
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Jianbin Bi,
The First Hospital of China Medical University,
China

REVIEWED BY

Peng Ren,
Southwest University of Science and
Technology, China
Xiaoyu Hu,
Hospital of Chengdu University of Traditional
Chinese Medicine, China
Liyuan Hao,
Chengdu University of Traditional Chinese
Medicine, China, in collaboration with
reviewer XH

*CORRESPONDENCE

Jun Ai

aijun1987925@163.com

†These authors have contributed equally to
this work

RECEIVED 23 August 2023
ACCEPTED 08 May 2024

PUBLISHED 21 May 2024

CITATION

Li J, Dan K and Ai J (2024) Machine learning
in the prediction of immunotherapy response
and prognosis of melanoma: a systematic
review and meta-analysis.
Front. Immunol. 15:1281940.
doi: 10.3389/fimmu.2024.1281940

COPYRIGHT

© 2024 Li, Dan and Ai. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Systematic Review

PUBLISHED 21 May 2024

DOI 10.3389/fimmu.2024.1281940
Machine learning in the
prediction of immunotherapy
response and prognosis of
melanoma: a systematic review
and meta-analysis
Juan Li1†, Kena Dan2† and Jun Ai3*

1Department of Dermatology, Chongqing Dangdai Plastic Surgery Hospital, Chongqing, China,
2Department of Dermatology, The Third Affiliated Hospital of Chongqing Medical University,
Chongqing, China, 3Department of Dermatology, Chongqing Huamei Plastic Surgery Hospital,
Chongqing, China
Background: The emergence of immunotherapy has changed the treatment

modality for melanoma and prolonged the survival of many patients. However, a

handful of patients remain unresponsive to immunotherapy and effective tools

for early identification of this patient population are still lacking. Researchers have

developed machine learning algorithms for predicting immunotherapy response

in melanoma, but their predictive accuracy has been inconsistent. Therefore, the

present systematic review andmeta-analysis was performed to comprehensively

evaluate the predictive accuracy of machine learning in melanoma response

to immunotherapy.

Methods: Relevant studies were searched in PubMed, Web of Sciences,

Cochrane Library, and Embase from their inception to July 30, 2022. The risk

of bias and applicability of the included studies were assessed using the

Prediction Model Risk of Bias Assessment Tool (PROBAST). Meta-analysis was

performed on R4.2.0.

Results: A total of 36 studies consisting of 30 cohort studies and 6 case-control

studies were included. These studies were mainly published between 2019 and

2022 and encompassed 75 models. The outcome measures of this study were

progression-free survival (PFS), overall survival (OS), and treatment response. The

pooled c-index was 0.728 (95%CI: 0.629–0.828) for PFS in the training set, 0.760

(95%CI: 0.728–0.792) and 0.819 (95%CI: 0.757–0.880) for treatment response in

the training and validation sets, respectively, and 0.746 (95%CI: 0.721–0.771) and

0.700 (95%CI: 0.677–0.724) for OS in the training and validation sets, respectively.

Conclusion: Machine learning has considerable predictive accuracy in

melanoma immunotherapy response and prognosis, especially in the former.

However, due to the lack of external validation and the scarcity of certain types of

models, further studies are warranted.
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1 Introduction

Melanoma is a potentially fatal and highly malignant

melanocytic tumor with the highest metastasis and mortality rates

among all skin cancers (1). Melanoma accounts for < 5% of all skin

cancers but is responsible for 80% of skin cancer deaths. The

incidence and mortality of melanoma continue to rise every year

(2). Melanoma commonly develops in the skin but can also occur in

the mucosa and organs. Confirmed risk factors for cutaneous

melanoma include ultraviolet radiation and subsequent sunburn

(3). For primary melanoma without lymph node metastases, the 5-

year relative survival is 98% for stage I melanoma and 90% for stage

II melanoma (4). However, melanoma often metastasizes to the

lymph nodes first, and metastatic melanoma has a very poor

prognosis. Melanomas that are identified early are generally

removed by extensive local resection and staged by sentinel

lymph node biopsy. Advanced melanoma, on the other hand,

requires a multimodal approach consisting of systemic treatments

such as targeted therapy (e.g., targeted BRAF inhibition (BRAFi))

and immune checkpoint inhibitors (ICIs) (5).

Immunotherapy exerts antitumor activities by enhancing

immune responses in the body. However, hyperactivation of the

immune system can damage normal cells. The advent of cytotoxic

T-lymphocyte-associated protein 4 inhibitors (CTLA4 inhibitors)

and programmed death ligand 1 inhibitors (PD-1 inhibitors) has

completely revolutionized the management and treatment of

various cancers and especially improved the systemic treatment of

advanced melanoma (6). ICIs are superior to chemotherapy alone

in the treatment of melanoma, but ICI combination therapy is even

more effective than ICIs alone. As a result, nivolumab plus

ipilimumab has been approved for the treatment of metastatic

melanoma (7). A previous study showed that ipilimumab can

increase the long-term survival rate (3 years or longer) of

metastatic melanoma patients by about 20% (8). Although ICIs

can improve the survival time of melanoma patients and maintain

remission in responders, there are still a substantial number of

patients who do not respond to ICIs. It was reported that less than

50% of patients respond to ICI monotherapy (9). Similarly, about

60%-70% of melanoma patients are unresponsive to anti-PD-1

monotherapy (nivolumab or pembrolizumab), and 40%-50% of

patients are unresponsive to anti-CTLA-4 combination therapy

(10). Therefore, early identification of the survival outcomes of

melanoma patients receiving ICIs can aid in the development of

rehabilitation and follow-up strategies and is of great significance in

clinical practice. Unfortunately, there is currently a lack of such

highly effective and accurate prediction tools.

With the rapid development of intelligent computing in recent

years, machine learning has gained wide application in various

fields and has been integrated into clinical practice. In particular,

machine learning is commonly used for disease diagnosis and

prognosis prediction (11). As machine learning continues to be

improved and refined, challenges that were previously faced by

researchers and clinicians are now easily resolved, and these models

demonstrate great potentials in medical research, refinement of

clinical care, and prediction of treatment and cancer prognosis. In

fact, several studies have developed machine learning models for the
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early prediction of melanoma immunotherapy response and

prognosis. However, these models were constructed using

different methods and prediction variables such as clinical

features, radiomics features, and a combination of both features.

As a result, the predictive accuracy of these models has been

inconsistent, which hinders the further development of artificial

intelligence (AI) for the early prediction of immunotherapy

response in melanoma. Here, we conducted a meta-analysis to

systematically evaluate the predictive accuracy of machine learning

in immunotherapy response and prognosis of melanoma in order to

provide new insights into AI development in melanoma.
2 Materials and methods

Intervention studies involving animals or humans, and other

studies that require ethical approval, must describe the authority

that provided approval and the corresponding ethical approval

code. This systematic review and meta-analysis was performed

according to the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRIMSA) guidelines (12).
2.1 Article search strategy

Relevant articles were systematically searched in PubMed,

Cochrane Library, Embase, and Web of Science from their inception

to July 30, 2022, without restrictions on country, language, or

publication type. Search keywords included “Melanoma”, “machine

learning”, and “Immune Checkpoint Inhibitors”. The complete search

strategy for all databases is shown in Supplementary Table 1.
2.2 Inclusion and exclusion criteria

Inclusion criteria:
1. Patients who have been diagnosed with melanoma and

received ICI treatment;

2. A complete machine learning predictive model for

immunotherapy response or prognosis of melanoma;

3. Studies that only trained but did not validate the model

using an independent validation set were included;

4. Different machine learning models based on the same

dataset were included;

5. Studies published in English;

6. Randomized-controlled trials (RCTs), case-control studies,

cohort studies, nested case-control studies, and case-cohort

studies were included.
Exclusion criteria:
1. Studies that did not clearly describe ICI for the treatment

of melanoma;

2. Only risk factors analysis was performed without the

construction of a complete risk model;
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3. Lack of metrics (receiver operating characteristic (ROC)

curves, c-index, sensitivity, specificity, accuracy, recovery,

precision, confusion matrix, diagnostic 2x2 table, F1 score,

and calibration curve) that evaluate the accuracy of the

machine learning model;

4. Meeting abstract without full text.
2.3 Article screening

The identified articles were imported into Endnote X20, and

duplications were automatically and manually identified and

removed. Titles and abstracts were screened, and the full texts of

potentially eligible studies were downloaded for further review.

Article screening was independently conducted and cross-checked

by two researchers (Juan Li and Kena Dan). Any disagreement was

resolved with the help of another researcher (Jun Ai).
2.4 Data extraction

A data extraction formwas designed based on themodified Critical

Appraisal and Data Extraction for Systematic Reviews of Prediction

Modelling Studies (CHARMS) (13). Data that were extracted include:
1. Characteristics of included studies: Title, first author, year

of publication, country, study type, and source of patients.

2. Characteristics of immunotherapy: Immunotherapy drug

and duration of follow-up.

3. Characteristics of machine learning: Prediction goals,

validation set, training set, method of variable screening/

feature selection, model type, modeling variables, and

model evaluation measures.
Data extraction was independently performed and cross-checked

by two researchers (Juan Li and Kena Dan). Any disagreement was

resolved with the help of another researcher (Jun Ai).
2.5 Risk of bias assessment

The risk of bias and applicability of the included studies were

evaluated using the Prediction Model Risk of Bias Assessment Tool

(PROBAST) (14). This tool includes 4 domains, namely

participants, predictors, outcome, and analysis. The risk of bias in

each included study was assessed as “high risk”, “low risk” or

“unclear risk”. This process was independently completed by two

researchers (Juan Li and Kena Dan), and any disagreement was

resolved with the help of a third researcher (Jun Ai).
2.6 Outcome measures

The outcome measures for this systematic review were overall

survival (OS), progression-free survival (PFS), and objective

response rate (ORR) of ICI-treated melanoma patients.
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2.7 Data analysis

A meta-analysis was performed on the c-index and accuracy of

machine learning models. If the c-index lacks a 95% confidence

interval (IC) and standard error, the standard error was estimated

using the methods by Debray TP et al (15). Given the differences in

variables and parameters used in various machine learning models,

a random effects model was used for the meta-analysis of c-index. In

addition, sensitivity and specificity were meta-analyzed using a

bivariate mixed effects model. Subgroup analysis was performed

based on each type of modeling variables (genomics, radiomics, and

clinical characteristics. All meta-analyses were completed on R4.2.0

(R development Core Team, Vienna, http://www.R-project.org).
3 Results

3.1 Process of article screening

A total of 2,759 records were identified from the four databases,

and 1,062 duplicate records were deleted. After title and abstract

screening, 1,624 records were excluded, and the remaining 72 records

were assessed for eligibility. After reviewing the full texts, 36 records

were further excluded, and a final total of 36 records were included in

the meta-analysis. The study selection process is shown in Figure 1.
3.2 General characteristics of
included studies

The year of publication of the 36 included studies was primarily

between 2019 and 2022. Of the 36 studies, 18 were conducted in
FIGURE 1

Process of study selection.
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China (16–33) and 5 were conducted in Germany (34–38). The

primary outcome measures were treatment response, OS, and PFS.

The included studies encompassed 75 models, including 45 OS

prediction models, 21 treatment response models, and 6 PFS

prediction models. In terms of modeling variables, there were 17

clinical features-based models, 27 radiomics-based risk models, and

31 genomics-based models. The specific characteristics of the

included studies (16–50) are summarized in Table 1.
3.3 Risk of bias assessment

All included studies evaluated the OS, treatment response, and

PFS of melanoma patients after ICI treatment. Patients used for OS

and PFS evaluation mainly originated from the respective cohort

studies in registered databases and single-center electronic case

databases. PROBAST assessment indicated that studies from the

registered databases had a low risk of bias while those from the

single-center electronic case database had a high risk of bias.

Patients used for treatment response evaluation originated from

case-control studies in registered databases or single-center

electronic case databases. Most studies did not have >20 events

per variable (EPV) or >100 patients in the independent validation

set. Therefore, these two parameters constituted the primary

sources of high bias in the included models (Figure 2).
3.4 Meta-analysis

The OS, treatment response, and PFS data were pooled from the

36 studies to determine the c-index (95% CI) of each outcome

measure predicted by different models and modeling variables.

Genomics-based prediction models showed the best performance

in OS prediction. The pooled c-index was 0.805 (95%CI: 0.731–0.879)

in the training set and 0.694 (95%CI: 0.670–0.718) in the validation

set, and the logistic regressionmodel performed best with a c-index of

0.882 (95%CI: 0.835–0.929). Radiomics-based models ranked second

in OS prediction (pooled c-index: 0.733 (95%CI: 0.722–0.745) in the

training set), followed by clinical features-based models [pooled c-

index: 0.719 (95%CI: 0.664–0.774) in the training set and 0.650 (95%

CI: 0.641–0.659) in the validation set]. The overall c-index for OS was

0.746 (95%CI: 0.721–0.771) in the training set and 0.700 (95%CI:

0.677–0.724) in the validation set (Table 2).

For the prediction of treatment response, the pooled c-index of

radiomics-based models was 0.802 (95%CI: 0.739–0.866) in the

training set and 0.813 (95%CI: 0.711–0.915) in the validation set.

The pooled c-index of genomics-based models was 0.760 (95%CI:

0.668–0.853) in the training set and 0.857 (95%CI: 0.698–1.000) in

the validation set. The pooled c-index of clinical characteristics-based

models was 0.723 (95%CI: 0.699–0.747). The overall c-index for

treatment response was 0.760 (95%CI: 0.728–0.792) in the training

set and 0.819 (95%CI: 0.757–0.880) in the validation set (Table 3).

Only genomics-based machine learning models were included

for PFS prediction, but a validation set was lacking for the

calculation of c-index. The overall c-index for PFS was 0.728

(95%CI: 0.629–0.828) in the training set (Table 4).
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4 Discussion

4.1 Summary of the main findings

We performed a meta-analysis of the outcome measures

of melanoma patients receiving ICI from 36 studies, and the

pooled c-index showed that machine learning exhibits

considerable predictive accuracy in melanoma immunotherapy

response and prognosis. Our results showed that the genomics-

based logistic regression model had the best performance in OS

prediction [c-index 0.882 (95%CI: 0.835–0.929)], while the

genomics-based random forest plot model performed best in

treatment response and PS prediction [c-index 0.895 (95%CI:

0.867–0.923) and 0.900 (95%CI: 0.827–0.973), respectively].

Overall, we found that machine learning had the highest

predictive accuracy for immunotherapy response in melanoma

patients [0.760 (95%CI: 0.728–0.792) in the training set and 0.819

(95%CI: 0.757–0.880) in the validation set].
4.2 Comparison with previous reviews

Several studies have investigated the application of AI in the

treatment and management of advanced melanoma. A review by

Guerrisi et al. has discussed the application significance and

challenges of AI in melanoma treatment but failed to assess the

risk of bias and accuracy of existing machine learning models (51).

Valenti and colleagues have provided an overview of the application

of multi-omics (genomics, transcriptomics, proteomics,

metabolomics and radiomics) in evaluating the immunotherapy

response of melanoma. Many of these multi-omics models were

highly dependent on machine learning, and their accuracy was not

systematically described (52). Furthermore, another systematic

review by Guerrisi et al. revealed that radiomics is a new robust

approach for predicting targeted therapy and immunotherapy of

melanoma (53). Though, none of these reviews has quantitatively

assessed the predictive accuracy of the various machine learning

models in the immunotherapy response and prognosis of

melanoma. To fill in this gap, our systematic review has

quantitatively determined the predictive accuracy of relevant

radiomics-, genomics-, and clinical features-based machine

learning models in order to provide valuable insights into

subsequent development of AI tools.
4.3 Modeling variables

The selection of modeling variables is critical for machine

learning. Common modeling variables for cancer prediction

models are genomics, transcriptomics, proteomics, metabolomics,

radiomics, and clinical features. In particular, clinical features often

play an important role in model construction due to their ease of

acquisition and good interpretability. Therefore, clinical features-

based models are viewed as highly valuable by clinicians in

predicting tumor treatment response or prognosis, especially in

solid tumor prognosis. Moreover, machine learning models that
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Gang Hu (16) 2022 China cohort TCGA
GTEx
GEO

PD-1
PD-L1
CTLA4

OS 454 454 NA Un
mu

Luyao Tian (17) 2022 China cohort GEO PD-1 OS 87 87 NA LA
for

Kuixia Xie
(18)

2022 China cohort TCGA-
SKCM

PD-1 OS 322 68 144
110

Un
mu

Yalin Xie
(19)

2022 China cohort TCGA PD-1
CTLA-4

OS 471 471 NA LA

Rui Mao
(20)

2021 China cohort TCGA PD-1
CTLA-4

OS 454 210 231 Un
mu

Liuxing Wu
(21)

2021 China cohort TCGA
GEO

PD-1
CTLA-4

OS 1513 457 758
298

Un
mu

Ziqian Xu (22) 2021 China cohort TCGA
FerrD

PD-1
CTLA-4

OS 457 457 NA Un
mu

Xi Chen (23) 2021 China cohort Single center PD-1
CTLA-4

TR 50 50 NA LA

Sitong Zhou (24) 2021 China cohort TCGA PD-1
CTLA-4

OS 422 422 NA LA

Gang Li (25) 2021 China cohort TCGA PD-1
CTLA-4

OS 513 453 60 Un
mu

Yangyang Zeng (26) 2021 China cohort TCGA PD-1
CTLA-4

OS 471 471 NA LA

Xuan Wang (27) 2021 China cohort Single center PD-1
CTLA-4

PFS 69 69 69 LA

Yang Sheng (28) 2020 China cohort TCGA PD-1
CTLA-4

OS 381 381 NA Un
mu

Maolang Tian (29) 2020 China cohort TCGA
GEO

PD-1
CTLA-4

OS 448 321 127 LA

Kai Kang (30) 2020 China cohort TCGA PD-1
CTLA-4

OS 467 467 NA Un
mu

Zhi-long Wang (31) 2020 China Case-
control

Single center PD-1
CTLA-4

TR 50 34 16 LA

Xuanyi Wang (32) 2020 China Case-
control

GEO PD-1 TR 79 79 NA LA

Depei Li (33) 2020 China cohort Multicenter PD-1
CTLA-4

OS 8078 3542 4536 Un
mu
a

e
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Katharina Filipski (34) 2021 Germany Case-
control

TCGA PD-1 TR 396 396 396

Amadeus Schraag (35) 2019 Germany Case-
control

Single center PD-1
CTLA-4

OS
TR

103 69 34

Andreas Stefan
Brendlin (36)

2021 Germany cohort Single center PD-1
CTLA-4

TR 140 70 70

Felix Peisen (37) 2022 Germany cohort CMMR PD-L1
CTLA4

OS
TR

262 262 NA

Haidara Almansour (38) 2022 Germany cohort Single center PD-1
CTLA-4

OS
PFS

152 152 NA

Gabriela Marsavela (39) 2020 Australia. cohort Multicenter PD-1
CTLA-4

PFS 110 110 NA

Inês Pires da Silva (40) 2022 Australia cohort Multicenter PD-1
CTLA-4

OS
PFS

1511 500 419
592

Stefan Diem (41) 2015 UK Case-
control

Single center CTLA-4 OS 134 134 NA

Karla A. Lee (9) 2022 UK cohort TCGA PD-1
CTLA-4

ORR
PFS

165 165 NA

Anthime Flaus (42) 2022 France cohort Multicenter PD-1 OS
PFS

56 56 NA

Gulnur Ungan (43) 2022 France cohort Single center PD-1 OS
TR

71 71 NA

Gabriele Madonna (44) 2021 Italy cohort Single center PD-1
CTLA-4

RFS
OS

578 462 116

Alice Indini
(45)

2019 Italy Case-
control

Single center PD-1 PFS
OS

173 173 NA

Lucas Basler (46) 2020 Switzerland cohort Single center PD-1
CTLA-4

TR 112 112 NA

Simon Burgermeister (47) 2022 Switzerland cohort Single center PD-1
CTLA-4

OS 94 94 NA

Laurent Dercle (48) 2022 US cohort Vol-PACT PD-1 OS
TR

575 252 287

Deirdre Kelly (49) 2021 Canada cohort Single center PD-1
CTLA-4

TR 71 75 NA

Max J. Karlsson (50) 2021 Sweden cohort Single center PD-1
CTLA-4

PFS 109 109 NA
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integrate tumor stages have been shown to demonstrate superior

predictive accuracy than other omics-based models. The emergence

of ICIs has completely changed the treatment modality and

prolonged the PFS and OS of melanoma patients (54). Despite

the success of immunotherapy, treatment response and prognosis

still vary greatly among patients, rendering many patients unable to

benefit from these treatments. At present, PFS and OS predictions
Frontiers in Immunology 07
are still primarily based on clinical features. Our results showed that

clinical features-, radiomics- and genomics-based machine learning

models all exhibit favorable predictive accuracy in melanoma

treatment response and prognosis. In particular, radiomics-based

models have demonstrated promising application prospects in

treatment response prediction in cancer patients, which is

consistent with the findings by Zhang et al (55).
FIGURE 2

Risk of bias assessment.
TABLE 2 Meta-analysis of c-index of machine learning in OS prediction for ICI-treated melanoma patients.

Modeling variable Model

Training set Validation set

Number c-index Number c-index

Geonomics

cox 2 0.810[0.593 ~ 1.027] 28 0.694[0.670 ~ 0.718]

LR 3 0.882[0.835 ~ 0.929] NA NA

RF 3 0.710[0.562 ~ 0.858] NA NA

NB 1 0.820[0.724 ~ 0.916] NA NA

SVM 1 0.820[0.724 ~ 0.916] NA NA

ANN 1 0.840[0.749 ~ 0.931] NA NA

Overall 11 0.805[0.731 ~ 0.879] 28 0.694[0.670 ~ 0.718]

Radomics

cox 18 0.739[0.725 ~ 0.752] NA NA

LR 2 0.715[0.689 ~ 0.742] NA NA

RF 3 0.719[0.668 ~ 0.769] NA NA

Overall 23 0.733[0.722 ~ 0.745] NA NA

Clinical characteristics

cox 6 0.744[0.682 ~ 0.805] 2 0.650[0.641 ~ 0.659]

RF 3 0.666[0.495 ~ 0.837] NA NA

Overall 9 0.719[0.664 ~ 0.774] 2 0.650[0.641 ~ 0.659]

Overall 43 0.746[0.721 ~ 0.771] 34 0.700[0.677 ~ 0.724]
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4.5 Limitations

There are several limitations to this study. First, due to practical

reasons and the lack of external validation, the c-index of the training

set was relatively high. Second, the low number of certain types of

models in the included studies impeded the assessment of their

predictive accuracy. Last, only a few of the included studies reported a

diagnostic continency table or sensitivity and specificity for predicting

treatment response, OS and PFS. Therefore, sensitivity and specificity

will need to be further analyzed in subsequent studies.
4.6 Future prospects

(1) Various adverse events (AEs) have been reported in

melanoma patients receiving ICIs. Hence, early prediction of ICI-
Frontiers in Immunology 08
related AEs has important clinical implications in treatment decision-

making. However, very few published studies have investigated the

predictive performance of machine learning in AEs. Therefore, the

performance of machine learning models in predicting the risk of

immunotherapy-related AEs in melanoma should be further

examined in future work (2). The selection of modeling variables is

critical for machine learning. We hope to identify more efficient and

convenient predictors in our subsequent studies (3). Although our

study showed that radiomics-based models have favorable predictive

accuracy in immunotherapy response and prognosis of melanoma,

radiomics faces many drawbacks such as over-configuration of

imaging equipment, segmentation specificity of regions of interest,

diversity in the modeling process, and lack of external validation.

Thus, the development of a rational guideline for standardizing the

implementation of radiomics research is warranted.
5 Conclusion

Machine learningmodels, especially those based on radiomics, have

promising predictive accuracy in melanoma immunotherapy response

and prognosis. Radiomics has gained wide interest in the research

community in recent years, and hence standardization of radiomics

research is critical for minimizing the risks of heterogeneity and bias.
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TABLE 3 Meta-analysis of c-index of machine learning in treatment response prediction for ICI-treated melanoma patients.

Modeling variable Model

Training set Validation set

Number c-index Number c-index

Genomics

LR 4 0.723[0.659 ~ 0.786] NA NA

RF 1 0.895[0.867 ~ 0.923] NA NA

SVM 1 0.750[0.614 ~ 0.886] 1 0.857[0.698 ~ 1.000]

Overall 6 0.760[0.668 ~ 0.853] 1 0.857[0.698 ~ 1.000]

Radiomics

LR 3 0.796[0.756 ~ 0.836] 2 0.813[0.711 ~ 0.915]

RF 3 0.779[0.646 ~ 0.912] 1 0.710[0.508 ~ 0.912]

SVM 2 0.871[0.794 ~ 0.948] NA NA

overall 8 0.802[0.739 ~ 0.866] 3 0.813[0.711 ~ 0.915]

Clinical characteristics

LR 3 0.704[0.678 ~ 0.730] NA NA

RF 3 0.738[0.711 ~ 0.765] NA NA

overall 6 0.723[0.699 ~ 0.747] NA NA

Overall 20 0.760[0.728 ~ 0.792] 4 0.819[0.757 ~ 0.880]
TABLE 4 Meta-analysis of c-index of machine learning in PFS prediction
for ICI-treated melanoma patients.

Model Number c-index

cox 1 0.785[0.671 ~ 0.899]

LR 1 0.640[0.515 ~ 0.765]

RF 1 0.900[0.827 ~ 0.973]

NB 1 0.690[0.570 ~ 0.810]

SVM 1 0.630[0.504 ~ 0.756]

ANN 1 0.690[0.570 ~ 0.810]

Overall 6 0.728[0.629 ~ 0.828]
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