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Pancreatic Ductal Adenocarcinoma (PDAC) is projected to become the 2nd leading

cause of cancer-related deaths in the United States. Limitations in early detection

and treatment barriers contribute to the lack of substantial success in the treatment

of this challenging-to-treat malignancy. Desmoplasia is the hallmark of PDAC

microenvironment that creates a physical and immunologic barrier. Stromal

support cells and immunomodulatory cells face aberrant signaling by pancreatic

cancer cells that shifts the complex balance of proper repair mechanisms into a state

of dysregulation. The product of this dysregulation is the desmoplastic environment

that encases the malignant cells leading to a dense, hypoxic environment that

promotes further tumorigenesis, provides innate systemic resistance, and

suppresses anti-tumor immune invasion. This desmoplastic environment

combined with the immunoregulatory events that allow it to persist serve as the

primary focus of this review. The physical barrier and immune counterbalance in the

tumor microenvironment (TME) make PDAC an immunologically cold tumor. To

convert PDAC into an immunologically hot tumor, tumor microenvironment could

be considered alongside the tumor cells. We discuss the complex network of

microenvironment molecular and cellular composition and explore how they can

be targeted to overcome immuno-therapeutic challenges.
KEYWORDS

pancreatic adenocarcinoma, tumor microenvironment, PDAC TME, tumor immune
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Introduction

Pancreatic Ductal Adenocarcinoma (PDAC) is currently the 4th

leading cause of cancer-related deaths in the United States (1). It is

projected that by 2030 it will become the 2nd leading cause of

cancer-related deaths (2). Although advancements are made in the

treatment of resectable disease, this population makes up only 15-

20% of new pancreatic cancer cases as most patients do not present

until late into the disease course, at which point it is not resectable.

Due to the nature of this disease, systemic treatment is an essential

component of the multimodality treatment of pancreatic cancer (3).

Unfortunately, primary and secondary resistance are very common

in PDAC and there is an urgent need for developing therapeutic

modalities with adequate oncologic benefit and durability.

Immunotherapy has recently revolutionized the treatment of

various cancers but repeat trials have shown PDAC is relatively

unresponsive to such therapies.

There is a growing interest in focusing on the tumor

microenvironment (TME) and its role in resistance to systemic

therapies and as a target for more effective therapeutic modalities.

Pancreatic adenocarcinoma, along with other solid tumors, is what is

best described as an “immunologically cold” tumor. PDAC lacks

excessive mutations that would allow the body’s immune system to

recognize the tumor cells due to tumor specific antigens (4). Due to

the limited immunogenicity of PDAC, this leads to insufficient cancer

antigen presentation, resulting in a notably weak or even absent

immune response and inadequate T-cell trafficking (5). Additionally,

PDAC reprograms surrounding tissue and immune cells to create a

dense, fibroblastic environment with limited anti-tumor immunity.

Previous studies have evaluated the function and composition of the

tumor microenvironment (TME) to better understand contributing

factors to the therapeutic challenge of PDAC and to answer the

question of why PDAC has poor immunogenicity. The PDAC TME

includes a mixture of cancerous pancreatic cells, support cells,

immune cells, and dense extracellular matrix. Even within this

complex microenvironment, we see variability between one tumor’s

molecular and genetic profile vs. another that results in differing

clinical outcomes (6, 7). This heterogeneous system works in

conjunction to provide an environment that remains relatively

impermeable to treatment, adaptive to therapies, and supportive of

cancerous spread.
Pancreatic cancer cells

Pancreatic cancer cells (PCC) arise from either ductal pancreas

cells or acinar pancreas cells. Acinar cells perform the role of

digestive enzyme production and ductal cells secrete bicarbonate

ions and water needed to alkalize and activate the enzymatic

secretions of the pancreas. Some debate remains as to the exact

cell-of-origin but recent literature indicates the origin may vary

based on the number and type of initial mutations seen with the

tumor environment (8). The significance of the contextual

difference in the cell-of-origin may eventually point us towards a

better understanding of the biological function of these tumors and

patient outcomes as seen with similar solid tumor cancers (9).
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Formation of pancreatic cancer cells is believed to involve

processes related to chronic inflammation, hypoxia, and the

accumulation of repetitive mutations. These factors collectively

contribute to the development of pancreatic intraepithelial

neoplasia (PanIN). In the process of inflammation, an initial,

acute inflammatory reaction drives the migration of neutrophils,

natural killer cells, dendritic cells, and macrophages to the site of

insult (10). The innate immune system in attempting to resolve the

initial acute insult promotes a cascade of signaling that recruits the

adaptive immune response along with stimulation of endogenous

repair mechanisms to reestablish the structure and function of the

surrounding tissue. When the acute inflammatory response begins

to maladaptively produce a chronic inflammatory response, the

combination of reactive oxygen species, continued tissue injury, and

immunosuppressive functions of the chronic inflammation leads to

an environment prone to oncogenic mutations (10).

Over time these pathologic insults will alter the genetic

signature of the surround tissue and this neoplastic tissue

accumulates a significant number of mutations that transforms

lesions from a precancerous stage into cells more consistent with

PDAC. Kirsten Rat Sarcoma (KRAS) presents as a consistent

oncogenic mutation with inactivation of the GTPase activity of

the KRAS protein complex leading to consistent activation and

downstream signaling of key proliferative pathways like mTOR,

NF-kB, and ERK (11). Further evidence supports that KRAS

mutations are a key instigator in upregulation of glycolytic

metabolic reprogramming and Sonic Hedge Hog (SHH) mediated

activation of pancreatic stellate cells (12, 13).

Oncogenic KRAS mutation alone does not guarantee neoplastic

formation, as cell populations positive for KRAS were observed to be

non-proliferative within normal pancreatic tissue. These cells were

instead signaled to cease proliferation through a mechanism known

as oncogene-induced senescence. The physiologic role of this

senescence is innately to protect against oncogenesis within these

cells. This senescent state may be bypassed by proinflammatory

mechanisms, stemming from pathologic events such as pancreatitis,

that reactivate the proliferation of pre-neoplastic cells, enabling

further mutagenesis (14). Senescent cell populations cease

proliferation but remain as active components of the tissue

microenvironment. Many of these senescent cells fall under what is

termed senescence-associated secretory phenotype (SASP) and

release a variety of pro-inflammatory molecules including growth

factors, interleukins, cytokines, and proteases(15, 16). The intent of

these signaling molecules is designed to awaken the immune system

to eliminate said senescent cells; however, senescent cells release facts

that act autonomously to accelerate cell proliferation and epithelial to

mesenchymal transition (EMT). Additional mechanisms of cellular

damage, including chemotherapeutics and radiotherapy, have been

shown to induce a tumor-supportive senescence-like secretory

phenotype in the TMEs, demonstrating therapy-resistant

malignancies as these populations do not undergo apoptosis (17).

A relatively new role within the neoplastic environment, senescent

cells prior to oncogenesis and throughout a malignancy has been

identified as a significant component of the TME (18).

Additional mutations, such as deactivating mutations in p53

lead to uninhibited collection of DNA damage and SMAD4
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1287459
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hartupee et al. 10.3389/fimmu.2024.1287459
inactivation, leading to unregulated TGF-b signaling. Upregulation

of TGF-b, a molecule present throughout the PDAC TME initially

contributes to tumor suppression through apoptosis and cell-cycle

arrest (19). Although the inactivation of SMAD4 and progression of

PanIN leads to TGF-b functioning as a tumorigenic marker that

promotes progression and EMT. These mutations function as the

beginning of a neoplastic group of genes necessary but not always

present within PDAC genetics. Additional precursor mutations of

Her-2, p16, and BRCA2 have been detected within the PanINs as

grading successively increases (20). Proto-oncogenic and oncogenic

mutations combined with a reduction in response by the immune

system to properly suppress precancerous cells leads to an

environment of where normal regulatory mechanisms are

compromised (21). Such precancerous cells inevitably alter the

surrounding environment to isolate and support their growth

concomitant with immune suppression to minimize interference.

Part of this transition is directed by the signaling pathways

evidenced in PCC mutations and signaling.

Noted to release a variety of chemokines and cytokines, PCCs

play an essential role in the recruitment of support cells and

manipulation of immune cells. PCCs directly signal pancreatic

stellate cells (PSCs) for activation by means of key molecules such

as transforming growth factor-beta (TGFb1), platelet-derived

growth factor (PDGF), and fibroblast growth factor-2 (FGF-2)

leading to increased fibrogenesis by the PSCs (22). PCCs are

shown to produce excess chemokines that are heavily involved in

the activation of Cancer-associated fibroblasts, including CXCL1,

-5, and -8 binding to fibroblasts’ CXCR2 receptors, leading to

increased fibroblast activation and reprogramming (23). IL-1b, a
traditionally pro-inflammatory cytokine, is shown to be released by

PCCs in vivo early within tumorigenesis and is linked to

recruitment and activation of both PSCs and immune suppressive

cell types (24). The chemokines CSF-1 (also known as M-CSF),

CSF-2 (also known as GM-CSF), and CSF-3 (also known as G-CSF)

are also shown to be expressed by PCCs, leading to decreased

concentrations of anti-tumor dendritic cells and increased

concentrations of immune suppressive cells within the TME (25,

26). In large part, oncogenic mutations play a key role in

upregulating the expression of proteins that allow PCCs to tailor

the environment to reduce anti-tumor cell populations. Pre-

cancerous cells that fail to express these proteins are potentially

reduced by proper immune responses prior to becoming PanINs,

hence, we see consistently high levels of KRAS and p53mutations in

PCC genetics.

Further, PCCs suppress immune components in PDAC TME

via the release of signaling exosomes. PCCs release exosomes

containing miRNA155 and miRNA1290, into cancer-associated

fibroblasts(CAFs), leading to elevated fibrogenesis and resulting

into highly fibrotic TME (27, 28). The fibrotic milieu generate a

tissue mechanical landscape that promotes adaptation of PDAC

cancer cells, contributing to robust tumorigenesis.

Low O2 saturation in the PDAC TME results in overexpression

of hypoxia-inducible factors (HIFs). These proteins act as

homeostatic transcription factors in a cascading response to

counteract and adapt to the negative environmental stimuli the

cells are in, producing VEGF, altering metabolic pathways to
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prioritize glycolysis, and upregulation of chemoresistant proteins

like MDR1 and HGF (29, 30). Additionally, HIF1a/2a induces

miRNA301a which leads to M2 macrophage polarization resulting

in pro-tumorigenic downstream processes (31). NADPH Oxidase

(NOX), a transmembrane protein with roles in multiple signaling

pathways, is shown to be overexpressed in cancer cells and

associated with poor clinical outcomes due to its role in ROS

production and utilization in low oxygen environments (32). The

cancer cells readily adapt to the hypoxic environment they create,

and the additional metabolic changes further promote EMT

and metastasis.

EMT, a key feature of malignant progression, is the loss of

epithelial features and dedifferentiation to a mesenchymal

phenotype. The mesenchymal phenotype is consistent with

embryonic stem cells and supports migration and rapid

proliferation. Down-regulation of the cell-to-cell adhesion marker,

e-cadherin, along with upregulation of n-cadherin and vimentin

denote EMT progression (33). Key transcription factors

traditionally upregulated in PDAC mesenchymal cells includes

SNAIL, SLUG, TWIST1, Zeb1, and 2 (34). Many of such

transcription factors being linked to increased mobility and

commonly observed in circulating tumor cells. Throughout the

formation of the TME and malignant progression of the disease a

series of complex interactions occur between the surrounding TME

and PCCs much of which is discussed within this review. By

understanding these cellular changes, we gain insights into how

pancreatic cancer progresses. This knowledge and the current

progress of research will continue to guide the development of

strategies to halt or slow down the disease.
Pancreatic stellate cells

Pancreatic stellate cells function as a key component within all

aspects of the pancreatic tumor microenvironment. Discovered in

1998 within rat pancreas, these cells work to maintain the proper

tissue environment within the pancreas through insults and injury

(35). Quiescent PSCs are characterized by high vitamin A, desmin,

vimentin, and GFAP levels with little migration or proliferation

(36). These cells maintain the extracellular matrix through protein

production and basement membrane stabilization, and in times of

physiologic stressors, may play a role in autoimmune regulation

(37–39) Known triggers of PSCs include ethanol, high glucose,

inflammation, reactive oxygen species, and the inflammatory

markers produced in local pathologies (40). Transforming

Growth Factor-Beta (TGF-b1), CTGF, PDGF, IL-1, TNF-A, AP-1,
activin-a, and HIF-1 have been established as direct markers of

activation, while PPAR-g, IL-10, SMAD7, and retinoic acid are

markers of inhibition (40). PDAC is characterized by increased

disproportionate expression of many activating markers through

chronic inflammation and hypoxia resulting in the chronic and

malignant activation of PSCs.

These activated PSCs function as the architects of extracellular

matrix deposition and pancreatic tissue remodeling that is closer in

nature to what is seen in pancreatic cancer. Activated PSCs are the

primary contributor to the dense, fibrotic environment that
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supports the growth of pancreatic cancer cells. Transforming into a

myofibroblast-like characteristic, PSCs produce and release a

variety of ECM remodeling proteins including collagens,

periostin, fibronectin, Matrix Metalloproteinases (MMPs) and a

decreased release of Tissue Inhibitors of Metalloproteinases

(TIMPS) (41). In healthy pancreas stroma, moderate production

of these ECM proteins is balanced with appropriate breakdown and

recycling of ECM tissue to allow moderation and turnover. The

ratio of proteins deposited by PSCs becomes a determining factor in

PDAC phenotypes translating to increased tumor progression (42).

The disproportionate deposition of these fibrotic proteins in the

PDAC TME promotes hydraulic compression 2-3x the normal

pressure of the surrounding environment with a poorly perfused

vascular supply (43, 44). The increased pressure and decreased

vascular flow also lends itself to an environment less susceptible to

local delivery of chemotherapeutic agents and antibody penetration

(45, 46). The isolated environment developed by dysregulated

protein deposition results in an unnatural encasement that

isolates and protects the TME known as the desmoplastic reaction.

The role of PSCs in immune response modulation within the

context of PDAC is notable alongside the fibrotic environment they

create. PSCs exhibit a complicated influence on the immune

landscape of the tumor microenvironment. Releasing Interleukin-

6 (IL-6), which orchestrates the activation and migration of

Myeloid-Derived Suppressor Cells (MDSCs) into the TME with

additional consequent immunosuppression discussed further in the

text (47). Additionally, activated PSCs contribute to immune

regulation by releasing CXCL12, a factor responsible for

sequestering CD8 T-cells, thereby hampering their inherent

antitumor activity. Another aspect of PSC-mediated immune

modulation involves the production of Galectin-1, a protein

associated with diverse effects, including the induction of CD3+

T-cell apoptosis, release of TH2 cytokines, and evasion of immune

cell responses (48, 49). Further research has underscored PSCs’

involvement in extracellular vesicle signaling, revealing the

upregulation of CXCL10 in PSCs during co-culture with

pancreatic cancer cells (PCCs), which suggests a crosstalk

mechanism contributing to the recruitment of FoxP3+ Tregs (50).

PSCs have a potentially significant influence over the initiation and

maintenance of immune responses in PDAC.

The immunosuppressed shelter of the desmoplastic

environment works in tandem with the role of PSCs in signaling

support of PCCs. A combination of signaling molecules have been

linked to increased growth of PDAC tumors along with further

metastasis and chemoresistance that allows the PDAC TME to

continue unchecked. A range of growth factors released by PSCs

include TGF-b, Platelet-Derived Growth Factor (PDGF), and

Vascular Endothelial Growth Factor (VEGF) (51). Along with

growth factors, signaling pathways including WNT/B-Catenin are

upregulated in PDAC cancer cells by PSC-bound glutamine

synthetase when co-cultured (H. 52). Similarly, PDAC-triggered

autophagy by GPT1 in PSCs provides an alanine fuel source to

support metabolic pathways in PCCs, allowing growth and support

for further spread (53).

Additionally, PSCs exert their impact on PCCs’ therapeutic

responses, where the production of Hes1 by PSCs emerges as a
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determinant of chemoresistance via overactivation of the NOTCH

signaling pathway, as elucidated by recent findings (54).

Furthermore, the extracellular matrix (ECM) protein Periostin

emerges as a key regulator, intricately linked to PDAC

progression. Periostin, an ECM protein functioning in tissue

remodeling, is found to be linked to increased proliferation and

metastasis in PDAC, and when suppressed in spheroid models

exhibited increased PDAC toxicity by Natural Killer Cells (55).

Metastasis and further tumor progression are also benefited from

PSCs due to other factors below.

PSCs play a key role in further carcinogenesis and evolution of

PDAC. PSC-derived fibrosis and signaling pathways overexpressed

by PSCs influence the EMT process as seen by previous research.

Secretion of IL-6 and utilization of the STAT3/NRF2 pathway

influences the PDAC EMT (56). Similar effects are seen with

CD10+ PSCs explicit MMP3 release as a method of surrounding

tissue breakdown to provide local tissue invasion (57). Kindlin-2

expression is also linked to PDAC progression through

downregulating HOXB9 and E-cadherin, leading to increased

metastasis (58). MiRNA-21 exosomal release by PSCs linked to

enhancing Ras/ERK pathways and PDAC cancer cel l

migration (59).

Focused therapies targeting the role of PSCs in the PDAC TME

are gaining traction as the library of evidence indicating their pro-

tumorigenic role grows. Targeted inhibition of the pathways and

molecules discussed previously have been referenced in the current

literature, with some results more promising than others. Some

limitations include the expandability from in vitro/in vivomodels to

clinical trials, which has shown limited success. One such article

notes the promise of early intervention in the PanIN pathway with

targeted inhibition may function as a curative approach; however,

given the clinical presentation of late-stage disease makes such an

approach currently infeasible.

Studies have shed light in therapeutic potential in repolarization

of activated PSCs into a quiescent state. Vitamin A analogs have

resulted in inactivation of PSCs in chronic pancreatitis that may

protect the pancreatic tissue microenvironment (60). Calcipotriol, a

vitamin D analog, has also been shown to reduce TGF-b and

SMAD4 signaling with increased Meflin expression, assisted in

stromal reprogramming with increased gemcitabine efficacy (61,

62). Similarly, BET inhibitors (JQ1/I-BET151) has been shown to

induce PSC quiescence and reduce production of collagen 1 and

PDAC fibrosis (63). The key to treatment may be in attenuation of

overall PSC function rather than complete removal or targeted

inhibition. Exploring which aspects of the ECM that PSCs produce

and limiting the effects of over-expressed pathways may present a

solution, but accessing and selectively targeting these pathways in

clinical models remains a challenge.
Cancer-associated fibroblasts

In conjunction with PSCs, Cancer-Associated Fibroblasts

(CAFs) are recognized as a primary contributor to the PDAC

TME through generation of many of the extracellular matrix

proteins seen. PSC differentiation into CAFs represents a portion
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of the suspected cells, approximately 15%, of origin involved in

PDAC, with other proposed cells including endothelial cells,

mesothelial cells, macrophages, stem cells, and a growing list of

other cells (64–67). The significance of this literature suggests that

malignant reprogramming through PCC signaling induces

fibroblast-like phenotypes out of various cell lines depending on

the location and context of PDAC.

Common markers for identifying CAFs include Collagen 1

Type A1 (COL1A1), Fibroblast activation Protein (FAP),

Podoplanin (PDPN), and Decorin (DCN) (68, 69). Current

literature categorizes CAFs into three main subsets, each with

distinct markers and functions. A subset of CAFs that potentially

presents a direct link to PSCs is Myofibroblastic CAFs (myCAFs),

stimulated by TGF-b signaling, which cluster around PDAC cancer

cells and are characterized by their expression of alpha-smooth

muscle actin (a-SMA) and TGF-b signaling. These myCAFs are

believed to contribute significantly to the dense extracellular matrix

(ECM) observed in the TME. Inflammatory CAFs (iCAFs), on the

other hand, are influenced by IL-1 signaling and are located at the

periphery of the TME. These iCAFs exhibit signaling involving IL-6,

IL-8, and CXCL1/2/9/12 and are thought to play a role in

immunosuppression and tumorigenesis (70, 71). The component

balance between the ratio of myCAFs and iCAFs has also been

shown to indicate tumorigenesis. Increased TGF-b and SHH

signaling increases the myCAF to iCAF ratio predicts slower

tumor growth, while a higher iCAF to myCAF ratio leads to the

opposite (72, 73).

Adding to this complexity, a subset known as complement-

secreting CAFs (csCAFs), unique to the PDAC TME, exists in close

proximity to PCCs. Expressing complement proteins C3, C7, CFB,

CFD, CFH, and CFI, these csCAFs are thought to regulate

complement activity and contribute to inflammation, but notably,

these cells are in their highest concentration in early-stage PDAC

with declining levels throughout its progression (74). A smaller

subset of CAFs, known as antigen-presenting CAFs (apCAFs),

express MHC II genes and induce CD4 T-cell activation,

characterized by CD25 and CD69 expression, setting them apart

from traditional antigen-presenting cells they lack CD80/CD86

(75). These apCAFs are believed to play a tumorigenic role in the

production of regulatory T-cells (68). One other niche subset of

CAFs includes metabolic CAFs (meCAFs). Phenotypically distinct

from other CAFs, meCAFs present as a poor prognostic factor with

a paradoxical increased responsiveness to immunotherapy (76).

PLA2G2A is associated with higher CD8+ T-cells silencing but

looser “hot” TME, PLA2G2A may function as a potential

immunotherapeutic target in this regard (77).

CAF functions extend to impacting tumor metastasis within the

PDAC TME through cell-cell interactions. Heparin Sulfate

Proteoglycan 2 (HSPG2) exhibits increased expression in the

context of paracrine signaling between p53+ PCCs and CAFs

(78). HSPG2, or perlecan, is a complex proteoglycan present in

the ECM. It displays the ability to separate cell layers and, when

broken down, can additionally engage in growth factor signaling(79,

80). CAFs’ role in remodeling the ECM and facilitating tumor cell

migration is evidenced by the upregulation of focal adhesion kinase

(FAK) in these cells. FAK’s elevated presence aids in the active
Frontiers in Immunology 05
reconstructing of the ECM and promotes the tumor cell migration

of differentiated cancer phenotypes (81).

The role of CAFs extends to cancer stem cell (CSC) support and

chemoresistance, with specific subsets contributing to these

processes. Notably, CD10+GPR77+ and CD44+ CAFs, when co-

cultured with cancer stem cells and PDAC cancer cells, exhibit

increased tumorigenesis, chemoresistance, and disease recurrence

(82, 83). Demonstrating the cooperative role of CAFs with PDAC

cancer cells in tumor progression and chemotherapeutic resistance,

the TME must be considered from the perspective of the malignant

redefining the role of benign pathways.

Appropriate therapeutic approaches demand evaluation of the

cause-effect role that upstream pathways like myCAF knockouts

and SHH pathways have on PDAC outcomes. SHH inhibition,

leading to increased ratio of iCAFs to myCAFs, led to shorter

overall survival in patient treatment (84). This may indicate the

undue reliance on SHH signaling by fibrotic CAF phenotypes with a

resulting increase in iCAFs that promotes tumorigenesis. Inhibition

of iCAF activation through targeted measures via CXCL12 and

CXCR4 inhibition increases the immune response in PDAC (85,

86). Unspecified targeting of these activated support cells will lead

to unforeseen consequences for the patient if additional

consideration for the effect these individual subsets have on the

impact of PDAC outcomes. The variability in function and origin

within this cell type implicates the role of signaling molecules and

crosstalk with PCCs as major players in activation. Next steps

should continue investigating the balancing mechanism of these

effector proteins to determine the optimal strategy for successful

clinical applications.
Stroma

The pancreatic tumor is primarily composed of a desmoplastic,

scar-like capsule that is a result of extracellular matrix (ECM)

production and turnover by both PCCs and resident stromal cells.

Included in this environment is a variety of proteins secreted by

supporting cells with malignant reprogramming. Although once an

appropriate response to inflammatory signaling and tissue injury,

TME remodeling becomes an imbalance of indefinite fibrosis,

alterations in ECM protein, and immune suppression. Such

remodeling involves changes in protein deposition, post-

translational modifications of the protein deposited, and

breakdown of tissues surrounding the TME (87). Components of

the desmoplastic environment that play a role in the malignancy of

PDAC include the various proteins, the hypoxic environment, and

the high pressure that innately resists outside intervention.

The capability of cancer cells and the tumor microenvironment

to expand into the surrounding tissue and begin its malignant

expansion has largely pointed back to the function of angiogenesis

(88). Previous literature established the role of angiogenesis in solid

tumor models as bridging the gap between hyperplastic tissue and

neoplastic tissue as an indicator of reprogramming non-malignant

cell populations for cancer survival. Different models of

angiogenesis vary between recruitment of endothelial cells for

neovascularization, cel lular reprogramming to uti l ize
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undifferentiated cancer cells to mimic vessel function, and

malignant spread that preserves the non-malignant tissue known

as vascular co-option (89). PDAC differentiates itself from other

solid tumor malignancies due to its characteristic nature of overall

decreased vascularity. Desmoplasia with the abundance of

fibroblast/CAFs and the dense ECM produced by PSCs lead to

compression of microvasculature in the microenvironment and

overall hypovascularity of the TME. Pancreatic cancer cells and

pancreatic stellate cells produce hallmark transcription factors

known to be involved in angiogenesis: namely NFkB, Sp, STAT3,
and HIF-1a (90). This increased angiogenic signaling stops short of

complete vascular perfusion as prior studies investigating blood

flow through pancreatic tumors have shown significantly less

perfusion through the TME vs surrounding pancreatic tissue with

overall increased metabolism (91). Recent literature has suggested

microvilli branching off of microvessels may be a unique supply

within the peripheral of the PDAC TME for metabolic fuel unlike

less dense tumor microenvironments (92).

Systematic review of clinical trials investigating anti-VEGF

treatments found no clinically meaningful benefit in targeting

angiogenic factors that have seen previous success in other solid

tumor malignancies (93). Alternatively, preclinical models

investigating “normalization” or reestablishing vascular supply to

the hypoxic PDAC TME have shown increased efficacy in

traditional chemotherapeutic agents as a means of increasing

delivery and decreasing the hypoxic environment, a known

mechanism of chemoresistance and tumorigenesis (94). Given the

physiologic nature of the PDAC’s vascular supply, further

investigation that looks at disrupting the fibrotic stroma with

concurrent immunologic therapies may prove to have greatest

therapeutic benefit moving forward.

The ECM is not strictly tumor promoting as previous studies

that indiscriminately target myofibroblast cells led to increased

metastasis (95, 96). Therefore, a combination of proteoglycans,

collagen fiber, and other support structures that make up the ECM

play a dual role of inhibiting and promoting depending on the

individual molecule. Further investigation into the ECM with

proteomic data reveals that the PDAC TME comprises upwards

of 300 proteins with a mixture of collagens, glycoproteins,

proteoglycans, ECM regulators, ECM-affiliated, and secreted

factors (97). Within this composition lies the variability between

normal pancreatic tissue and PDAC in the relative expression of

ECM proteins. From early-stage PanIN to later stages of PDAC,

there is a relative shift in the exact proteins expressed within the

ECM (97). Distinct proteins and their prognostic associations

within the ECM are continually studied to understand the role of

ECM signaling and physical mechanisms in the PDAC TME.
Decorin

Decorin expression, a small leucine-rich proteoglycan (SLRP),

is generally linked with good overall outcomes with its detection in

the extracellular matrix. Expressed by PSCs and to some extent

PCCs, Decorin is shown to be downregulated in relative

concentration compared to other ECM proteins secondary to
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TGF-b1 signaling by PCCs (98). Decorin possesses the role of a

tyrosine kinase inhibitor for various extracellular signals that

modulate the overgrowth of surrounding tissue (99). Examples of

such modulation include anti-angiogenic, anti-metastatic, pro-

inflammatory, and anti-proliferative properties (100–103). As

such, decorin has become a predictive marker of clinical

outcomes as lower intra-tumoral concentrations are correlated

with poorer patient survival (104). Although previous literature

indicated that decorin expression may be elevated in PDAC, it was

further shown the isoform with anti-tumor properties was not

present in large quantities within the desmoplastic environment.
Lumican

Lumican, an SLRP present in the ECM, has been associated with

prolonged survival in post-surgical patients, primarily attributed to

its poorly understood anti-tumorigenic effects (105). Similar to

Decorin, Lumican, although produced in excess due to the

increased ECM production, is decreased by TGFb1 signaling by

PCCs (98). Evidence suggests that it inhibits the signaling of EGFR

through extracellular binding with resultant downregulation of

EGFR/ERK pathway to reduce PDAC cell proliferation and

increase apoptosis (106). Notably, Li et al. observed that when

Lumican was completely knocked down in in vivo models, it led to

enhanced proliferation (106). Interestingly, overexpression or

exogenous administration of excess Lumican did not significantly

affect proliferation (107). Furthermore, Lumican has been found to

exhibit suppressive and promotional roles in various other tumor

types, making it a subject of ongoing investigation to pinpoint its

precise function in PDAC (99).
Hyaluronan

In typical tissue environments, glycosaminoglycans (GAGs)

constitute a large portion of the ECM. GAGs routinely bind large

volumes of water molecules to structure the ECM and allow

diffusion of materials. Hyaluronan, a common GAG molecule

that composes a sizable portion of a stable ECM, is overexpressed

in the TME to the point that the GAG to water ratio becomes

oversaturated and the fluid-like environment becomes a higher

pressure, gel-like environment (43). This increased hydrostatic

pressure promotes a surrounding area of minimal poor vascular

growth and present vascular collapse leading to additional hypoxia.

HAS1 and HAS2, the genes that produce Hyaluronan, are highly

expressed in iCAF cells as determined through single-cell RNA

sequencing (68). Interestingly, a primary driver of the NF-kB
pathway, IRAK4, is shown to directly promote the expression of

HAS2 in both PCCs and CAFs exposed to PDAC conditioned

media (108). On top of increased hyaluronan production, HAS2

upregulation dramatically reduced CD8 T-cell presence within the

PDAC TME, this helps illustrate the role immunosuppressive role

of hyaluronan. Previous interventions analyzing direct targeting of

Hyaluronan in the TME led to significant improvements in overall

survival in mouse trials as it increased perfusion and decreased
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interstitial fluid pressure allowing penetration of gemcitabine (5).

Although short-term destruction of hyaluronan leads to temporary

therapeutic improvements in the fibrotic TME; without continual

treatment, production from PCCs and CAFs result in resurgence of

hyaluronan and interstitial fluid pressure to before-treatment values

(109). Administrative strategies and therapeutic timing may need to

be reconsidered as Phase III clinical trials as late as 2020 examining

the use of PEGPH20, a long-acting hyaluronidase enzyme, in

conjunction with Nab-Paclitaxel plus Gemcitabine found no

significant increase in overall survival (110). Possible limitations

within this trial and our understanding of targeting such proteins

may be the metastatic course of the disease, as the greatest impact

from such therapies may be seen earlier in the disease process.
Matrix metalloproteases

Although previously addressed as playing a more significant

role within the PDAC TME, Matrix Metalloproteases (MMPs) have

seen less investigation and research in recent years. The function of

the MMP family is overarchingly to act as a protease within the

extracellular environment to degrade varying ECM materials with

further subclassification based on the targeted proteins. The major

subsets based on targeted substrate include collagenases, gelatinases,

stromelysins, matrilysins, membrane-type MMPs, and other MMPs

(111). Although the purpose is to break down protein, MMPs

additionally function in tissue remodeling, cellular differentiation,

and proliferation (112). Among the MMPs, 2, 7, and 14 have

routine support within the literature as pro-tumorigenic effects on

the PDAC TME with some additional debate of MMP-9. MMP-2

and MMP-9 are within the gelatinase category, with MMP-2 known

to be activated by TNF-a and TNF-b with expression from

endothelial cells. MMP-9, although elevated in PDAC progression

and believed to activate TGF-b signaling, has historically been the

target of anti-invasive therapies (113) Clinical trials that targeted

MMP-9 noticed counterintuitive responses with poorer overall

survival. A phase III clinical trial in 2003 comparing a broad

MMP inhibitor, BAY 12-9566, saw a lower median overall

survival compared to gemcitabine in 277 patients (114).

Additional pre-clinical research investigating systemic knockout

models of MMP-9 witnessed secondary effects of poorer immune

response leading to increased overall tumor invasiveness.

Consequently, selective inhibition within the PDAC TME may

remain beneficial, but systemic administration of a non-targeted

inhibitor has proven to be deleterious. Evolving therapeutic

modalities discussed later may provide the opportunity for such

selective delivery that allows targeting proteins with vital normal

tissue functions similar to MMP-9.

MMP-14, also known as MT1-MMP, is a Membrane-type

Metalloproteinase expressed on fibroblasts and cancer cells. A

major effect established by MMPs within the TME is their use in

tumor invasion through the breakdown of surrounding tissue,

particularly the role of MMP-14 and its membrane expression

directly linked to invadopodia function and metastasis (115).

Additionally MMP-14 is shown to activate TGFb-1 by means of

direct activation and enzymatically releasing TGF-binding protein-
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1 in the ECM (116, 117). The direct impact of increased TGF-b
being increased collage production and PCC metastatic potential

within the PDAC TME (118, 119). Expression of intracellular

Metalloproteinase CT Binding Protein-1 protein and extracellular

Tissue Inhibitor of Metalloproteinase-2 have demonstrated a

reduction in invadopodia formation (115, 120). These proteins

offer potential therapeutic targets in delivery mechanisms that

allow local expression and inhibition rather than the general

administration of exogenous proteins that lack specificity.

Previous clinical therapies investigating inhibition of MMPs

resulted in no significant benefit; similarly, due to difficulties in

targeting particular MMPs and the potential need for early PDAC

stage application as a potential time of efficacy for such therapies.
Other ECM proteins

Additional ECM proteins with an established role within the

PDAC TME but still require further investigation include

the following discussed. Asporin, another SLRP present within the

ECM, is released by both PSCs and pancreatic cancer cells. It is known

to activate signaling through the CD44/NFkB pathway, promoting

EMT and metastasis in pancreatic cancer (121). An additional SLRP of

interest, Keratocan, is overexpressed in the PDAC TME and has been

linked to a poorer prognosis and concurrent downregulation of p53

(107). The presence of Meflin, produced by cancer-associated

fibroblasts, has been associated with additional regulation of PDAC

tumorigenesis, yet further exploration is needed to fully understand its

impact and potential use in therapeutic intervention. (62). These ECM

proteins, although possessing established roles, require deeper

investigation to understand their implications with the landscape of

PDAC progression.
Myeloid-derived suppressor cells

Further consideration of the role inflammation plays in PDAC

oncogenesis points to the existence of MDSCs as a major player

within the TME. Lacking in in vivo data for the initial transition of

pancreatic tissue to PDAC, it is understood that an early, increased

presence of MDSCs is indicative of oncogenesis (122). In the event

of an injury to the pancreas, signaling molecules such as CSF-1 and

CSF-2 will induce differentiation of hematopoietic stem cells into

immature myeloid cells (IMC) and migrate to the site of injury. This

recruitment’s initial intention is to provide precursor innate

immune cells for additional support in the inflammatory process.

The chronic inflammatory environment that functions as a

precursor to the PDAC TME, serves to upregulate the generation

and migration of MDSCs to the tumor environment as part of the

inherent purpose of MDSCs to suppress inflammation. Such

environmental signaling includes IL-6/IL-4, CSF-2, COX2,

S100A8/9, IL-1b, and IFN-g. A combination of both IL-6 and

CSF-2 not only recruit MDSCs but induce miRNA generation to

prevent them from further differentiation (123). Early evidence of

primary tumor removal resulted in decreased circulating levels

of IMCs as our early understanding investigated the role of
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recruitment of these anti-inflammatory immune cells (124).

Although promising, transcriptomic analyses of lung cancer

populations have exposed the limitations in evaluating blood

samples as correlates of TME cell populations as many of the

TME-specific populations are potentially differentiated once

reaching the site of malignancy (125). Although they display

numerous characteristics similar to other innate immune cells,

MDSCs in humans are identified by surface receptors including

CD33, CD11, and Ly6c (126). Two major MDSCs have been noted

in the pancreatic TME, including the granulocytic MDSCs (PMN-

MDSC) or Monocytic MDSCs (M-MDSC). Besides surface

markers, M-MDSCs will feature CD14/15 where otherwise absent

on PMN-MDSCs, and path of origin being their differences, the

primary role each plays in the TME is based on their specific

secretory molecules. M-MDSCs will primarily exhibit increased NO

production while PMN-MDSCs will produce ROS, both of which

reduce T-cell activity (127). Although there has been additional

investigation into specific functions of each cell type, the

overarching role of MDSCs remains the focus of this review.

Within the PDAC TME, exosomes released by malignant cells

and malignantly programmed cells induce and upregulate

transcription factors within MDSCs that further regulate and

suppress the immune response(128). Both NF-kB and STAT3 have

shown levels of upregulation within this context(129). Due to these

mechanisms, MDSCs are shown to express elevated levels of arginase

1(ARG-1), an enzyme directly targeting L-arginine, and IDO-1/TDO,

an enzyme targeting L-tryptophan to produce kynurenine. These two

enzymes in combination work towards depletion of amino acids key

in proliferation which indirectly suppress T-cell proliferation and

potentially tumor proliferation (130). Additional effects of ROS and

RNS production has shown to include decreased reactivity of MHC 1

molecules binding ability with cytotoxic T-cells in tumor cell

populations (131). Additionally, MDSCs are known to release IL-10

and TGF-b for regulatory T-cell activation via CD40 (132). Receptor

for advanced glycation end products (RAGE), a MHC class III

receptor involved in recruitment and pro-longed survival of

MDSCs, is shown to have increased expression PCCs and TME

surrounding MDSCs. (133, 134). This receptor which responds to

inflammatory signaling aims to sustain and recruit the MDSC

population, prolonging their immunosuppressive effects on the

TME. This along with continual recruitment of new MDSCs by the

CXCR4/CXCL12 signaling pathway promotes indefinite

immunosuppressive regulation by the PDAC TME (126).

Decreased recruitment of MDSCs to the PDAC TME is showing a

promising angle in novel therapeutic strategies by inhibiting the

signaling pathways key in MDSC recruitment. As it stands, MDSCs

serve as a major barrier in immunotherapies designed to utilize the

body’s own immune system as they provide significant local-regional

immune suppression.
Tumor-associated macrophages

Macrophages are demonstrated to be the frontline response

within the immune system to instances of infection and injury

(135). Monocytes make their way to the site of inflammation via
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VCAM-1/VLA-4 binding and CCR2/CCL2 migration (136). In

addition to migratory monocytes, resident tissue macrophages

simultaneously respond to initial insults. Alluded to earlier within

this review, we discussed the balance and resolution of inflammation

and how loss of such balance leads to a lack of resolution and the

formation of chronic inflammation. M1 and M2 macrophages strike

a homeostatic balance between pro-inflammatory and anti-

inflammatory mechanisms based on cellular signaling and cytokine

production. Within the early stages of an inflammatory process, M1

macrophages, induced by inflammatory markers such as IFN-g and
CSF-2, will release IL-1b, IL-12, IL-6, IFNa/b, and TNF-a in order to

magnify the immune response (137). Over time as the initial infection

subsides and repair mechanisms are prioritized, M2 cells will begin to

dominate with the resolution of the infection while expressing

immune suppressing and remodeling factors such as VEGF, IL-4,

TGF-b, and IL-10 (138).

In the context of the PDAC TME, monocytes that are brought

to the site maintain a similar initial response of differentiation and

immunologic reaction to the pathology, but TME signaling provides

an environment susceptible to imbalance. Cytokines and

chemokines released by the TME such as CXCL8 binding

CXCR1/2 on monocytes result in consistent recruitment for

additional macrophages (139). A key chemokine mentioned

previously, CCL2, is upregulated in the context of hypoxic

environments secondary to HIF-1a promotion which is

continuously produced within TME to recruit macrophages (140).

These nonspecific monocytes and macrophages become polarized

to favor the role of immunosuppressive M2s due to PCC signaling

molecules such as IL-13 and TGF-b with most of these

simultaneously suppressing M1 macrophage activation due to the

nature of the macrophage’s polarity (141, 142). M2 macrophages

are also shown to aid in metastatic properties of PDAC as previous

literature indicates the role of granulin release by metastatic

macrophages as associated with hepatic stellate cells fibroblastic

activation and satellite TME formation (143). CSF-1 secretion by

the TME directly affects repolarizing TAM M1s into M2s as

inhibition of the receptor pathway in cancer cell models reduced

the M2 to M1 decreased (144). The tumor microenvironment while

prioritizing the formation of immunosuppressive M2s will also

actively suppress the role M1s have in pro-inflammatory signaling.

The general presence of TAMs within the TME points to the role of

malignant transformation and rewiring of the inflammatory process

in PDAC. Although CD163+/206+ are markers specific to M2

macrophages and is indicated in worse overall survival; CD68+, a

non-specific marker of macrophage presence, is also associated with

poor overall survival, speaking to the heterogeneity of the

macrophage population (145). Proper targeting of macrophages

cells within the TME has previously shown a promising role in

potential therapeutics with clinical trials and research focused on

this process ongoing.
Tumor-associated neutrophils

In the complex makeup of the TME, neutrophils assume a

pivotal role, with their recruitment being partially mediated by
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CXCR1 and CXCR2 receptors on neutrophils (146). These

receptors are activated by multiple signaling molecules including

CXCL-1, CXCL-2, CXCL-5, CXCL-8, and IL-8 released by various

constituents of this environment, including cancer cells, immune

cells, and cancer-associated fibroblasts. Supporting this recruitment,

CSF-3 and IL-17 are involved in facilitating the migration and

proliferation of neutrophils, contributing to their presence at the

tumor site (147, 148). Upon reaching the TME, neutrophils

undergo distinct activation pathways. IFN-b signaling prompts

the activation of N1 neutrophils, specialized cells that release

critical CD8-T-cell activating signals such as TNF-a, CCL-3,
CXCL-9, and CXCL-10 (149, 150). These signals help bolster the

immune response and enhance the cytotoxic activity of CD8-

T-cells.

Conversely, IL-35 and TGF-b, primarily released by regulatory T-

cells (Tregs), trigger the activation of N2 neutrophils. Unlike N1

neutrophils, N2 neutrophils possess immune-suppressive

characteristics. They release molecules such as CCL2/3/4/17,

Neutrophil Elastase, MMP9, and elevated arginase, contributing to

immunosuppression and TME remodeling that fosters tumor

progression. These pro-tumor neutrophils exhibit altered gene

expression, upregulating genes like VEGFA, PLAU, LGALS3, PDE4D,

and LDHA (151). PLAU, for example, is significant for encoding

urokinase plasminogen activator, an upstream activator of the c-

MET pathway in cancer cells (152). The TME’s unique conditions,

including tissue hypoxia and ER stress, can also influence neutrophils

to differentiate towards pro-tumor subtypes. In addition, the PDAC

TME provides signaling, including IL-17, that activates a cellular

function called neutrophil extracellular trap (NET) in which granular

webs are released into the ECM (153). NETs work in a host’s defense

system to trap pathologic organisms as part of the innate immune

system, but research shows NETs are triggered within the PDAC TME

and implicated in tumor metastasis and functioning as a physical

barrier in anti-tumor immune responses (154, 155). Although the

contributions of neutrophils to the PDAC TME and their role in

immunosuppression has remained been debated in previous literature,

a clearer understanding of the mechanisms and signaling involved has

challenged this notion. Like other support cells in the PDAC TME,

recruitment and unbalanced differentiation into tumor-promoting

phenotypes may be the mechanism with greatest therapeutic potential.
Regulatory T-cells

Regulatory T-cells function as a safeguard in normal

inflammation. Regulatory T-cells act as a part of the natural

immunosuppression meant to minimize the risk of autoimmune

diseases and other overactive immune responses (156). The

immunoregulatory role of Tregs in the TME limits the efficacy of

the immune system in attacking patient’s cancer cells. Regulatory T-

cells are defined by their presence of the transcription factor FoxP3,

IL-2Receptor (CD25), and CTLA-4 with direct roles in down-

regulation of CD80/86 antigen-presenting cells and reduction of

the immune response (157).

Tregs are a factory of general immunosuppression through a

variety of mechanisms. Consistently present even within early stage
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PanIN, regulatory T-cells are examined within proximity of the

tumor cell environment with the additional presence of M2

macrophages (158). In addition to CTLA-4, regulatory T-cells

comprise part of the cellular populations that release TGF-b for

later stage immunosuppression. In addition to TGF-b, regulatory T-
cells demonstrate the release of IL-35 and IL-10 as mechanisms of

potent immunosuppression (159). Combined inhibition of both

TGF-b and PD-1 shows a direct increase in cytotoxic T-cells,

emphasizing the effects Tregs and other secretory cells have in the

TME (160). Although a simple expectation of removing Tregs from

the TME seems like first response to this, evidence of early knockout

of Treg cells related to tumor progression rather than reduction.

This in part was seen due to compensatory accumulation of other

CD4+ immune suppressing T-cells and increased fibroblast-linked

chemokines shown to recruit myeloid derived suppressing cells

(158). Rather, mitigation and inhibition of Treg’s role in

recruitment and migration of MDSCs through CCR1 inhibition

showed promise in reducing carcinogenesis. In support of this,

MDSCs are shown directly communicating with Tregs through

physical contact to promote tumor progression potentially through

the B7-H1 pathway, but recent evidence suggests that MDSCs and

Tregs work synergistically through bidirectional recruitment and

tumor-specific signaling (161, 162). In therapeutic applications, one

of the largest insights gained in recent years refers back to the effect

of low-dose cyclophosphamide on depletion of Tregs in the context

of the TME, yielding stronger response to immunotherapy. Similar

measures focusing on the targeting of upstream pathways that result

in Treg recruitment or inactivation will serve as a basis for future

points of investigation.
Desmoplastic evolution

The culmination of malignant reprogramming, cellular

interactions, and structural malconformations produces the

fibrous, dense tissue in pancreatic adenocarcinoma. The

physiologic insults and aberrant signaling of pancreatic cancer

cells, combined with the unsuccessful resolution of inflammation,

is the initiating factor for fibroblastic activation and programming.

PSC and CAF deposition of collagen, hyaluronan, and other ECM

proteins have a combined utility in most physical characteristics of

desmoplasia (Figure 1). The dense collagen matrices and increased

interstitial pressures present a physical barrier for bioavailability of

cytotoxic immune responses and therapeutic agents. For such

metabolic demands with minimal perfusion, hypoxic

environments promoting ROS formation, cellular autophagy, and

transcriptional upregulation of HIF consequently lead to additional

therapeutic resistance. Although primarily functioning in the ECM,

previously mentioned proteins such as Asporin, Keratocan, and

Periostin show direct influence on PDAC cancer cell tumorigenesis

by demonstrating roles in membrane receptor binding and

transcriptional regulation. The combination of high pressure,

poor perfusion, and dense fibrosis presents a desmoplastic

environment that encourages pancreatic cancer cells to search for

greener pastures. Survival pressures and interactions from the

extracellular matrix combined with paracrine signaling from
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support cells amplify the drive for cancer associated EMT. This

combined with the supportive role of signaling growth factors from

activated fibroblasts, compounds the effects on tumor growth.

Inflammatory markers enhance these effects while MDSCs, Tregs,

and M2 macrophages simultaneously suppress Effector T-cells,

Dendritic Cells, and CD8 Cytotoxic T-cells from targeting and

killing tumor cells. Strategies for targeting the desmoplastic stroma

have shown promise, with a greater focus on reducing pressure,

increase vascularization, and increase the diffusive capacity of

the ECM.
Novel therapeutic strategies

CAR-T-cell therapy

Among emerging therapies, Chimeric Antigen Receptor T-cell

(CAR-T) therapy has long received a level of interest since its
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inception in 1993 (163). The technology utilizes the patient’s

immune system by introducing synthetic antigen receptors

capitalizing on antibody binding sites with the T-cell intracellular

signaling pathways. The benefit of CAR-T therapies is that they are

not subject to immune-evasive effects that cancer cells

routinely exhibit. The foundation for effective CAR-T-cell

therapies, exemplified by the anti-CD19 drug for B-cell ALL,

Tisagenlecleucel, is targeting unique receptor proteins

predominantly expressed in cancer cells (164). A major barrier to

CAR-T-cell therapies in PDAC patients includes the lack of

uniquely defining receptor proteins that would consistently

represent PDAC. Current PDAC CAR-T therapies have focused

on CEA, EpCAM, Mesothelin, and CD133, but PDAC’s immune

exhaustion mechanisms and the fibroblastic barrier to tumor cell

exposure have proven to be limitations in CAR-T application (165).

A Phase I clinical trial investigating the use of CAR-T cells

programmed to bind Mesothelin in chemotherapy-refractory

PDAC patients noted such results with limited detection of CAR-
FIGURE 1

Pancreatic Ductal adenocarcinoma tumor microenvironment (TME) composition and the driving factors of tumor desmpolasia. Cytokines and
tumorigenic signaling molecules are released by cancer cells, support cells, and immune cells that subsequently promotes the desmoplastic
structure. In addition, mechanical elements stimulate these cells to perpetuate the environment and enhance further tumor growth. The resulting
physical barrier and immune counterbalance are the critical factors responsible for systemic and immunotherapeutic resistance in PDAC. Created
with BioRender.com.
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T transcripts within the TME following administration, although

minimal toxicity was noted (166). Additional approaches to CAR-T

cell administration have shown benefit through loco-regional

administration of therapy rather than intravenous with marked

increase in therapeutic response in preclinical models with further

exploration following in phase I clinical trials. (167)

(NCT01373047). In addition to challenging targets, adverse events

relating to the induction of some novel immune therapies include

cytokine release syndrome, seen with rapid activation of cytokine

signaling cascades. Generational changes in CAR-T technology

have focused on increasing cytokine response and support

signaling to maximize the response in recognizing cancer epitopes

and activating the immune response while minimizing these

adverse events (168). Current clinical trials are beginning to

utilize these newer generations of CAR-T-cell therapy and hope

to address such limitations while investigating combined

therapeutic strategies that utilize CAR-T-cell therapy with

complementary immunotherapies.
Bispecific T-cell engaging antibody

Bispecific T-cell engaging (BiTE) antibody therapy, serves the

purpose of activating the host immune response against specific

cellular receptors that are either unique to or over-expressed on

cancer cells. An example of an over-expressed receptor is EPCAM,

an intercellular signaling receptor commonly seen on epithelial cells

for cell-cell adhesion and communication. This over-expression is

particularly notable in pancreatic cancer (169). MT-110 and

Catumaxomab are two BiTEs designed for EPCAM, CD3 T-cell,

and immune system activation against openly available EPCAM

molecules to bind to (170). A phase 1 trial of MT-110 or soliton

showed an unfortunately high rate (95%) of transfusion-related

adverse events that warranted discontinuation of the investigative

medicine (171). Besides off-target effects limiting applicability, most

BiTE therapies target cell-surface proteins with limited efficacy for

intracellular markers (172). Even while selecting patients with

elevated levels of the designed target marker, IGF-1R, those in the

phase II clinical trial for Istiratumab were not found to benefit

meaningfully from the therapy in combination with standard of

care (173). New research investigating HSV oncolytic viruses

designed with Claudin 18.2 BITE targeting antibodies allow

production of tumor-specific antibodies within the historically

immunologically cold tumor microenvironment (174). Potential

avenues worth exploring may be the combination of these novel

immunologic therapies to maximize efficacy while minimizing off-

target effects.
Cancer vaccine therapy

Vaccine therapy focuses on stimulating the host’s immune

system to antigens uniquely expressed or upregulated within the

PDAC TME. Tumor vaccine therapies involves a variety of vehicles,

antigens, and genetic information to relay novel epitopes to the

adaptive immune system. Vaccine methods include cell-, peptide-,
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protein-, DNA-, exosome-, and micro-organism-based. Such

therapeutic methods although promising within early preclinical

research and clinical trials, proved largely unresponsive in most

phase II trials to-date (175). The largest phase III pancreatic cancer

vaccine trial to date investigated the use of telomerase peptide

vaccine in 1062 patients with no significant benefit in overall

survival compared to standard of care alone (176). Evolving as a

modern therapy in part due to the implementation of the COVID-

19 vaccine, mRNA vaccines provide the schematics for protein

expression with local reconstruction presenting the desired end

product (177). Cancer mRNA vaccine therapy derives from using a

patient’s tumor cell’s transcriptome, the mRNA present within the

pancreatic cancer cells, to develop novel targets unique to the

patient’s cancer. The benefits of mRNA vaccines over previous

vaccines goes back to the large-scale utilization and manufacturing

experienced during the COVID-19 pandemic. The limitations of

modern research include our limited understanding of all potential

targets within the PDAC TME. Some limitations in this therapy

type go back to the immunosuppressive environment with a lack of

immune system invasion through the PDAC TME. A recent trial

utilizing personalized mRNA Neoantigen vaccines in addition to

anti-PD-L1 (atezolizumab) and conventional chemotherapy in the

adjuvant setting induced substantial T cell activity and

demonstrated an increased recurrence-free survival in the phase I

feasibility trial; although this patient population was limited to

resected tumors and up to 20 neoepitopes within each vaccine

(178). Based on these successful results, a phase 2 study is currently

recruiting patients.

Bypassing the local immune suppression within pancreatic

cancer remains a hurdle of this therapy as activated cytotoxic T-

cells still must confront the TME, but methods of enhancing such

therapies are a simultaneously evolving field. Codelivery with

cytokine mRNA, such as IL-12, IL-15, IFN-a, or other

immunostimulatory molecules, directly to tumor sites or in

circulation with neoantigen mRNA may prove to be an alternative

method to overcome these immunosuppressive barriers (179, 180).
Antibody-bound drug conjugates

Another emerging therapeutic approach involves the use of

antibodies targeting of cancer-specific membrane molecules

combined with a linker molecule and cytotoxic agent (181). These

antibody-drug conjugates (ADCs) have been actively developed

over the last two decades with FDA approval for Brentuximab

Vedotin and Ado-trastuzumab emtansine for use in Hodgkin

Lymphoma and breast cancer respectively (182, 183). Similar

drugs are under investigation in PDAC with developmental

ADCs targeting Anti-glypican-1, HER3, Claudin18.2, and

CEACAM6 (184–187). A Phase II clinical trial investigating the

use of Anetumab-Ravtansine, an ADC targeting mesothelin

expressing pancreatic tumors, in 14 patients evaluated for toxicity

and progression free survival. Progression free survival was a

median of 63 days and approximately 11 of experienced serious

adverse events (188). Some limitations in the past with this

therapeutic mechanism included late onset-drug toxicity and
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“bystander killing” by the effects of the cytotoxic chemical

component acting on surrounding normal cells. Although a

benefit of this unintended effect may be the untargeted

destruction of tumor-associated support cells and tumor-

suppressive immune cells that populate the environment. In

addition, due to the dense, desmoplastic stroma of the PDAC

TME, limitations in efficacy may derive from regulations in

antibody drugs properly reaching most cancer cells (189). New

clinical trials are investigating a combination of treatments along

with ADCs to maximize their therapeutic efficacy. Anetumab-

Ravtansine combined with Gemcitabine and Nivolumab was

showing signs of stable disease in a progressing Phase Ib trial

with a now expanded investigation into the responding treatment

regimen (190). Improvements have helped to reduce these effects

with continued efforts to implement a potentially effective drug

delivery mechanism that has shown promise with other solid

tumors. Given the potential for potent targeted cytotoxicity, this

avenue of research may benefit greatly from stromal modifying

agents allowing for improved delivery to cancer cells.
Neoepitope TIL therapy

Additional therapeutic trials are investigating the use of patient-

derived tumor invading lymphocytes (TIL) in combination with

autologous pancreatic cancer cell exposure for neoepitope

generation (191). A current phase II trial is looking at

approximately 330 metastatic cancer patients is investigating the

use of TILs with concurrent use of immunotherapy targeting anti-

PD1 to maximize the immune response (NCT01174121). Previous

cases of TIL therapy showcase targeting of tumor-specific mutations

that are unique to the patient’s PDAC cells. One example includes

TIL directed towards KRAS G12D oncogene with conditioning

immune modulating infusions tocilizumab and cyclophosphamide

before administration of TIL therapy. The patient demonstrated

metastatic regression and physiologic response to the therapy but

ultimately succumbed to the disease (192). Engineering one’s

immune system as the therapeutic model provides excellent

potential for personalized medicine with targeting potentials, but

immune evasion and inherent “cold” environment of PDAC

requires additional means to potentiate this therapy.
Oncolytic virus and other
microbial therapies

Given PDAC’s immunosuppressive environment as discussed

previously, novel therapies that target recruitment and activation of

the immune system and breakdown of the physical barriers may

play a key role in future treatments. Lytic viruses designed

specifically to target cancer cells have become a recent field of

interest for oncologic research. T-VEC, a strain of HSV designed to

target advanced melanoma, was approved by the FDA in 2015

(193). Alongside tumor-specific targeting with genetic engineering,
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genetically significant proteins that may assist in combating the

TME (194). An adenovirus loaded with Relaxin, CSF-2, and IL-12

variants demonstrated a reduced PDAC TME with a concurrent

increase in immunoresponsiveness (195). Relaxin (RLX), an

exogenous peptide hormone, has previously shown evidence of

expression during the physiological reduction of fibrotic structures

(196). Targeting the tumor microenvironment (TME) directly with

relaxin nanoparticles has demonstrated the improved therapeutic

efficacy of Gemcitabine within in vivo models (197). Research trials

utilizing VCN-01, an adenovirus expressing PH20, and Pelareorep,

a reovirus, in disrupting the TME and awakening the immune

response are underway as this novel therapy continues to evolve

(198, 199). Moving forward, dual targeting of the PDAC TME and

pancreatic cancer cells may prove efficacious in maximizing the

utility of this novel therapy and overcoming therapeutic challenges

of PDAC. Our group and others are investigating this strategy to

optimize PDAC response to immune oncology approaches and

other systemic treatments. In addition to viruses, efforts are

underway to leverage the tumor-targeting capability of some

bacteria to convert PDAC into an immunologically hot milieu.

Notably, a genetically attenuated strain of salmonella typhimurium

expressing IL-2, Saltikva, recently received FDA fast-track

designation for the treatment of metastatic pancreatic cancers

following phase 2 clinical studies (NCT01486329), highlighting

new opportunities ahead for bacteria-based cancer therapeutics.
Future directions

PDAC remains a lethal disease due to many factors that prevent

adequate delivery to, and targeting of, pancreatic cancer cells. Current

literature highlights the evident role the TME has in the initiation,

progression, and treatment intractability of PDAC. The cellular

components of the TME, combined with the extracellular

environment and signaling pathways with surrounding tissues,

shed light on the intricate complexity of how PDAC develops and

the complex nature of resistance to innate and external anti-

tumorigenic mechanisms. As the field evolves to better understand

the dynamic interactions within the TME, novel therapeutic strategies

of drug delivery and unique targets will unravel this disease.

Nevertheless, critical gaps in our knowledge demand further

research to reveal the precise mechanisms underlying TME-tumor

interactions, taking into consideration the heterogeneity that

characterizes both the tumor and the TME. Integrating -omics

data, advanced imaging techniques, and sophisticated in vitro and

in vivo models will advance our understanding of these intricate

relationships. Novel therapeutic modalities will be refined based on

more comprehensive understanding of mechanisms involved with

primary and secondary resistance to systemic and immuno-oncology

approaches. Moreover, future directions will be more focused on

multimodality precision approaches, targeting different aspects of

tumors, including cancer cells, microenvironment, and

immune system.
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Sandoval P. The mesothelial origin of carcinoma associated-fibroblasts in peritoneal
metastasis. Cancers (2015) 7(4):1994–2011. doi: 10.3390/cancers7040872

65. Iwamoto C, Ohuchida K, Shinkawa T, Okuda S, Otsubo Y, Okumura T, et al.
Bone marrow-derived macrophages converted into cancer-associated fibroblast-like
cells promote pancreatic cancer progression. Cancer Lett (2021) 512:15–27.
doi: 10.1016/j.canlet.2021.04.013

66. Helms EJ, Berry MW, Chaw RC, DuFort CC, Sun D, Onate MK, et al.
Mesenchymal lineage heterogeneity underlies nonredundant functions of pancreatic
cancer-associated fibroblasts. Cancer Discovery (2022) 12(2):484–501. doi: 10.1158/
2159-8290.CD-21-0601

67. Lavie D, Ben-Shmuel A, Erez N, Scherz-Shouval R. Cancer-associated fibroblasts in
the single-cell era. Nat Cancer (2022) 3(7):793–807. doi: 10.1038/s43018-022-00411-z

68. Elyada E, Bolisetty M, Laise P, FlynnWF, Courtois ET, Burkhart RA, et al. Cross-
species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-
presenting cancer-associated fibroblasts. Cancer Discovery (2019) 9(8):1102–23.
doi: 10.1158/2159-8290.CD-19-0094

69. McAndrews KM, Chen Y, Darpolor KJ, Zheng X, Yang S, Carstens J, et al.
Identification of functional heterogeneity of carcinoma-associated fibroblasts with
distinct IL6-mediated therapy resistance in pancreatic cancer. Cancer Discovery
(2022) 12(6):1580–97. doi: 10.1158/2159-8290.CD-20-1484

70. Biffi G. Tracing the origin of fibroblasts in pancreatic cancer. Cell Mol
Gastroenterol Hepatol (2020) 10(3):645–6. doi: 10.1016/j.jcmgh.2020.06.008

71. Biffi G, Tuveson DA. Diversity and biology of cancer-associated fibroblasts.
Physiol Rev (2021) 101(1):147–76. doi: 10.1152/physrev.00048.2019

72. Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y, et al. IL1-induced JAK/
STAT signaling is antagonized by TGFb to shape CAF heterogeneity in pancreatic
ductal adenocarcinoma. Cancer Discovery (2019) 9(2):282–301. doi: 10.1158/2159-
8290.CD-18-0710

73. Steele NG, Biffi G, Kemp SB, Zhang Y, Drouillard D, Syu L, et al. Inhibition of
hedgehog signaling alters fibroblast composition in pancreatic cancer. Clin Cancer
Research: Off J Am Assoc Cancer Res (2021) 27(7):2023–37. doi: 10.1158/1078-
0432.CCR-20-3715

74. Chen K, Wang Q, Li M, Guo H, Liu W, Wang F, et al. Single-cell RNA-seq
reveals dynamic change in tumor microenvironment during pancreatic ductal
adenocarcinoma Malignant progression. eBioMedicine (2021) 66. doi: 10.1016/
j.ebiom.2021.103315

75. Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M,
et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic
cancer. J Exp Med (2017) 214(3):579–96. doi: 10.1084/jem.20162024

76. Wang Y, Liang Y, Xu H, Zhang X, Mao T, Cui J, et al. Single-cell analysis of
pancreatic ductal adenocarcinoma identifies a novel fibroblast subtype associated with
poor prognosis but better immunotherapy response. Cell Discovery (2021) 7(1):1–17.
doi: 10.1038/s41421-021-00271-4

77. GeW, Yue M, Lin R, Zhou T, Xu H,Wang Y, et al. PLA2G2A+ cancer-associated
fibroblasts mediate pancreatic cancer immune escape via impeding antitumor immune
response of CD8+ cytotoxic T cells. Cancer Lett (2023) 558:216095. doi: 10.1016/
j.canlet.2023.216095
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