because of their plasticity, CD4+ T cells can convert into Treg cells

secreting IL-10 and TGF-b, suppressing immune responses and aiding

in tumor immune escape (99). These findings align with our

conclusions and support the development of therapeutic strategies

targeting these CD4+ T cell subsets associated with tumors.

However, it is important to note that this study was analyzed

based on scRNA-seq data from public databases, and a self-test

cohort of clinical samples is still needed to provide more realistic and

accurate results. Besides, this study’s scope is confined to in vitro

cellular experiments, susceptible to various confounding factors and

biases. Further studies using flow cytometric analysis and sorting

experiments and in vivo animal models are required to

comprehensively investigate the interaction between these two

cellular subpopulations and tumor cells through the TNF-
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TNFRSF1A signaling pair, as well as the potential influence of other

cell-cell communications on tumor cells. The TNF-TNFRSF1A

signaling pair strongly correlates with responses to and resistance

against anti-PD-1 treatment (100). The results of the present study

indicate significant differences in immune responses to immune

checkpoint blockade therapy among patients from different

subgroups, underscoring the crucial role of disulfidptosis in

patients with KIRC and warranting further investigation. Therefore,

this study emphasizes the importance of exploring disulfidptosis

concerning prognosis and immunotherapy in patients with KIRC.
Conclusion

For the first time, this study utilized the scRNA-seq analysis

method to identify disulfidptosis-mediated TME subgroups.

Additionally, combining bulk RNA-seq enabled us to elucidate

the role of disulfidptosis-mediated cell-cell communication in

regulating tumor growth and anti-tumor immune modulation.
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