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Cytokines play a critical role in the immune mechanisms involved in fighting

infections including malaria. Polymorphisms in cytokine genes may affect

immune responses during an infection with Plasmodium parasites and

immunization outcomes during routine administration of malaria vaccines.

These polymorphisms can increase or reduce susceptibility to this deadly

infection, and this may affect the physiologically needed balance between anti-

inflammatory and pro-inflammatory cytokines. The purpose of this review is to

present an overview of the effect of selected cytokine gene polymorphisms on

immune responses against malaria.
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Introduction

Globally, malaria is still one of the most prevalent parasitoses. The World Health

Organization’s (WHO) 2022 World Malaria Report revealed that 95% of the estimated 247

million cases and 96% of malaria deaths globally occurred in Africa (1). The organisms that

cause this disease are from the genus Plasmodium. These parasites are transmitted to a

susceptible host when an infective female Anopheles mosquito takes a blood meal. Four

different Plasmodium species infect humans, namely P. falciparum, P. ovale, P. malariae,

and P. vivax. While P. vivax is the most widespread Plasmodium species globally, P.

falciparum is the most prevalent and clinically dangerous, and is predominantly found in

Africa, accounting for 99.7% of estimated global clinical malaria cases (1). Plasmodium

ovale is further divided into two sub-species; P. o. curtisi and P. o. wallikeri (2). Aside from

the typical human parasites, a number of simian parasites have also been recently found to
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cause human infections. Plasmodium knowlesi (3–5), P. cynomolgi

(5–8) P. inui, P. coatneyi, and P. simiovale (6) are all semian

parasites that have shown zoonotic potential and infect humans.

Currently, malaria is treated using artemisinin-based

combination therapy (ACT), and the implementation of other

transmission-blocking interventions like indoor residual spraying,

chemoprevention in pregnant women and children, and long-

lasting insecticidal nets usage (9). The use of vaccines is also

effective in the prevention of malaria. It has been shown that the

RTS,S, R21 and attenuated sporozoite candidates are capable of

preventing clinical disease to some extent (10–13).

Naturally, the body fights this infection using both innate and

adaptive immune mechanisms. A component of the innate immune

mechanism, being the first line of action against infection, uses

Pattern Recognition Receptors (PRRs) on the surfaces of

inflammatory cells to recognize Pathogen Associated Molecular

Patterns (PAMPs). Plasmodium-associated PAMPs such as

haemozoin, parasite DNA, and glycosylphosphatidylinositol are

recognised by Toll-like receptors (the main ones involved in the

pathogenesis of plasmodia infections) (14), RIG-I-like, scavenger

receptors (e.g., CD204 and CD 36), and NOD-like receptors. This

results in a cascade of events that lead to the production of various

cytokines required for the clearance of the parasites and also triggers

the adaptive immune arm (15–18).

Vaccines work mainly through the adaptive mechanism of the

immune system. This involves the production of antibodies by

activated B lymphocytes (plasma cells) and the production of

cytolytic factors by activated CD8+ T lymphocytes or their

stimulation to undertake direct cytotoxic activity. Both

mechanisms are achieved through the help of CD4+ T cells that

provide signals through cytokines and chemokines (19).

Cytokines play a critical role in the immune mechanisms

involved in fighting infections, including malaria. They act as

messengers that help immune cells to communicate with one

another in a concerted effort to clear infected Red Blood Cells

(RBCs). Responses elicited by activated CD8+ T cells occur through

the secretion of effector cytokines such as Interferon gamma (IFN-

g) (20). Memory CD8+ T cells are also maintained by cytokines

such as IL-7 and IL-15 (21). The physiologic levels of these

molecules within the immune compartment can therefore

influence effective communication between the various immune

cells. One significant factor that can affect cytokine/chemokine

production levels is polymorphisms within the genes that encode

for these molecules. Cytokine gene polymorphisms have been

reported to affect cytokine production and, consequently, the

effectiveness of an immune response to any invading pathogen

(22). A meta analysis by Cui, Sun (23) revealed that polymorphisms

in the IL-4 may affect Hepatitis B Virus (HBV) vaccination

outcome. This implies that polymorphisms in cytokine genes may

affect immune responses during an infection with Plasmodium

parasites and immunization outcomes during routine

administration of malaria vaccines. The purpose of this review is

to present an overview of the effects of cytokine gene

polymorphisms on immune responses to, and pathogenesis

of malaria.
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Cytokines

Lymphocytes, haematopoietic, and inflammatory cells

communicate with each other to effectively mount and coordinate

a robust immune response. Soluble factors called cytokines act as

messengers between these cells. They are a group of modulatory

glycoproteins produced mainly by T helper cells, macrophages,

dendritic cells, though they can be secreted by all nucleated cells

(immune and non-immune cells (24–26).

Cytokines are grouped into six (6) families: interferons,

transforming growth factor beta, haematopoietins, interleukins,

tumour necrosis factor, and chemokines. This classification is

based on the type of receptors they bind to and their three-

dimensional structures (24). However, based on function, they

can be grouped into five: interleukins, tumour necrosis factor,

chemokines, interferons, and colony-stimulating factors (26).

They play a crucial role in the immune system’s ability to

recognize and respond to pathogens.
Role of cytokines at different malaria
parasite growth stages in the host

Skin

The skin acts as the first protective barrier to most infections,

including malaria (27, 28). When sporozoites are carried past the

epidermis of the skin by the mosquito’s proboscis, antibodies bind

to the inoculated sporozoites and inhibit their mobility, thereby

preventing them from entering the bloodstream (Figure 1 A1) (29–

31). Additionally, CD8+ T cells are primed by dendritic cells from

lymph nodes draining into this site of the skin, consequently

boosting immune response in the liver (32). Phagocytes can also

recognise and phagocytose sporozoites in the dermis (Figure 1 A2)

(33). If the sporozoites are not cleared, they find their way into

blood circulation.
Pre-erythrocytic stage

In the blood, to prevent the invasion of hepatocytes and initiate

the pre-erythrocytic cycle, antibodies against free sporozoites bind

and neutralise proteins required for cell traversal and invasion, such

as the circumsporozoite protein (CSP). The binding of these

antibodies also activates complement fixation, phagocytosis, and

lysis by cytotoxic cells (Figure 1 A3) (34, 35). In the liver, Natural

Killer (NK) cells, NK T cells, Kupffer cells, and CD4+ dependent

CD8+ T cells that produce interferon-g upon parasite recognition,

kill intrahepatic parasites through an antibody-dependent cell-

mediated mechanism (Figure 1 B1). Other cells, such as the

Gamma Delta (gd) T cells also kill intrahepatic parasites through

secretion of type I interferons and IFN-g (36–40). There is growing
evidence of the effectiveness of CD8+ T cells that secrete IFN- and

granzyme B at killing infected hepatocytes (20, 41). The failure of
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these mechanisms leads sporozoites to undergo sporogony in the

hepatocytes and develop into merozoites.
Erythrocytic stage

Merozoites egress from hepatocytes to start the erythrocytic stage.

This stage is characterised by the signs and symptoms associated with

clinical malaria. It is associated with the production of

proinflammatory cytokines by CD4+ T helper cells, which are

needed to activate macrophages, specific B cell clones, and other

cells (Figure 1 C1) (36–39, 42, 43). Humoral (antibody) and T-cell

responses are also important for the control of merozoites and

intraerythrocytic parasites, respectively. Antibodies bind to and

coat the surface of infected erythrocytes and merozoites, targeting

antigens such as the erythrocyte binding antigen (44), to prevent their

adhesion to the endothelium and the uptake and invasion of

erythrocytes respectively (Figures 1 C2, C3). This enhances their

phagocytosis and clearance (34, 45). However, this is only possible

during the limited window when merozoites break out of a fully

developed schizont and before they infect the next RBC. To achieve

this, Tumour Necrosis Factor (TNF) and IFN-g activate macrophages

to phagocytose and/or kill infected erythrocytes and merozoites

(Figure 1 C1). Antibodies also bind to gametocytes, which are
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killed through complement-mediated lysis, preventing the

sequestration and maturation of gametocytes in the host (Figure 1

C6) (46). Antibodies and complement taken up in the blood meal

also mediate the lysis of gametocytes, preventing fertilization and

further development of the parasite in the mosquito (34). To reduce

excessive inflammation, antibodies neutralize parasite toxins by

binding to glycosylphosphatidylinositol (Figure 1 C5). Interferon-

gamma, perforins, and granzyme B produced by NK cells kill

parasites in infected erythrocytes (Figure 1 C4) (36–39, 42, 43).

Inferentially, pro-inflammatory cytokines kill malaria parasites

directly. They also act in ‘concert’ with other anti-inflammatory

cytokines to activate T cells and specific B cell clones to produce

cytolytic chemicals, IgG (47) and IgM (48, 49) respectively, needed

for a robust immune response (Figure 1 C1).
Immunopathologic role of cytokines in
P. falciparum infection

Cytokines are highly relevant for the development of immunity

against malaria parasites, regardless of the human stage of the

parasite. However, excessive production of certain cytokines is also

linked to malaria immunopathology and directly related to some of

the clinical symptoms. Additionally, cytokine polymorphisms can
FIGURE 1

Immune response mechanisms to malaria parasites at different stages in the host. (A1) Antibodies bind to inoculated sporozoites and prevent them
from entering the blood circulation. (A2) Phagocytes present in the dermis recognise and phagocytose sporozoites. (A3) Antibodies against free
sporozoites bind and neutralise proteins required for cell traversal and invasion such as CSP. The binding of these antibodies also activates
complement fixation, phagocytosis, and lysis by cytotoxic cells. (B1) NK cells, Kupffer cells, and CD4+ dependent CD8+ T cells that produce
interferon-g upon parasite recognition, kill intrahepatic parasites through an antibody-dependent cell-mediated mechanism. (C1) Proinflammatory
cytokines produced by CD4+ T helper cells activate macrophages, B cell clones and T cells. Macrophages differentiate into pro-inflammatory and
anti-inflammatory M1 and M2 phenotypes respectively. These activated macrophages produced cytokines; pro-inflammatory cytokines kill malaria
parasites directly. Together, the pro and anti-inflammatory cytokines activate T cells and specific B cell clones. (C2, C3) Antibodies bind to and coat
the surface of infected erythrocytes and merozoites. This prevents their adhesion to the endothelium and the uptake and invasion of erythrocytes. It
also enhances their phagocytosis and clearance. (C4) Interferon-gamma, perforins, and granzyme B produced by NK cells kill parasites in infected
erythrocytes. (C5) Antibodies neutralize parasite toxins to reduce excessive inflammation. (C6) Antibodies bind to gametocytes which are killed
through complement-mediated lysis and this prevents sequestration and maturation of gametocytes in the host. ,CSP, circumsporozoite protein; NK,
Natural Killer. Created with BioRender.com.
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affect the activity, quantity, and timing of cytokine production,

influencing susceptibility to and severity of malaria. Polymorphisms

in the TNF-a, IL-1b, IL-4, IL-10, IL-13, IL-17, IL-18, IL-22 and

CXCL8 genes have been shown to affect their function during

malaria infections. It is, therefore, essential to identify cytokines and

polymorphisms that play critical roles in the protection and/or

pathophysiology of malaria. This information can help to make

informed decisions regarding malaria vaccination programmes. The

following cytokines have been selected for this review because they

have been directly implicated in either protection or susceptibility

to malaria.
Interferon gamma

Interferon-g (IFN-g), a 20-25 kDa protein, is one of the many

pleiotropic cytokines that play a pivotal role in coordinating innate

and adaptive immunity. The gene encoding IFN-g is located on the

short arm of chromosome 12 and codes for a 166 amino acids

peptide (50, 51). The production of IFN-g is vital to initiate an

immune response against Plasmodia, both at the pre-erythrocytic

and erythrocytic stages (43, 52). Early production prevents the

progression from uncomplicated malaria to severe or life-

threatening infection (53). Though conflicting reports exist on the

role of IFN-g in the pathogenesis of malaria, a deeper look at these

findings reveals that these differences may be influenced by host and

parasite factors. Concomitant increases in IFN-g and IL-6, IL-2, IL-

5, IL-12 levels were observed during Plasmodium infection (54).

This helps differentiate patients with mild cases of malaria from

those with severe forms of the disease. However, when high levels

occur together with high IL-12 levels, it discriminates severe forms

from asymptomatic infection. Nevertheless, persistently high levels

may cause inhibitory effects on CD4+ T cells, hence leading to

immune suppression (54).
Tumour necrosis factor-alpha

The TNF-a gene (3 kb), made up of four exons and three

introns, is located on chromosome 6 (55). Structurally, TNF-a, a 17
kDa is a homotrimer protein consisting of 157 amino acids. This is a

product of the precursor made up of 233 amino acid residues (26

kDa) (56). Tumour Necrosis Factor is involved in multiple

inflammatory conditions and immune responses, playing an

important role in the pathogenesis of many infectious diseases,

including P. falciparum malaria (57). Normal levels of TNF-a are

essential for parasite clearance. This was observed in a Ghanaian

population where asymptomatic individuals had higher levels

compared to uninfected individuals (52). Parasite clearance is

believed to occur through a mechanism in which TNF-a
increases the phagocytosis of Plasmodium parasites (15, 58).

However, high levels are linked to severe forms of malaria (57,

59) and this may explain why it has been reported to be associated

with the development of Cerebral Malaria (CM), a complication of

severe malaria. This association may be due to the induction of the
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expression of adhesion molecules for the attachment of parasites on

endothelial cells of the cerebrum (43). However, these reports still

need further research to ascertain findings. Cruz, Wu (60) showed

that TNF-a lowers parasite counts by increasing intracellular

calcium levels. Also, in synergy with IL-1b, they activate

transcription factors necessary for the production of IL-6 (61),

which helps to clear the infection.

Polymorphisms in the promoter (15, 62) and non-coding

regions of the TNF-a gene have been linked to an increased risk

of Plasmodium infection. The rs673 Single Nucleotide

Polymorphism (SNP) is associated with repeated mild infections

with Plasmodium while the rs1800629, rs673, and rs361525 SNPs

are linked to symptomatic infections (63). Also, in an Indian

population, the homozygote SNPs (rs1799964 and rs1800630) in

the TNF-a enhancer region lead to higher levels of plasma TNF-a,
while the rare allele of the SNP (rs41297589) and the heterozygote

forms of the SNPs (rs1799964, rs1800630, rs1799964, rs361525, and

rs1799724) increased the risk of getting severe forms of malaria (57,

64). The TNF-a SNP genotypes rs1800629 (-308G/A) GG, GA, AA,

G and A alleles were not associated with malaria among populations

from different countries around the world (62, 65). However, the

TNF-a SNP genotypes for rs1799964 (-1031C) (TT, TC, CC),

rs1800750 (-376) (AG, GG, AA), rs1800629 (-308) (AG, GG, AA)

rs36152 (-238) (AG, AA, GG) rs3093662 (+851) (AG, AA, GG) and

rs1800630 (-863A) (CC, CA, AA) alleles (66), as well as

homozygotes for the TNF enhancer haplotype CACGG

(rs1799964 (-1031T>C); rs1800630 (-863C>A); rs1801274 (exon4

G>A); rs1800629 (-308); rs361525 (-238); rs41297589 (-76) across

Indian populations) (57), and rs1800750 (-376) GAG (67),

correlated with enhanced plasma TNF-a levels in both patients

and controls. Significantly higher TNF-a levels were observed in

patients with severe malaria. Minor alleles of rs1799964 (T) and

rs1800630 SNPs were associated with increased susceptibility to

severe malaria (57, 67).
Transforming growth factor-beta

Transforming growth factor beta (TGF-b) is a T cell inhibitory

cytokine that plays a vital role in maintaining a balanced and

tolerant immune system by suppressing the growth and activity

of numerous immune system elements. It is a central cytokine in the

differentiation of both Treg and Th17 cells (68). Out of the three

isoforms, TGF-b1, is the most relevant from the standpoint of

immune regulation (69). The genes for the three isoforms- TGF-b1,
b2, and b3- are located on chromosomes 19q13.2, 1, and 14,

respectively. These genes code for inactive precursors which are

then activated to form a 25 kDa protein (70). Transforming growth

factor-beta regulates the function of other important cells in malaria

immunity: Dendritic cells, which produce IL-4 in the acute phase of

malaria (71), T-helper 17 and T regulatory cells (68, 72). It is a more

potent T-regulatory cytokine than IL-10 in malaria immunity (15),

and higher levels of TGF-b are inversely proportional to severe

forms of malaria (73). A proportional increase in TGF-b and TNF-

a, IL-10, and IL-1b, predicts a proportional increase in severe forms
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of malaria, especially in CM patients (54). A finely tuned balance

between TGF-b and IL-6 appears to be pivotal and possibly

determines the outcome of Plasmodium infection (68). Genotypes

and alleles reported in the TGF-b1 gene include rs1800469 (-509C/
T) (CC, CT, TT, C and T); however, no association with malaria was

found (65).
Interleukin 1-beta

IL-1 was among the first cytokines to be discovered, in addition

to IL-18 (24, 74). Initially known to be the pyrogen that causes fever,

it was later identified as the lymphocyte-activating factor. From that

point, it was shown to initiate and mediate myriad immunological

processes, such as prostaglandin synthesis, neutrophil influx and

activation, T-cell activation and cytokine production, B-cell

activation and antibody production, fever, and fibroblast

proliferation and collagen production (74). There are two

isoforms, IL-1a and IL-1b, produced by distinct genes but

binding to the same receptor. IL-1a is expressed constitutively by

a majority of cell types and does not need cleavage to become active,

though its biological activity can be enhanced through Calpain II

processing. It is released from cells during cell death as it is a

membrane-bound molecule, hence signals the immune system of

tissue damage (24).

On the other hand, IL-1b is expressed by myeloid immune cells

as a 31 kDa zymogen (pro-IL-1b), which is made active through

cleavage. The gene encoding this 269 amino acids protein is located

on chromosome 2q14.1 (75). Its secretion enhances the recruitment

of neutrophils and the differentiation of T-cells into Th17 cells. In

effect, the secretion of IL-1b signals the recognition of a threat by

the innate immune cells. It is believed to be involved in the first line

of immune response mounted against pathogens including

Plasmodia (76, 77). It is also needed for the activation of

transcription factors necessary for the production of IL-6 (61).

However, increased levels are associated with CM (54).

Single nucleotide polymorphisms in the IL-1 promoter region

predispose children to severe malarial anaemia as a result of

increased levels of IL-1b. Point mutations at position 31 and 511

in the promoter regions, where there is a change to cytosine and

adenine, respectively, increase the risk of severe malaria due to

reducing the production of circulating IL-1b (78). Similar findings

were reported by Walley, Aucan (79) in Gambia and Brazil (64).

However, the mutant allele AA/AG in IL-1b (rs1143634) was

shown to protect against P. falciparum infections (80). In terms

of humoral response, the rs16944 SNP was linked to the production

of more antibodies in response to a P. vivax circumsporozoite

protein (81). The SNP genotypes and alleles of IL-1b, rs16944 (-511
T/C) (TT, TC, CC, T and C), were not associated with malaria (65).

However, in another study, the IL-1b SNPs, rs1143627 (-31 C/T)

(CC, CT, and TT), rs16944 (-511 A/G) (AA, AG and GG) were

associated with SMA especially the CA haplotype. The SNP, (-31T/-

511A) (TA) haplotype causes increased production of IL-1b (78).

Additionally, a study in The Gambia demonstrated significant

associations between variation at IL-1b +3953 position

(rs1143634 C/T) and susceptibility to clinical malaria (79).
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Interleukin 4

The IL-4 gene is located on chromosome 5q31.1 (82). The role

of IL-4 in human malaria has not been extensively studied. In

animal models, it has been reported to increase the risk of severe

malaria. This may be due to its role in downregulating pro-

inflammatory processes vital for the clearance of the parasites. In

a study in Sudan, high levels were rather associated with

hyperparasitaemia rather than the clinical severity of the disease

(83). However, Wu, Brombacher (71) found that in the absence of

IL-4, mice were protected against CM. Also, mice treated with IL-4

analogues were protected against the development of CM. This

intervention reduces the expression of CXCL10, CXCR3, and

adhesion molecule (LFA-1) by T cells, increases the production of

IgM, and downregulates the cytolytic activity of cytotoxic T cells.

This significantly reduces the motility and the infiltration ability of

CD8+ T cells into the brain, hence reducing brain damage (84).

There are not many reports on the SNPs in this gene in relation

to malaria. However, in a Brazilian population, point mutations in

the third intron and at position 33 (rs2070874) and 589 (rs2243250)

in the promoter regions, did not show any difference in antibody

levels, plasma IL-4 levels, and peripheral parasitaemia (85). A study

among Cameroonians showed similar results in the IL-4 SNP,

rs2243250 (-589 T/C) (CT, TT, CC) (66).
Interleukin 6

The interleukin-6 (IL-6) gene is located on chromosome 7p21

and encodes a precursor peptide of 212 amino acids. The active

peptide is made up of 184 amino acids (61, 86). The core protein is

∼20 kDa, but glycosylation accounts for the size of 21–26 kDa of

natural IL-6 (61). It is a multifunctional cytokine produced by

diverse cell types and plays an important role in various biological

responses (87). The production of IL-6 is not limited solely to

immune cells; endothelial, mesenchymal cells, fibroblast, and

adipocytes, are also sources of IL-6. Among the many

pleiotropic effects of IL-6, it is also important in the

differentiation of naïve B and T cells to other effector subsets-

an essential requisite for adaptive immunity (61, 88, 89). In an

experimental cerebral malaria model, IL-6 was vital in the

expansion of myeloid-derived suppressor cells to a pro-

inflammatory phenotype. These cells were associated with

malaria immunopathogenesis in humans, where they suppress

the CD4+ T cell activity (90). Other studies show that IL-6 acts in

concert with TNF-a and other inflammatory mediators in the

clearance of malaria parasites (91, 92) but a meta-analysis by

Wilairatana, Mala (88) showed that although IL-6 may be a

marker of Plasmodium infection, increased levels are associated

with hyperparasitaemia. This has been corroborated by the results

of Mbengue, Niang (59), Frimpong, Amponsah (52) and Prakash,

Fesel (54), where high levels are associated with severe forms of

malaria. This may be a physiological response by the body to clear

the parasites, increasing the levels of IL-6 in response to

increasing parasitaemia.
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Interleukin 10

Interleukin 10 is one of the major T-regulatory cytokines, apart

from TGF-b and IL-35. It suppresses antigen presentation, T cell

activation, and proliferation mediated by dendritic cells and

macrophages and inhibits the production of proinflammatory

cytokines (53, 93). The 5.1kb pairs gene that encodes this protein is

located on chromosome 1q31-q32 (93, 94). Its levels are very essential

in maintaining a balance between pro- and anti-inflammatory

cytokines in the control of Plasmodium infections (95). Essentially,

IL-10 enhances the humoral immune response to Plasmodium

infection (96) but inhibits cell-mediated responses (96). High levels

have been associated with susceptibility to malaria due to its role in

downregulating the pro-inflammatory processes needed to clear the

parasite (43, 53, 54). On the contrary, the results of Mbengue, Niang

(59) show that IL-10 levels are the same in both asymptomatic and

severe malaria. This can be due to the fact that similar levels are

needed to achieve the effect needed, hence levels may not be

significantly different in either asymptomatic or severe cases.

Variations in cytokine promoter sequences, such as the IL-10

promoter, may specific transcription factor recognition sites and

consequently affect transcriptional activation and cytokine

production (66). There are conflicting reports on the rs1800896, a

promoter region SNP in IL-10. Natama, Rovira-Vallbona (80)

reported an increased risk for malaria infection, while the results

from da Silva Santos, Clark (67) and Apinjoh, Anchang-Kimbi (66)

showed a decreased risk of cerebral malaria. However, the IL10

rs3024500 SNP has been found to increase the risk for severe forms

of malaria (66). In infants, it was found to decrease the risk of

infection (94). The report by (66) showed that only the rs1800890

SNP was associated with IL10 production, although studies

indicated associations between different SNPs and variations in

IL-10 production. This suggests that rs1800890 may upregulate IL-

10 transcription, with the heterozygotes potentially providing a

selective advantage, as elevated IL-10 levels can down-regulate

proinflammatory cytokines such as TNFa, offering protection

against severe malaria. Individuals with the IL-10 rs1800890 AT

genotype exhibited higher IL-10 plasma levels compared to

homozygotes (66). The genotypes and alleles of IL-10 SNPs,

(rs1800896) (-1082A/G), (AA, AG, GG, A and G alleles),

rs1800871 (-819T/C), (TT, TC, CC, T and C alleles), reported

among populations worldwide showed no association with malaria

(65). However, the IL-10 SNP rs1800896 (-1082 A/G), GCT

haplotype, and the rs1800871 (-819T/C), and rs1800872 (-338

592A/C) were associated with a reduced risk of malaria

symptoms (67). Plasma IL-10 levels strongly correlated with the

heterozygous AT genotype of IL-10 rs1800890 SNP. The AA and

TT genotypes of IL-10 rs1800890 had lower plasma IL10 levels

compared to their AT counterparts. Additionally, the IL-10 SNP

genotypes; rs3024500 (AG, GG, AA), rs1800896 (TT, CT, CC),

rs1800890 (TT, AT, AA), rs1800896 (TT, CT, CC) and rs3024500

(AA, GA, GG) were associated with CM, while the rs1800896 SNP

genotypes (CT, CC, TT) were linked to hyperpyrexia (66). However,

rs3024500 and rs1800896 were associated with altered CM risk in

another study (66). The -1082G/-819C/-592C (GCC) haplotype was

associated with protection against SMA and increased IL-10
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production. Although none of the other haplotypes were

significantly associated with susceptibility, individuals with the

-1082A/-819T/-592A (ATA) had an increased risk of SMA and

reduced circulating IL-10 levels (97).
Interleukin 12

Interleukin-12 was the twelfth cytokine to be identified in 1989.

It was the first to be identified in the IL-12 family comprising of IL-

12, IL-23, IL-27, and IL-35. It consists of two subunits, a smaller p35

monomer (35 kDa a-chain) and a larger p40 monomer (40 kDa b-
chain), encoded on chromosomes 3q25.33 and 5, respectively. The

co-expression of the smaller and larger subunits results in the

formation of the biologically active p70 heterodimer (98, 99).

Interleukin-12 secretion mainly regulates the production of IFN-g
through the differentiation and polarisation of naïve T cells to Th1

phenotype. This helps in mounting an immune response against

Plasmodium species (100). Recent findings show that it acts

synergistically with IL-18 to modulate gd T cells (101), which

control parasitaemia via an antigen receptor-mediated

degranulation and the phagocytosis of antibody-coated infected

RBCs (102). They regulate the function of gd T cells by increasing

the expression of T cell immunoglobulin domain and mucin

domain-containing protein 3 (TIM3) and hence decreasing the

risk of symptomatic malaria (101). Levels of IL-12 have been

reported to differentiate CM and Severe Malaria Anaemia (SMA)

from Mild Malaria (MM) (54).
Interleukin 13

Interleukin-13 (IL-13) is a 33-amino acid protein encoded by a 4.6

kb gene located on chromosome 5q31 (103). It belongs to the Th2

family of cytokines, which includes IL-4 and IL-5. It is primarily

produced by CD4 T cells, adaptive effector cells involved in allergic

asthma. However, in humans, innate immune cells like eosinophils,

basophils, mast cells, natural killer (NK) cells, andNKT cells have also

been observed to be capable of producing IL-13 (104–106). Inmalaria,

the rs20541 polymorphisms is linked to high risk of developing

cerebral malaria (107). Ohashi, Naka (108) earlier reported an

association of IL-13 variation in the promoter region (1055 C>T)

with reduced susceptibility to malaria in Thailand. Additionally, the

IL-13 46457 SNP genotypes, rs20541 (CT, CC, TT), were found to be

associated with Plasmodium infection (66).
Interleukin 17

Interleukin 17 (IL-17) is a distinct family of cytokines

comprising at least six members (A–F) that share unique

characteristics. It is an ~18 kDa glycoprotein composed of 163

amino acids encoded by a gene located on chromosome 6 (109–

111). Interleukin 17 is secreted by CD4 T helper 17 and CD8

cytotoxic T17 cells, which typically function as a pro-inflammatory
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cytokine (15, 112). High levels have been reported during the acute

phase of malaria (113) and are involved in erythrocyte remodelling;

a mechanism thought to protect against this infection (114).

Apinjoh, Anchang-Kimbi (115) showed that polymorphisms in

the IL-17 gene (rs6780995) are associated with hyperpyrexia, and

they suggested a possible link with uncomplicated malaria.
Interleukin 18

Interleukin 18 is a pro-inflammatory cytokine encoded by a

gene located on chromosome 11q23.1 (116). Initially thought to

stimulate T cells, NK cells, and activated macrophages to produce

IFN-g (117, 118), it was hence named IFN-g-inducing factor. IL-18
is first synthesised as a 193 amino acids zymogen of 24 kDa, which

is cleaved to an active 18 kDa protein (116). It belongs to the IL-1

family of cytokines that promotes Th1 responses. When IL-18 is

present without IL-12 but in the presence of IL-2, it activates NK

cells, CD4+ NKT cells, and existing Th1 cells to generate IL-3, IL-9,

and IL-13. Moreover, in combination with IL-3, IL-18 triggers mast

cells and basophils to produce IL-4, IL-13, and various chemical

mediators (119). It helps protect against infectious organisms,

including Plasmodia, through the induction of IFN-g in a murine

models (100). It acts together with IL-12 in the innate immune

mechanism against Plasmodium infection (101). In individuals

suffering from P. falciparum malaria, the levels of IL-18 in the

bloodstream are elevated. When comparing malaria patients based

on the severity of their condition- non-complicated, severe, and

cerebral malaria - increased IL-18 levels were observed across all

three groups. Among severe malaria cases, IL-18 tended to remain

high throughout the course of the disease. Furthermore, a

noteworthy correlation was found between the level of IL-18 in

severe malaria patients and the degree of parasitaemia (120, 121).

Polymorphisms in the promoter and 3` untranslated regions have

been linked to Plasmodium infection. The rs5744292 SNP was

associated with parasitaemia in all age groups while alleles of

rs360714 and rs544354 pose a risk of infection in younger children

(122). A study on the sequence variations of the human IL18 promoter

region revealed several SNP genotypes: rs1946519 (-656 G/T),

rs1946518 (-607 C/A), rs187238 (-137 G/C), rs360718 (+113 T/G),

and rs360717 (+127C/T) (122). Out of the several SNPs identified, the

SNPgenotypes rs5744292 (AA,AG,GG,AandGalleles) and rs544354

(GG,AG,AA,GandAalleles),aswell as rs360714 (GG) and rs7106524

(AG), were found to be significantly associated with increased parasite

density in infected patients. Moreover, several haplotypes were found

to have a significant association with parasitaemia (122).

Interleukin 21

The IL-21 gene is positioned on the human chromosome 4q26-

q27, and the precursor and mature IL-21 polypeptide comprises

162 and 131 amino acid residues, respectively (123). Interleukin 21,

a 15 kDa protein, plays a role in the synthesis of immunoglobulins,

similar to IL-6 (59). Also, in response to activating signals, IL-21

stimulates the growth of mature B and T cells and facilitates the
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expansion of NK cell populations originating from the bone

marrow (123). In mouse models, IL-21 deficiency resulted in

higher parasite counts, affected B-cell responses, and subsequent

production of immunoglobulins (124).

Interleukin 22

Interleukin-22 (IL-22), initially referred to as IL-10-related T

cell-derived inducible factor (IL-TIF), is a member of the IL-10

family of cytokines, produced mainly by activated Th1 cells (66).

This cytokine family also comprises IL-10, IL-19, IL-20, IL-24, and

IL-26 (125). The human IL22 gene is located at chromosome 12q15

(126). The IL22 gene contains an open reading frame of 537 base

pairs, which encodes a 179-amino acid protein with a 79% similarity

between mice and humans (127). The cytokine’s active and secreted

form is a shorter protein, comprising 146 amino acids (128).

Interleukin-22 is mainly produced by activated Th-17 cells, gd T

cells, NKT cells and newly described innate lymphoid cells which

belongs to the IL-10 family of cytokines (125, 129). Available

evidence implicates IL-22 in the pathogenesis of Plasmodium

infection and vulnerability to severe malaria anaemia has been

shown to decrease with increased IL-22 levels (130).

In a Saudi Arabian population, the IL-22 SNPs; rs2227481,

rs2227513, and rs2227483 were reported to protect against

Plasmodium falciparum infection. The G allele of the SNP

rs2227513 is associated with increased levels of IL-22 (130). Koch,

Rockett (129) showed that the IL22 SNPs coexisting together

(+1394A and -708T) and (-708C and +1394A) were associated

with protection and vulnerability, respectively, to severe malaria.

This findings were similar to that of Apinjoh, Anchang-Kimbi (66).

The IL-22 SNPs rs2227507 (+4583 C/T), rs1012356 (+2611 A/T),

rs2227491 (+708 C/T), rs2227485 (-485 A/G), rs2227478 (-1394 A/

G), were not associated with malaria (66). Observations from a

Cameroonian population supported earlier studies in The Gambia,

reporting an association of the IL22 + 708T allele with protection

against severe anaemia (66). SNPs in the promoter region of the IL-

22 gene, specifically rs2227476 and rs2227473, were associated with

CM in both Nigerian and Malian children. Individuals carrying the

aggravating T allele of rs2227473 produced significantly more IL-22

than those without this allele. Overall, these findings suggest that IL-

22 is involved in the pathogenesis of CM (131).
Chemokine ligand 8

Chemokine (C-X-C motif) ligand 8, the most potent human

neutrophil-attracting inflammatory chemokine, coordinates the

directional chemotaxis of leukocytes to inflammatory sites (132).

Also known as IL-8 (118), located on chromosome 4 locus q12-

4q21 (133–135). Its transcribed DNA yields a non-functional

peptide of 99 amino acids, further cleaved into different shorter

polypeptides of about 15 kDa (134–136). Neutrophils produce this

chemokine during Plasmodium infection due to the production of

histamine-releasing factors by the parasite. High levels have been

reported in severe malaria patients (59).
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A SNP at position 251, where an adenine replaces thymine in

the promoter region, increases the susceptibility to complicated

Plasmodium infection (65).
Concluding remarks

This review has provided a comprehensive overview of the

effects of selected cytokine gene polymorphisms on immune

responses during malaria. It is evident that cytokines play a very

significant role in both the protection against Plasmodium

falciparum infection and the pathogenesis of malaria.

Polymorphisms in the genes that produce these cytokines may

affect the delicate balance needed between anti-inflammatory and

pro-inflammatory cytokines, resulting in an increased or reduced

susceptibility to this deadly infection (Figure 2). Moving forward,

future investigations should consider employing advanced tools,

such as whole-gene sequencing, to delve deeper into the biology of

cytokines in the context of Plasmodium falciparum infection. This

approach promises to unravel finer genetic nuances, offering

insights that genotyping techniques alone might overlook.

Considering the evolving landscape of infectious diseases, ongoing

investigations in this field are crucial for advancing our ability to

combat Plasmodium falciparum infection effectively.
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FIGURE 2

Role of cytokines in the pathogenesis of malaria. Cells of the innate and adaptive immune system produce cytokines, where some have autocrine
function. (A) IFN-g produced by T cells activate macrophages that in-turn activate B cells to differentiate to plasma cells through the help of IL-6.
Plasma cells then produce immunoglobulins which can switch classes with the help of IL-4. (E) The immunoglobulins then inhibit parasite growth.
(B) Unique functional polymorphisms in cytokine genes of TNF-a, IL-4, IL-10, IL-13, IL-18 and CXCL8 increases susceptibility to malaria parasite
development (F). (C) Normal plasma cytokines levels which are deemed to be protective, inhibit parasite development (G). (D) Functional
polymorphisms in TNF-a, TGF-b, IL-1b, IL-6, IL-10, IL-13, IL-17 and IL-22 either cause increased or decreased production of these cytokines. (H)
This may account for some of the pathologies and complications associated with malaria. Created with BioRender.com.
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