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Immunotherapy is renowned for its capacity to elicit anti-infective and anti-

cancer effects by harnessing immune responses to microbial components and

bolstering innate healing mechanisms through a cascade of immunological

reactions. Specifically, mammalian Toll-like receptors (TLRs) have been

identified as key receptors responsible for detecting microbial components.

The discovery of these mammalian Toll-like receptors has clarified antigen

recognition by the innate immune system. It has furnished a molecular

foundation for comprehending the interplay between innate immunity and its

anti-tumor or anti-infective capabilities. Moreover, accumulating evidence

highlights the crucial role of TLRs in maintaining tissue homeostasis. It has also

become evident that TLR-expressing macrophages play a central role in

immunity by participating in the clearance of foreign substances, tissue repair,

and the establishment of new tissue. This macrophage network, centered on

macrophages, significantly contributes to innate healing. This review will

primarily delve into innate immunity, specifically focusing on substances

targeting TLR4.
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1 Introduction

The immune system is essential to protect the host from invading pathogens and

abnormal cells such as cancer cells and is primarily classified as innate and acquired

immunity. Innate immunity is an immediate general defense function that we are born

with, while acquired immunity has the ability to learn, respond specifically, and memorize

responses to specific pathogens. This memory system allows the host organism to respond

more rapidly and effectively when exposed to the same or related antigens. In recent years,

research has focused on the innate immune memory system, particularly macrophages.

This research has not only shed new light on host defense mechanisms but also has

significant implications for vaccination and allergy strategies (1–3).

The correlation between infection and remission of malignancy was initially observed in the

18th century (1, 2). Dr. William Corey, an American surgeon of the 18th century, is recognized as
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a trailblazer in this domain. In the 1890s, he demonstrated the regression

of cancer in a patient who developed a bacterial infection following

surgery for sarcoma. Intrigued by this observation, Dr. Coley

administered live cultures of streptococci to induce erysipelas in cancer

patients and assessed their response. He found that the antitumor effect

was reliant on the bacterial toxin. Eventually, he combined toxins from a

gram-positive bacterium (Streptococcus pyogenes) with those from a

gram-negative bacterium (Serratia marcescens), naming it “Coley

toxin” (also known as “mixed bacterial vaccine”) (3). Dr. Cawley and

his daughter, Dr. Helen Cawley Notes, continued the pioneering efforts

in treating cancer based on immune system function.

It has been demonstrated that innate immune responses to

microorganisms can induce anti-tumor and anti-infective effects

akin to those of Coley toxins, and a diverse array of immune-

inducing bacterial-derived and other substances have been

identified as “biological response modifiers (BRMs).”
1.1 Toll-like receptors

Cells of the innate immune system possess the ability to detect

infectious agents through receptors that recognize characteristic

components of pathogenic microorganisms. These components,

known as pathogen-associated molecular patterns (PAMPs), exhibit

high conservation and are encoded in the germ line, making them

highly conserved across different species. Toll, initially recognized for

its involvement in establishing the dorsal-ventral polarity in the

Drosophila embryo (4), has also been found to participate in the

innate immune response to fungi (5). In 1997, a mammalian homolog

of Drosophila Toll was cloned (6), and to date, ten human molecules,

known as Toll-like receptors (TLRs), have been confirmed (7, 8).

The discovery of TLRs in mammals has the potential to offer

insights into the molecular basis of early host defense processes

against microbial infections. Moreover, accumulating evidence

suggests that TLRs play a diverse role in various biological

processes. Like other pattern recognition receptors (PRRs), TLRs

exhibit a repeated leucine-rich motif in their extracellular domain

and a conserved intracellular motif known as the Toll/interleukin-1

receptor (TIR) domain, which initiates signal transduction. TLRs

are type I transmembrane proteins.

The initial stages of Toll-like receptor (TLR) signaling involve the

mediation of adaptor molecules, namely Myeloid differentiation factor

88 (MyD88), Toll-like receptor-associated activator of interferon

(TRIF), MyD88 adaptor-like protein (MAL/TIRAP), Toll receptor-

associated molecule (TRAM), and other adapter molecules, which

interact with downstream components like NF-kB, JNK/p38 kinase,

and interferon regulatory factors (IRF3, IRF5, and IRF7). Ultimately,

TLR signaling triggers the expression of diverse transcripts, including

cytokines and genes that are induced by interferon (IFN).
1.2 Role of TLRs in tissue homeostasis

The Toll-like receptors (TLRs) play a significant role in

maintaining tissue homeostasis, beyond their primary function in

host defense (9, 10). They are involved in recognizing various
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endogenous ligands released from dead cells in injured or infected

tissues, termed damage-associated molecular patterns (DAMPs). These

ligands include uric acid crystals, surfactant protein A, fibronectin (an

extracellular matrix product), heparan sulfate, biglycan, fibrinogen, and

hyaluronan oligosaccharides, as well as hyaluronan degradation

products (11–19), which trigger TLR activation.

Wound healing is a complex process through which injured organs

undergo repair (20). TLR activation can contribute to tissue damage

correction, either positively or negatively, by recruiting inducible cells that

release cytotoxic mediators or by triggering cytoprotective signals (21, 22).

TLRs exhibit cytoprotective properties and prevent tissue injury under

stress conditions in the lung and intestine. For instance, in bleomycin-

induced lung injury, interactions between hyaluronic acid and TLR2/TLR4

signal the initiation of an inflammatory response, maintaining epithelial

cell integrity, and promoting recovery from acute lung injury (19). In a

model of intestinal injury induced by dextran sodium sulfate, TLR4 and

MyD88 signaling are required for optimal proliferation and protection

from apoptosis of the injured intestine. Additionally, activation of TLRs by

commensal microflora is crucial for protecting against intestinal injury and

associated mortality (23, 24). However, TLR4 has been shown to promote

injury in ischemia-reperfusion experiments involving the liver, kidney,

brain, and heart using TLR4 mutant or TLR4-deficient mice (25–28). In

the central nervous system, TLRs coordinate protective responses to axonal

injury and crush in the brain and spinal cord (29–31).

The involvement of TLRs in tissue and organ regeneration is

evident in cases like the regeneration of the liver after partial

hepatectomy. The regenerative response involves multiple biological

functions, including cell proliferation, angiogenesis, extracellular matrix

reconstruction, and epithelialization (32). TLRs also regulate

compensatory proliferation of parenchymal cells after injury (24, 32,

33), induce cyclooxygenase, chemokines, vascular endothelial growth

factor (VEGF), matrix metalloproteinases (23, 24, 34), and activate

mesenchymal stem cells (35). Thus, TLRs play a pivotal role throughout

the entire process of tissue repair and regeneration, significantly

contributing to tissue homeostasis. During evolution, TLRs may have

acquired dual roles in tissue homeostasis, involving the regulation of the

body’s dynamics and the promotion of regenerative processes.

Recently, immune checkpoint inhibitors have been used in cancer

therapy and have caused dynamic phenotypic changes tomacrophages,

and severe immune-related adverse events have been reported (36–38).

This is thought to be due to the fact that checkpoint inhibitors change

the polarity of macrophages from M2 to M1 (39–41). Although M1

and M2 macrophages differ in shape and properties, they both possess

TLR receptor families, etc., and it has been suggested that their receptor

ligands act to modulate the immune response (42, 43). Therefore, when

using immune checkpoint inhibitors, it is important to activate

macrophages via TLR4 in terms of maintaining homeostasis, i.e., to

maintain a balance between M1 and M2 macrophages.
1.3 Maintenance of homeostasis by the
macrophage network

Upon encountering external pathogens, macrophages activate

intracellular signaling pathways through Toll-like receptors (TLRs)

to initiate an immune response against the invading pathogen.
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Macrophages and dendritic cells, which are antigen-presenting

cells, are known to express particularly high levels of TLRs (44,

45). While the precise origin of macrophages remains uncertain,

phylogenetics suggest that they may have originated from protozoa

with active phagocytic abilities, such as amoebae. Nevertheless,

since phagocytic cells are present in all animals, from unicellular

protists like amoebas to mammals, macrophages in humans likely

play a critical role in maintaining homeostasis. Thus, stimulating

TLRs expressed on macrophages and activating the network, which

centers around macrophages, could significantly contribute to

disease prevention and treatment and, consequently, promote

homeostasis (46).

Recent research has identified at least two distinct tissue-

endemic stromal macrophages in the steady-state lung. These

macrophages exhibit unique transcriptional profiles and are

spatially localized in the interstitium of bronchovascular bundles

rather than within alveolar walls (47). In fact, it is now understood

that most tissues harbor multiple macrophage populations localized

to different microanatomical regions (47–49). Each of these

populations differs in their developmental mode, replacement rate

involving monocyte-derived cells, and self-renewal capacity.

Moreover, each population may play a specific role in

maintaining tissue homeostasis, responding to injury, and

participating in tissue repair processes (43, 50–52).

Cells with TLR4 are abundant in the innate immune system and

include macrophages and mucosal epithelial cells. Unlike all other

cells, macrophages are systemically distributed and account for

about half of the immune cells by weight (53). Macrophages are

known to be migratory and active in migrating to lesions,

processing not only invading foreign substances (bacteria, viruses,

etc.) but also dead and senescent cells, degenerated proteins,

oxidized lipids, AGEs, and other unwanted substances generated

by the body, and are responsible for repair and regeneration of

damaged tissue.

Macrophages (phagocytes) are ubiquitous in multicellular

animals, but have been shown to play an important role in

individual health even in those without a nervous system in early

stages of evolution (54). In other words, in multicellular animals,

there must have been a mechanism for maintaining individual

integrity that predates the emergence of the nervous system. Based

on our previous findings, we can predict the existence of a

mechanism that maintains individual homeostasis through signal

transduction between migrating macrophages. This macrophage-

mediated signal transduction system has been proposed as the

macrophage network hypothesis (46). Fujii et al. In a mouse

model of pressure overload on the heart, kidney tissue

macrophages were found to secrete M- CSF2 secretion and

reported a network that activates cardiac tissue macrophages to

increase cardiomyocyte (55). It is also speculated that the TLR4-

mediated activation system acts as the first signal in macrophage

network. In fact, Mizobuchi et al. have shown that orally

administered LPS (lipopolysaccharide) induces membrane-bound

CSF1 in peripheral blood leukocytes, which stimulates CSF1

receptors in brain microglia, and neuroprotective and anti-
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inflammatory effects have been shown in brain diabetes-induced

mice (56). These reports suggest that systemic macrophages interact

in mammals and that TLR4 signaling plays a role in their regulation.
1.4 Exogenous immunostimulants

1.4.1 LPS
LPS is a glycolipid present in the extracellular membrane of

Gram-negative bacteria and is a known ligand that activates TLR4

at trace amounts of only a few pg/ml (57). LPS is released from

Gram-negative bacteria as exosomes into the environment from

survival as outer membrane vesicles, and dead Gram-negative

bacteria readily release LPS (58, 59). Therefore, LPS is present

wherever symbiotic Gram-negative bacteria are present on the

mucosa of animals’ skin, oral cavity, airways, and intestinal tract,

and it is thought that TLR4-mediated exchange is used as an

information molecule from the symbiotic bacteria to and from

the animal. LPS is known to induce antimicrobial peptides from

Paneth cells in the small intestine (60), which contribute to the

stabilization of intestinal bacteria, and to transmit information from

tissue macrophages in the large intestine to neurons, which induce

intestinal peristalsis (61).

Studies utilizing LPS have unveiled the importance of TLR

ligands administered orally or transdermally in activating the

macrophage network without inducing inflammatory reactions

(56, 60, 62, 63). However, it is believed that oral and transdermal

LPS administration activates the systemic macrophage network

through mucosal macrophages. The involvement of the TNF

superfamily and membrane-bound colony-stimulating factor 1

(mCSF1) in this macrophage network is suspected, although the

specific mechanisms remain unclear.

Notably, animal experiments involving oral LPS administration

have demonstrated its associations with various conditions,

including cancer, Alzheimer’s disease, ulcers, viral infections,

toxoplasma infections, allergies, hyperlipidemia, hypertension,

diabetes, and hair growth. Clinical trials in humans have further

revealed effects on cancer, atopy, diabetes, capillary growth, wound

healing, and developmental disorders (64–70). Notably, recent

findings suggest that oral LPS administration enhances the

foreign body processing function of microglia, which are brain

macrophages, providing a preventive effect against Alzheimer’s

disease (56). These effects induced by oral LPS administration are

likely a result of the indirect influence of cytokines, including

membrane-bound types triggered by stimulation of innate

immune sensor cells in the mucosal epithelium. These cytokines

subsequently act on tissue macrophages in the juxtacrine and

paracrine manner, contributing to the macrophage network.

Furthermore, sublingual administration of LPS has been shown

to significantly enhance the efficacy of influenza vaccines and reduce

mortality (71, 72). As a result, sublingual LPS administration holds

promise in preventing and treating emerging infectious diseases,

including those caused by novel coronavirus infections expected to

arise in the future.
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1.4.2 Fucoidan
Fucoidan, a sulfated polysaccharide abundant in the cell walls of

brown algae and marine organisms, possesses a highly complex

chemical composition that varies depending on the algal source,

geographical location, and extraction process (1). The structural

backbone of fucoidan consists of fucopyranose residues with

repeated a-(1→3) bonds or L-fucopyranose residues with

alternating a-(1→3) and a-(1→4) linkages. These fucosyl groups

may be mono- or di-substituted with sulfate or acetate groups at C-

2, C-4, and occasionally at C-3 (73, 74). Additionally, fucoidan

structures may contain a variety of other monosaccharides

(mannose-type), such as mannose, galactose, arabinose, xylose,

glucose, uronic acid, and proteins, in addition to the fucosyl main

chain (75).

Absorption studies with fucoidan (737 kDa) were conducted in

rats. After administration, the concentration of fucoidan in the

serum reached a maximum and absorbed fucoidan accumulated.

Absorbed fucoidan accumulated in the kidneys. The accumulation

of fucoidan in organs has also been demonstrated by the absorption

of fucoidan in rats (76). In addition, observations of healthy

volunteers who ingested or received fucoidan orally reported that

some of the fucoidan was absorbed by endocytosis and was detected

in serum and urine (77).

In recent years, fucoidan derived from algae has been the

subject of intensive research due to its diverse biological activities

and therapeutic potential. Fucoidan has shown interactions with

TLR2 and TLR4 (78, 79), and various pharmacological effects have

been reported, including antitumor, immunomodulatory, antiviral,

antibacterial, antidiabetic, renoprotective, antioxidant, anti-

inflammatory, and anticoagulant effects (80–82). Moreover,

fucoidan has been investigated for its application in improving

various pathological conditions, such as diabetes, hepatic lipidosis

(fatty liver), liver damage, renal ischemia, abnormal blood

coagulability, stem cell therapy, gastric ulcer, gout, bacterial and

viral infections, and snakebite (73, 78, 79, 81–83). The wide range of

biological activities makes fucoidan a potential candidate for

immune response modulation, antibacterial and antiviral

agents (81).

Developing standardized fucoidan supplements is a complex

process, as factors such as raw materials, species, molecular weight,

composition, structure, and route of administration significantly

impact the efficacy of the compounds. Additionally, most of the

reported activities are based on in vitro experiments or in vivo

evaluations using laboratory animals. Care should be taken as

different animal models may produce varying effects when

evaluated in different contexts.

Despite the large number of studies on fucoidan, few clinical

trials have been planned and conducted. In most cases, different cell

lines and animal models have been used to study different types of

fucoidan. This makes it difficult to determine the general

mechanism of action for a particular type of fucoidan. There is

also little information on the absorption, distribution, and excretion

of fucoidan. Although the biological activities exhibited by fucoidan

are fascinating, most of these studies have been conducted on
Frontiers in Immunology 04
relatively crude fucoidans, making it very difficult to determine

the structure-activity relationship.

1.4.3 Vizantin
In 1956, Dr. Chisato Maruyama observed that there were few

cancer patients in sanatoriums for tuberculosis and leprosy, which

led to research on the application of extracts of Mycobacterium

tuberculosis for cancer treatment (84). The prepared extract, called

“Specific Substance Maruyama (SSM),” was a deproteinized extract

primarily composed of lipoarabinomannan, a type of

polysaccharide (85). Another example of a Mycobacterium

tuberculosis-derived biological response modifier (BRM) is BCG-

CWS, a cell wall skeletal preparation of Mycobacterium bovis

bacillus Calmette-Guerin. BCG-CWS is largely nonpathogenic but

retains the immunogenicity of tuberculosis (85). It is a

peptidoglycan covalently bound to arabinogalactan and mycolic

acid (86). BCG-CWS has been clinically used as a cancer

immunotherapy (87, 88) but has not been approved by the

Ministry of Health, Labour, and Welfare (MHLW). These

biologically derived classical BRMs are considered “natural

compounds” and are characterized as crude products containing

multiple components, as they have not undergone full purification.

Focusing onMycobacterium tuberculosis-derived BRMs, researchers

developed Vizantin, a single-component immunostimulant, using

trehalose dimycolate (TDM) present on the cell surface layer of M.

tuberculosis as the lead compound (89). Vizantin is a trehalose diester

consisting of two achiral b-branched fatty acids, 2-nonylundecanoic

acid, fused to the hydroxyl groups at the 6, 6’ positions of trehalose.

Additionally, researchers successfully created sulfated Vizantin by

sulfating the hydroxyl group of the trehalose moiety, making it water-

soluble (90) (Figure 1).

Oral administration of Vizantin to mice has been shown to

prevent the settlement of melanoma cells in the lungs, effectively

preventing lethality (89). Additionally, intravenous administration

of Vizantin or sulfated Vizantin, which has improved water

solubility, into the tail vein of mice has been found to prevent

lethality caused by multidrug-resistant Pseudomonas aeruginosa

infection. The mechanism behind this effect involves sulfated

Vizantin acting on macrophages to form extracellular trapping

nets (METs), which trap P. aeruginosa (91). Further analysis has

revealed that sulfated Vizantin does not affect the growth of P.

aeruginosa but reduces its swimming activity by disrupting the Che

system, which is involved in flagellar motility. Moreover, sulfated

Vizantin has been shown to inhibit biofilm formation by disrupting

the glucosyltransferase production balance of mutans, the bacteria

responsible for causing dental caries.

Vizantin is also a lead compound of Vizantin, and the

glycosylation moiety (trehalose) of TDM, the lead compound of

Vizantin, has been demonstrated to act on the Macrophage

inducible C-type lectin (Mincle) receptor (92, 93). As Vizantin

has a similar binding site to TDM, it is expected that Vizantin also

acts on the Mincle receptor. Therefore, the diverse range of

responses observed with Vizantin may be attributed to its action

on both TLR4/MD-2 and Mincle receptors (Figure 2). As a result, it
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is thought to activate the macrophage network by acting on

macrophages in the same way as LPS (Figure 2).
1.5 Endogenous immunostimulant

1.5.1 HSP70
Heat Shock Protein 70 (HSP70) is a protein that cells induce in

response to environmental stimuli, such as stress and heat. Its role is

crucial in maintaining protein folding and stability within cells,

contributing to cell survival and function. HSP70 also plays a
Frontiers in Immunology 05
significant role in enhancing the antigen-presenting ability of

antigen-presenting cells, like dendritic cells and macrophages. By

binding to antigens on these cells, it facilitates the immune system’s

recognition of foreign substances and pathogens, leading to an

enhanced immune response.

The immune response triggered by HSP70 operates in a CD14-

dependent manner through TLR2 and TLR4 receptors (94). This

immune response activates cytotoxic T cells (CD8+ T cells),

facilitating the elimination of abnormal cells, and regulates the

production of inflammation-regulating cytokines and inflammatory

cells. The production of cytokines that modulate inflammation and
FIGURE 1

The structure of TDM, vizantin and sulfated vizantin.
FIGURE 2

Induction of macrophage network by vizantin family.
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the activation of inflammatory cells are crucial for balancing the

immune response. Consequently, HSP70 induced by hyperthermia

and other therapies exhibits effects on various diseases, including

neurodegenerative disorders like Alzheimer’s and Parkinson’s

disease (95), metabolic syndrome (96), cancer (97, 98), and

allergic conditions such as asthma (84, 99). These effects are

attributed to the activation of the immune system through HSP70

expression, leading to enhanced natural healing capabilities. There

are several types of HSPs, and their receptors are being analyzed for

their relationship to immune activation, but there are still

many unknowns.
2 Conclusion

Hippocrates once said, “Man has a hundred great physicians,

and the great physician is the power of natural healing.” Today,

while appropriate drugs are prescribed for various diseases, they do

not cure the diseases themselves. Instead, the human body

maintains its health through its own self-healing power. It is

important not to overly rely on drugs but rather to strengthen

our own immune system and rely on our natural healing

abilities. This is especially crucial for dealing with emerging

infectious diseases that may not be effectively addressed by

individual vaccines or therapeutic agents. When such infectious

diseases spread, measures like physical protection such as wearing

masks and enhancing individual self-immunity become of

utmost importance.

LPS, fucoidan, HSP, and vizantin, which have been discussed

here, have been shown to enhance immunity by activating TLRs,

especially TLR4, which are pattern recognition receptors. These

substances contribute to the prevention and treatment of various

diseases. Further research aims to better understand how these

substances act on innate immunity, particularly how they influence

the function of the macrophage network in maintaining a balanced

immune response.
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bacillus Calmette-Guérin: involvement of toll-like receptors. Infect Immun. (2000)
68:6883–90. doi: 10.1128/IAI.68.12.6883-6890.2000

86. Azuma I, Ribi EE, Meyer TJ, Zbar B. Biologically active components from
mycobacterial cell walls. I. Isolation and composition of cell wall skeleton and
component P3. J Natl Cancer Inst. (1974) 52:95–101. doi: 10.1093/jnci/52.1.95

87. Hayashi A, Nishida Y, Yoshii S, Kim SY, Uda H, Hamasaki T. Immunotherapy
of ovarian cancer with cell wall skeleton of Mycobacterium bovis Bacillus Calmette-
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