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The molecular landscape of
sepsis severity in infants:
enhanced coagulation, innate
immunity, and T cell repression
Susie Shih Yin Huang1,2, Mohammed Toufiq2,
Pirooz Eghtesady1, Nicholas Van Panhuys2*†

and Mathieu Garand1,2*†

1Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of
Medicine, St. Louis, MO, United States, 2Department of Immunology, Sidra Medicine, Doha, Qatar
Introduction: Sepsis remains a major cause of mortality and morbidity in infants.

In recent years, several genemarker strategies for the early identification of sepsis

have been proposed but only a few have been independently validated for adult

cohorts and applicability to infant sepsis remains unclear. Biomarkers to assess

disease severity and risks of shock also represent an important unmet need.

Methods: To elucidate characteristics driving sepsis in infants, we assembled a

multi-transcriptomic dataset from public microarray datasets originating from

five independent studies pertaining to bacterial sepsis in infant < 6-months of age

(total n=335). We utilized a COmbat co-normalization strategy to enable

comparative evaluation across multiple studies while preserving the

relationship between cases and controls.

Results: We found good concordance with only two out of seven of the

published adult sepsis gene signatures (accuracy > 80%), highlighting the

narrow utility of adult-derived signatures for infant diagnosis. Pseudotime

analysis of individual subjects’ gene expression profiles showed a continuum of

molecular changes forming tight clusters concurrent with disease progression

between healthy controls and septic shock cases. In depth gene expression

analyses between bacteremia, septic shock, and healthy controls characterized

lymphocyte activity, hemostatic processes, and heightened innate immunity

during the molecular transition toward a state of shock.

Discussion: Our analysis revealed the presence of multiple significant

transcriptomic perturbations that occur during the progression to septic shock

in infants that are characterized by late-stage induction of clotting factors, in

parallel with a heightened innate immune response and a suppression of adaptive

cell functionality.
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Introduction

Sepsis affects over 19 million patients annually, with global

mortality rates at around 25-30% (1–3). Although palliative care

and anti-microbial treatment have markedly improved sepsis

management, mortality rates remains high due to disease

heterogeneity, highly variable host characteristics, including

cardiovascular and immunological comorbidities, and shortcomings

in methods for early detection and diagnosis (4, 5). In young infants,

the detection of sepsis is often compounded by other events,

including systemic inflammatory response to trauma or surgery,

and signs of infection can be rather subtle due to the immaturity of

the immune system (6). A positive bacterial culture is the current

definitive criterion used for diagnosis of infection, with downsides

including lengthy culture times (24-48hrs) and incidents of false

negative/positive results (7, 8). The prospect for significant

improvement of patient outcomes through early detection of

infections has motivated the investigation of alternate predictors or

markers, including gene signatures (9).

Several gene signatures for sepsis development have been

established from adult cohorts (10–16) while information from

younger cohorts has been more difficult to obtain. Currently, there

are only a handful of published transcriptomic signatures for

neonates and infants with sepsis (11, 12, 17–19). Sweeney et al.

(2018) validated a gene-based diagnostic signature in the neonate age

group, achieving an accuracy of 0.9 for sepsis classification among

three independent cohorts (11). However, the differentially

modulated genes and the underlying biological perturbations

responsible for inducing the genetic signature remain to be

explored. The immunological cascades in infants are different than

in more mature age groups (17, 18). Previous comparative models to

distinguish viral and bacterial infections have determined the

existence of differential immunological features between infants and

older cohorts, highlighting the need for specific studies in infant

sepsis (20). The period spanning from 0 to 6 months is recognized as

a phase of heightened vulnerability to infections, characterized by a

unique immune state that merits further investigation. This

distinctive immunological landscape during early infancy

underscores the importance of delving deeper into the intricacies of

this critical developmental stage.

In order to accurately refine and apply predictive molecular

signature(s) to infant sepsis, it is critical to better understand the

biological processes and immune responses as they occur in infants. As

such, we queried publicly available microarray studies which include

infants with bacterial sepsis (henceforth referred to “bacteremia”),

septic shock, and healthy controls to increase sample size and

statistical power for detecting differences in their gene expression

profiles. A total of five datasets, consisting of 335 subjects, formed

the multi-transcriptome (henceforth referred to “merged dataset”).

Successive normalization steps were employed to minimize inter-

dataset variability and the impact of potential confounders. Several

published sepsis gene marker signatures were then tested (11–16, 21).

Here, we recapitulated some expected signatures, whilst the majority

tended to be specific to the age of the derived cohort. Differentially

expressed genes (DEGs) were generated between Bacteremia, Septic
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Shock, and Healthy Controls groups and examined for their putative

roles by over-representation enrichment analyses (ORA). We also

performed the analyses with computationally determined pseudotime

clusters in a ‘side-by-side’ fashion. We show that molecular

perturbations among infants with Bacteremia spread over a

pseudotime continuum and largely fit into clusters resembling

Healthy Controls, Septic Shock, or a transitory state. Importantly, the

pseudotime clustering revealed a transition from adaptive immune

cues, such as IFN-gamma production, towards greater activation of

innate cells and pathways coincident with progression of

disease severity.
Materials and methods

Study design and dataset selection

The study is a re-analysis of publicly available microarray

datasets. In brief, searches for genome-expression studies of infant

sepsis (up to 6 months of age) were conducted in PubMed, NCBI

GEO, and EBI ArrayExpress. We also leveraged the availability of our

recently published transcriptomic dataset collection on sepsis, called

SysInflam HuDB (22), to identify the appropriate studies. The

keywords “neonate* AND sepsis” as well as “infant* AND sepsis”

were used to query the databases. Only datasets which included both

infants with sepsis and a reference/control class, where ages of the

individual subject were specified and gestational ages > 30 weeks

were included.
Sepsis definition

Categories of sepsis were determined from the associated

clinical data of the original publications with the consensus that

blood culture positivity is the established standard for the diagnosis;

therefore, each case represents bacterial sepsis and is referred to as

bacteremia in this study. The study-specific definitions are provided

as Supplementary Information.
Data processing and normalization

When available, raw data were downloaded and datasets were

individually normalized using RMA normalization method (for

Affymetrix microarray) or normal-exponential background

correction followed by quantile normalization (for Illumina

microarray) unless indicated (Table 1). GSE25504 is composed of

three platforms. Data were then log2-transformed and the probes

summarized to genes, using the mean if a gene was matched to

multiple probes. The resulting median gene number per platform

was 21,107 (18,947 to 22,296). Only genes that are present in all

platforms were retained (8466 genes) for further analysis.

High heterogeneity was evident despite prior individual dataset

normalization. Thus, COmbat CO-Normalization Using conTrols

(COCONUT) (20), an empirical Bayes normalization-based
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TABLE 1 Description of the datasets retrieved from public databases and study characteristics associated with each dataset.

Individual
dataset

normalization

Associated
paper

Study type

Clinical
setting

of
enrollment

Sample
collected

Raw data obtained
from GEO ->

Normal-
exponential
background
correction ->

quantile
normalization ->
Log2 transformed

-> Probes
aggregated
by mean.

Association of
RNA

Biosignatures
With Bacterial
Infections in
Febrile Infants
Aged 60 Days
or Younger.
JAMA 2016

Prospective
observational

Infants aged
60 days or
younger

evaluated for
fever at

emergency
department.

Blood -
Tempus
tube

Robust spline
normalised data

obtained
from GEO.

Whole blood
gene

expression
profiling of

neonates with
confirmed
bacterial

sepsis. Genom
Data 2015

Prospective
case–control

Infants aged
111 days or
younger

investigated
for suspected
infection at
neonatal
unit.

Blood -
PAXgene
tube

RMA-normalized,
Log2 transformed
data obtained from

GEO. Probes
aggregated
by mean.

Whole blood
gene

expression
profiling of

neonates with
confirmed
bacterial

sepsis. Genom
Data 2015

RMA-normalized,
Log2 transformed
data obtained from

GEO. Probes
aggregated
by mean.

Whole blood
gene

expression
profiling of

neonates with
confirmed
bacterial

sepsis. Genom
Data 2015

RMA-normalized,
Log2 transformed
data obtained from

GEO. Probes
aggregated
by mean.

Postnatal Age
Is a Critical
Determinant

of the
Neonatal Host
Response to
Sepsis. Mol
Med 2015

Prospective
observational

Infants aged
140 days or
younger

investigated
for suspected
infection at
neonatal
unit.

Blood -
PAXgene
tube

(Continued)
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GSE
Datasets

Platform Platform
Disease
definition

Source
of

definition
further details ICD-10

Total #
of

samples
Patient

Size
(Patient)

Healthy
Control

Size
(Healthy
Control)

GSE64456 GPL10558

Illumina
HumanHT-12

V4.0
expression
beadchip

Sepsis
Positive
blood
culture

Based on culture
results, febrile
infants were

assigned either to
with or without
bacterial infection

group (i.e.,
bacteremia from
single pathogen,

UTI,
bacterial

meningitis).

A41.89 46
Sepsis

bacteremia
32

Healthy
Control

14

GSE25504

GPL6947

Illumina
HumanHT-12

V3.0
expression
beadchip

Sepsis
Positive
blood
culture

Full clinical
assessment for
early and late
symptoms and
signs of sepsis

followed
presentation
criteria for

neonatal sepsis
(included
respiratory,

cardiovascular,
and/or metabolic

symptoms,
temperature

instability, feeding
intolerance,

lethargy/low tone,
jaundice, and/or
ill appearance/
poor color), and
the blood culture
was used as the
gold standard for

diagnosis
of sepsis.

A41.89 125

Sepsis
bacteremia

25
Healthy
Control

35

GPL15158
Codelink 55K
Human Array

Sepsis
bacteremia

23
Healthy
Control

27

GPL13667

[HG-U219]
Affymetrix
Human
Genome

U219 Array

Sepsis
bacteremia

9
Healthy
Control

6

GSE69686 GPL20292

[hGlue_3_0]
Custom

Affymetrix
Human

Transcriptome
Array

Sepsis and
Clinical
Sepsis

Mixed
(clinical
and

laboratory)

The decision to
evaluate a neonate
for sepsis was at
the discretion of
the attending
clinician. See
Supplemental
Information.

A41.89
and
A41.9

122
Sepsis

bacteremia
64

Healthy
Control

58
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TABLE 1 Continued

CD-10
Total #

of
samples

Patient
Size

(Patient)
Healthy
Control

Size
(Healthy
Control)

Individual
dataset

normalization

Associated
paper

Study type

Clinical
setting

of
enrollment

Sample
collected

R65.21 15
Septic
Shock

13
Healthy
Control

2

RMA-normalized,
Log2 transformed
data obtained from

GEO. Probes
aggregated
by mean.

The influence
of

developmental
age on the

early
transcriptomic
response of
children with
septic shock.
Mol Med 2011

Cross-
sectional

Children
aged 10 years
or younger
admitted to
the pediatric
intensive

care unit and
meeting
pediatric-
specific

criteria for
septic shock.

Blood -
PAXgene
tube

R65.21 27
Septic
Shock

17
Healthy
Control

10

RMA-normalized,
Log2 transformed
data obtained from

GEO. Probes
aggregated
by mean.

Identification
of pediatric
septic shock
subclasses
based on

genome-wide
expression

profiling. BMC
Med 2009

Cross-
sectional

Children
aged 10 years
or younger
admitted to
the pediatric
intensive

care unit and
meeting
pediatric-
specific

criteria for
septic shock.

Blood -
PAXgene
tube

e total number of patients, the type of study, clinical setting of the study, and sample collection/preservation method for each dataset.
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GSE
Datasets

Platform Platform
Disease
definition

Source
of

definition
further details

GSE26378 GPL570

[HG-
U133_Plus_2]
Affymetrix
Human

Genome U133
Plus 2.0 Array

Septic
shock

IPSCC

International
pediatric sepsis

consensus
conference 2005

GSE26440 GPL570

[HG-
U133_Plus_2]
Affymetrix
Human

Genome U133
Plus 2.0 Array

Septic
shock

IPSCC

International
pediatric sepsis

consensus
conference 2005

IPSCC, International Pediatric Sepsis Consensus Conference.
Description of the title-journal-year of publication of the associated articles, the patient group(s), th
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algorithm, was utilized to co-normalize the merged dataset. In brief,

platform-specific control samples were co-normalized to allow for a

direct comparison against all case samples. Expression of

housekeeping genes (ATP6V1B1 and GAPDH) and those known

to be modulated by disease status (CEACAM1 and DYSF) were used

to evaluate the normalization performance as previously described

(20, 23). Pearson’s correlation was used to assess the prior and post

normalized distributions and whether the relationship between the

control and case groups was maintained. All subsequent analyses

were performed on the log2 co-normalized (COCONUT-normalized)

merged dataset, unless stated otherwise.
Patient classification with published
gene predictors

FAIM-to-PLAC8 ratio (RG), SeptiCyte Lab (SLS), and Sepsis

Metascore (SMS), were calculated as published (11, 14, 15). For

others, the mean of the gene markers’ expressions was used. For

categorization, each individual is binarized (0 = Control; 1 = Case),

using the 3rd quartile of the healthy controls as the threshold for

Case. Area under the ROC curves (AUROCs) for each of the gene

predictor sets were plotted and confusion matrix and statistics

(Caret v.3.45) were used to determine the accuracy, sensitivity,

and specificity for the published gene markers.
Pseudotime analysis

We explored the relationship between all groups on an assumed

continuum of disease progression in pseudotime, using the overall

gene expression profiles of individual subjects, in Monocle3 (24). In

brief, the merged dataset was anti-log2 transformed and processed

with the function preprocess_cd() with num_dim = 50 and reduced

via method = UMAP. The earliest principal node was identified with

“Healthy Controls” set as the closest vertex index. Genes that were

most specifically expressed in each group along the pseudotime

trajectory were calculated using topmarker() with the following

parameters: reference_cells = 1000, marker_test_q_value< 0.01 and

specificity ≥ 0.50.
Differential gene expression analysis and
gene ontology enrichment

Differentially expressed genes (DEGs) were determined in a

pairwise manner between disease groups or pseudotime clusters

using a two-sided Wilcoxon rank-sum test. Significance was

denoted by the following thresholds: log2FC >1 and Benjamini-

Hochberg (BH) adjusted p-value (p.adjust) < 0.05. Gene Ontology

(GO) enrichment analysis using clusterProfile (25) was performed

on the DEGs obtained. In brief, a single gene set per comparison

was queried for org.Hs.eg.db GO terms associated with the

perturbed biological processes with the following thresholds:

minimal gene set size at 3, FDR < 0.05, and dispensability

threshold = 0.4 for term redundancy reduction via simplify().
Frontiers in Immunology 05
Immune cell type deconvolution

The relative distribution of 22 different human immune cell

types was deconvoluted using LM22 as the reference signature with

CIBERSORTx (26) (https://cibersortx.stanford.edu/). A correlation

p-value < 0.05 was applied resulting in 288 samples; all but one

Septic Shock sample were dropped, thus the group was excluded.

Absolute deconvolution of 29 immune cell types was also obtained

using the Shiny app (https://github.com/giannimonaco/ABIS) (27).

This method has no constraints, hence in case where values were

close to zero - due to presumed technical or biological variability -

they were set to zero. In case where values were very low negative

values due to strong biological or technical variability for the cell

type - the cell type was excluded from the analysis.
Classification performance of gene
modules and signatures

Genes deemed important in differentiating disease groups and

clusters were combined into modules. Sets of modules were tested for

their classification ability. Random forest classification algorithm was

performed using MetaboAnalyst 5.0 (28) and significant features (i.e.,

genes) of importance (mean decrease accuracy > 0.5%) of the

classification model were extracted. We computed scores based on

the sum of linear expression of the genes selected. For categorization,

each individual was binarized (0 = Control; 1 = Case) using the

3rd quartile of the healthy controls as the threshold. The formulas for

the scores were 1) log (o (pos : reg
1
1:5 )=o (neg : reg0:5)), for the

combination of gene modules, and 2) log (ABS(o (pos : reg)=250:5)  − 

o (neg : reg=210:5))), for the Garnett marker signature. The sensitivity,

specificity, and accuracy of each score to classify individuals as Healthy

Control or Case (individuals with Bacteremia and Septic Shock) was

determined using the ‘caret v.3.45’ package in R.
Statistical analysis

Unless otherwise stated, Kruskal-Wallis one-way analysis of

variance by ranks test was used to determine the difference among

multiple groups and Wilcoxon rank-sum test was used for two-

group comparisons. Significances are denoted at p.adjust < 0.05.
Results

Characteristics of the selected datasets
and cohorts

A total of five datasets, encompassing six different microarray

platforms, satisfied our selection criteria and were retrieved from

public databases (Table 1). The datasets were generated from

prospective observational (n = 2), prospective case-control (n =1),

or cross-sectional studies (n = 2). In all the studies, whole blood was

collected and stabilized in RNA-preserving solution (Tempus or
frontiersin.org
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PAXgene). We categorized the combined subjects (n = 335) into

three groups: Bacteremia (n = 151), Septic Shock (n = 30), and

Healthy Controls (n = 154). Age is reported for all datasets, with an

overall mean at 18 days (95% CI 15-22). Sex was available for three

out of the five datasets and the estimated distribution is 59%male and

41% female. A list of the most common clinical variables is available

in Supplementary File 1 and includes additional information.
COCONUT normalization circumvented
potential biases from microarray platforms,
age, and sex while preserving gene
expression contrast between healthy
controls and patients

High heterogeneity across microarray platforms is a common

feature. In the merged dataset, obvious platform and study-specific

biases were observed (Supplementary Figure 1). Thus, additional

normalization was performed using COCONUT (20). Pearson’s

correlation (cor = 0.982, p-value < 2.2e-16) and Empirical

Cumulative Distribution Function were used to assess the prior

and post normalized distributions. The marked difference in overall

gene expression profile between the control and case groups
Frontiers in Immunology 06
(Bacteremia and Septic Shock) was shown to be maintained after

this additional normalization (Supplementary Figure 2).

To illustrate the performance of the COCONUT normalization,

we visualized the log2 expression values of commonly used house-

keeping genes (ATP6V1B1, and GAPDH) and genes known to be

modulated by infection (CEACAM1 and DYSF) (Figure 1) as

previously shown (20, 23, 29). A much smaller variance for the

housekeeping genes ATP6V1B1 and GAPDH, after normalization

(Figure 1, bottom panel) was seen compared with that of pre-

normalization (Figure 1, top panel). The pronounced increased

expression of genes related to infection (CEACAM1 and DYSF)

were not diminished. Furthermore, the post-normalized data

showed a marked reduction of platform bias and better

distribution of gene expression among the Healthy Controls.

GAPDH expression was additionally assessed, as it has been

reported to vary in elderly individuals with sepsis (30), yet

frequently used to normalize gene expression in previous studies

of neonates with sepsis (12, 31). Principal component analysis (PCA)

on the post-normalized data (Supplementary Figures 1C, D) also

showed marked improvement of gene expression distribution across

platforms and Healthy Controls compared with pre-normalization

(Supplementary Figures 1A, B). In addition, we did not observe

notable cluster separations due to the age or sex of the subjects
FIGURE 1

Log2 expression of housekeeping genes (ATP6V1B1 and GAPDH) and markers of infections (CEACAM1 and DYSF) pre- and post-normalization using
COCONUT. A much smaller variance for the housekeeping genes, after normalization (bottom panel) is seen compared with that of pre-
normalization (top panel). The normalization step did not diminish the pronounced increased expression of genes related to infection. The double-
layered color-coded bars indicate the source dataset (top bar) and the disease group (bottom bar) and is the same in both top and bottom panels.
The legend on the right provides color-coded annotation to the dataset and disease group.
frontiersin.org
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(Supplementary Figures 1E, F). Therefore, COCONUT

normalization had effectively removed study-specific biases,

including the technology platform used, and maximized gene

expression profile homogeneity ahead of downstream analyses.
Published biomarker gene signatures have
limited usability for detection of sepsis in
infants unless a signature is specifically
validated for that population

The first six month of life harbors distinct immune responses that

progressively develop into ‘adult’ like, including defense mechanisms

against viral and bacterial infections (2, 32). This has meaningful

implication for sepsis biomarker signatures developed in cohorts of

various age categories. To examine this aspect in our newly merged

infant dataset, we assessed the classification performance of seven sets

of published sepsis gene signatures determined from various cohorts

(Supplementary Table 1), namely: Sepsis Metascore (SMS) (11), 7-gene

signature from neonates (NS) (12), 25-gene signature from pediatrics

(PD25) (13), 3-gene signature from pediatrics (PD3) (21), SeptiCyte

Lab (SLS) (14), FAIM-to-PLAC8 ratio (RG) (15), and 6-gene signature

from geriatrics (GD) (16). We calculated the signature scores for each

of our groups and found significant informative differences about the

generalizability of the markers and their usage in wider age groups,

such as infants aged 0 to 6 months (Figures 2 A–G). The accuracy of

SMS is evident by the significant increases in score value for each Case

group compared against Healthy Controls, and between Case groups,

indicating a good overall capture of disease severity (Figure 2A). A

similar observation can be made only for the GD signature. On the

other hand, the NS signature showed significant difference only

between the Healthy Controls and Bacteremia groups. No significant

differences were observed with SLS; note that this score was derived

from adult cohorts. We then examined the signature performance

between all cases combined (either Bacteremia or Septic Shock) vs

Healthy Controls. We found that SMS performed the best (accuracy =

85%), followed by GD, RG, PD25, and PD3 (82%, 77%, 75%, 74%,

respectively; Figure 2H). The performance of NS and SLS were notably

less accurate (60% and 56%, respectively). The utility of gene biomarker

signature is mostly dependent on the age group from which it was

derived and/or validated, highlighting the need to further knowledge of

gene expression dynamics in specific cohort such as in infants ≤ 6-

months of age.
A data-driven approach comprehensively
delineated the gene expression profile of
each patient, revealing distinctive
molecular clusters that offer valuable
insights into the disease state, particularly
for patients with bacteremia

Sepsis pathogenesis evolves along a continuum of events from

the presence of a pathogen in the blood, to counteracting

immunosuppression, before deterioration into multiple organ

failure, with major changes in cellular processes accompanying
Frontiers in Immunology 07
pathogenesis. At the molecular level, those changes are preceded by

changes in gene expression. Drawing upon the large sample size of

the merged studies, we explored the relationship in the overall gene

expression of the individual subjects on an assumed continuum of

disease progression in pseudotime between all groups. The results

showed a pseudotime trajectory with three distinct clusters: Cluster

1 is composed of individuals from the Healthy Controls and

Bacteremia groups, Cluster 2 is composed majorly of individuals

from the Bacteremia group along with a few from Healthy Controls,

and Cluster 3 includes all individuals from the Septic Shock group

and some from Bacteremia (Figures 3A, B; Supplementary File 2 for

a 3D interactive model). The mixture of individuals with bacteremia

and septic shock seen in Cluster 3 suggests a similarity between

those individuals at the molecular level and may be indicative of a

greater risk of progression towards shock for those clinically

categorized as Bacteremia in that cluster. Mapping the expression

of gene markers defining a cluster (referred to as Garnett markers)

facilitated visualization of the pattern, exemplified for Septic

Shock in Figure 3C and Cluster 3 in Figure 3D (refer to

Supplementary File 3 for lists of all markers for each group and

cluster). For instance, a low expression level of SERPINB10 emerged

as a marker of Septic Shock and Cluster 3 (Figures 3C, D). Notably,

three patients exhibited markedly higher SERPINB10 expression

than others. MMP8 and CISD2 also distinguished patients with

Septic Shock from others within Cluster 3 (Figure 3D). Specifically,

MMP8 expression was highest in patients with Septic Shock, yet

several within the same group displayed the lowest expression

levels. These findings advocate for the application of gene

signatures or modules where phenotype classification or

prediction is not solely based on individual gene expression but

on a collective of genes, whether they function in concert or

independently. In subsequent analyses, as detailed below, we

evaluated the performance of the Garnett markers in classifying

individuals into clinical groups.
Differential gene expression analysis
highlighted more pronounced
perturbations in septic shock, primarily
centered around neutrophil activation,
while changes in bacteremia primarily
revolved around T cell activation

In order to identify those gene markers that are the most

representative of disease progression, we performed differential

gene expression analysis based on groups formed either by

clinical disease status or by pseudotime clustering (Supplemntary

Figure 3). This comparative analytical approach allowed for an

expansion on the results generated through pseudotime clustering,

and to contrast the DEG’s identified with those generated based on

standardized clinical disease criteria.

The first differential gene expression analysis was performed on

all pair-wise comparisons of the two case groups and Healthy

Controls (Supplementary Figures 4A–C for volcano plots and

Supplementary File 4 for the full lists). The number of DEGs and

overlaps among disease groups is summarized in Figure 4A. Of
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note, among the top 10 common DEGs, modulation within the

Septic Shock group showed the greatest log2FC values, especially for

up-regulated DEGs (Supplementary Table 2). When looking at the

DEGs uniquely modulated (Supplementary Table 3), those in the

Bacteremia group involved functions related to “immune response

to external stimuli” , “leukocyte migration”, and T cell

differentiation/activation. Strikingly, the down regulations of

CD3E, CD3G, ZAP70, LCK and CD5 represent a gene module
Frontiers in Immunology 08
specifically associated with T cell activation. DEGs uniquely

modulated in the Septic Shock group are largely involved in

functions related to “leukocytes/granulocytes activation”, in

particular neutrophils, and “regulation of exocytosis”. When

comparing Bacteremia gene expression against Septic Shock (as

opposed to comparing against Healthy Controls), 12 DEGs were

unique among the 324 identified and the majority were related to

nuclear/chromatin processes; 11 were down- and 1 was up-
A B

D E F

G H

C

FIGURE 2

Performance of seven public sepsis marker signatures. (A–G) Sepsis Metascore (SMS), 7-gene signature from neonates (NS), 25-gene signature from
pediatrics (PD25), 3-gene signature from pediatrics (PD3), FAIM-to-PLAC8 ratio (RG) from adults, SeptiCyte Lab (SLS) from adults, and 6-gene
signature from geriatrics (GD). We calculated the individual scores and plotted their distribution, mean, and standard deviation. Patients were
grouped as indicated. Kruskal-Wallis one-way analysis of variance by ranks test was used to determine significance between the group means,
followed by Wilcoxon Rank test for the specific two-group comparisons at a Bonferroni adjusted p-value < 0.05. Significance is denoted by asterisks:
p-value < 0.001 (***), and 0.0001 (****). (H) Sensitivity and specificity curves for the performance of seven known sepsis marker signature on our
combined dataset comprising of infants.
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regulated in Bacteremia compared with Septic Shock. Notably, the

single upregulated gene was CXCL10 (linear FC of 2.4), a

multifunctional chemokine that is potently induced in response to

IFN-gamma signaling (33).
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The second differential gene expression analysis was performed

using the clusters formed in the pseudotime analysis with Cluster 1

as the reference (Supplementary Figures 4D–F for volcano plots and

Supplementary File 4 for the full lists). The number of DEGs and
A B

DC

FIGURE 3

Pseudotime pattern exploration of whole blood transcriptome. Trajectory inference, accomplished through pseudotime analysis using Monocle3 in
R, facilitated an unbiased ordering of samples along a trajectory, leveraging similarities in their transcriptome-wide gene expression patterns. This
method enabled a comparison between sample groupings generated via pseudotime clustering and those established using standardized clinical
disease criteria. In the plotted representation, each dot symbolizes an individual, with its position on the UMAP plot determined by coordinates. The
color scheme is either: (A) indicative of disease groups (orange for Healthy Controls, turquoise for Bacteremia, and purple for Septic Shock), or (B)
reflective of disease progression, showcasing pseudotime values and cluster numbers. Three nodes formed Cluster 1 in the lower right quadrant,
Cluster 2 is in the center-top, and Cluster 3 is in the lower left quadrant. As such, individuals from the Bacteremia group are spread over the
trajectory, while Healthy Controls are mostly segregated to Cluster 1 and Septic Shock are exclusively in Cluster 3. Examples of the expression of the
top 5 single gene that best represented this grouping (aka Garnett marker) for (C) the Septic Shock and (D) Cluster 3. Each gene marker was mapped
to the pseudotime plot where each dot represents an individual and the color scale represents gene expression level (log2). Thus, each plot allows to
visualize how one gene is expressed across the clinical groups. As well, one can assess the range of expression within each pseudotime cluster. For
example, SERPINB10 is shown as a marker of Septic Shock and Cluster 3 with predominantly low level of expression. A brief description of the
functions of each of the marker shown is listed below the plots. The lists of all markers for all groups and clusters are available in Supplemantary
File 3.
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overlap among clusters is summarized in Figure 4B. Of note, among

the top 10 common DEGs, there were several instances where a

reversal in the direction of changes between clusters was observed

(Supplementary Table 2); for example, CKAP4 and ROPN1L were

down-regulated in Cluster 2 but strongly up-regulated in Cluster 3.

When looking at the DEGs uniquely modulated (Supplementary

Table 3), those in the Cluster 2 involved functions related to

“protein localization to the endoplasmic reticulum” and “mRNA

catabolism”. In Cluster 3, the DEGs involved functions related

to “leukocytes/granulocytes activation”, in particular neutrophils,

and “regulation of exocytosis” as similarly observed for the Septic

Shock group. When comparing Cluster 2 gene expression against

Cluster 3, 106 DEGs were unique among the 393 identified; 81 were

down- and 25 were up-regulated. The functional roles of these

genes were mainly related to “lipid metabolism”, “carboxylic

acid metabolism”, and “activin receptor signaling pathway”.

Interestingly, CXCL10 was significantly upregulated (linear FC of

2.1) only when comparing Cluster 3 against Cluster 1, possibly

corresponding to the contribution of individuals with bacteremia

whose transcriptomic profiles indicated a transition towards

septic shock.

The comparison of the data-driven clusters provided more

granular information about the molecular changes that

accompany the states of bacteremia vs sepsis. Indeed, comparing

Cluster 2, mostly patients with bacteremia, to Cluster 3, a mixture

of patients with bacteremia and septic shock, we found 106

DEGs unique to this comparison; in contrast, there were only 12

unique DEGs between the Bacteremia and Septic Shock groups.

Thus, this list of DEGs is particularly interesting to investigate

biomarker genes associated with the process of advancing

disease severity.
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Gene ontology enrichment analysis
revealed significant enrichment of
coagulation with disease progression to
septic shock

To gain further understanding of the biological processes

perturbed during sepsis, we performed GO enrichment analysis

separately on the up- and down- regulated DEGs from each list

generated either from comparing the disease groups or the

pseudotime clusters (Supplementary Figure 3). The full lists of

enriched GO terms for all the comparisons are provided in

Supplementary File 5.

Against the background gene set (total number of genes

included in the merged dataset, 8466 genes), 121 and 16 GO

terms were enriched in Bacteremia using the up and down lists of

DEGs, respectively. In comparison, there were 175 and 12 GO terms

enriched in Septic Shock using the up and down lists of DEGs,

respectively. A succinct summary of the key enrichment categories

is shown in Table 2 and the top result for each comparison is shown

in Figure 5A. Interestingly, we found that GO terms related to

coagulation were markedly enriched in the Septic Shock group (see

‘Septic Shock Up’ plot in Figure 5A) and upon inspecting the log2
normalized expression of all the genes that contributed to the

enrichment of hemostasis-related processes, we found a distinct

hemostatic signature (Figure 5B). We then investigated GO

enrichment using the list of DEGs that came from comparing

Bacteremia against Septic Shock. There was no GO enrichment

for the up-DEGs list (only 9 DEGs were identified). From the down-

DEGs list, we observed major enrichment of “neutrophils

activation”, indicating that the state of septic shock involves a

significant increase in neutrophils activity.
A B

FIGURE 4

Differentially Expressed Gene (DEG) analysis comparing disease groups and pseudotime clusters. The histogram and associated bottom panel depict
the number of DEGs that were commonly identified (i.e., overlap) by the different disease group (A) and cluster (B) comparisons. With each
histogram plot, a traditional Venn diagram shows the same information, where the number of DEGs is indicated in the intersecting circles. For
example, in panel A, there are 36 DEGs that were only identified by comparing the Bacteremia group against Healthy Controls, this is indicated
above the bar in the histogram and in the non-intersecting area of the inset Venn diagram (blue circle labelled “Bac”). DEG analysis was performed
using two-sided Wilcox Rank test with the following significance thresholds: |log2FC|> 1 and p.adjust < 0.05. For the inset Venn diagram, the
abbreviations are: Bac, Bacteremia vs Healthy Controls; Bac vs SS, Bacteremia vs Septic Shock; SS, Septic Shock vs Healthy Controls; C2, Cluster 2 vs
1; C2 vs C3, Cluster 2 vs 3; and C3, Cluster 3 vs 1.
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Recalling the data-driven approach, three clusters were generated:

Cluster 1 is mainly composed of Healthy Controls, Cluster 2 is

composed majorly of individuals in the Bacteremia group, and

Cluster 3 is a mix of individuals with Bacteremia and Septic Shock.

With Cluster 1 as reference, the DEGs obtained with cluster 2 enriched

13 (using up DEGs) and 7 (using downDEGs) GO terms. For cluster 3,

there were 171 (using up DEGs) and 19 (using down DEGs) enriched

GO terms (see Table 2 for brief summary and Figure 6A for top results

of each comparison). When comparing Cluster 2 against Cluster 3, the

up-DEGs list enriched GO terms predominantly pertaining to “T cell

activation”, “receptor-mediated signaling”, and “IFN-gamma

production”. The down-DEGs list markedly enriched terms
Frontiers in Immunology 11
pertaining to “neutrophil activation”, “responses to external/bacterial

stimuli”, “innate immune responses” (Figure 6A). Upon investigating

the log2 normalized expression of all the genes that contributed to the

enrichment of neutrophils, innate immune responses, and T cell

activation, we found that Cluster 3 was clearly distinguishable from

the other clusters (Figure 6B), as well, the Septic Shock group was also

significantly different compared with Bacteremia and Healthy Controls

(Supplementary Figure 5).

The enrichment of biological processes related to neutrophil

activation in Septic Shock and T cell activation in Bacteremia

recapitulates the findings from the DEG analysis. Further, we found

that coagulation is progressively enriched as disease severity increases.
TABLE 2 Summary of GO term enrichment that predominates in each group/cluster using up- and down-regulated gene sets as indicated.

Representative enriched GO terms - comparing among disease groups

Derived from up-regulated DEGs in Bacteremia
(vs. Healthy Controls)

Derived from up-regulated DEGs in Septic Shock
(vs. Healthy Controls)

● Inflammatory/innate immune response
(GO:0050727, GO:0045088, GO:0002269)

● Hemostasis processes (GO:0007596,
GO:0007599, GO:0050817, GO:0002576)

● Myeloid leukocyte migration
(GO:0030595, GO:0097529)

● Myeloid cell differentiation (GO:0030099)

● Neuroinflammatory (microglia) response
(GO:0001774, GO:0150076)

● Response to stress (GO:0062197)

● Mitotic division (GO:0140014)

Derived from down-regulated DEGs in Bacteremia
(vs. Healthy Controls)

Derived from down-regulated DEGs in Septic Shock
(vs. Healthy Controls)

● Lymphocyte apoptotic process
(GO:0070227, GO:0070228)

● IFN-gamma production (GO:0032609,
GO:0032729)

● Regulation of calcium-mediated signaling
(GO:0050850)

Representative enriched GO terms - comparing among clusters

Derived from up-regulated DEGs
in cluster 2 (vs. cluster 1)

Derived from up-regulated DEGs in cluster 3 (vs. cluster 1)

● Erythrocyte homeostasis (GO:0006779,
GO:0033014, GO:0055072,
GO:0048821, GO:0006778,
GO:0034101)

● Neutrophil activation (GO:0042119,
GO:0043312, GO:0002283,
GO:0002446)

● Cellular oxidant detoxication
(GO:0098869, GO:0098754)

● Inflammatory response to external stimuli
(GO:0002237, GO:0032102,
GO:0071216, GO:0031667,
GO:0002831)

Derived from down-regulated DEGs in cluster 2 (vs. cluster 1) Derived from down-regulated DEGs in cluster 3 (vs. cluster 1)

● Translation-associated targeting to
membrane Protein targeting to ER
(GO:0006614, GO:0006613,
GO:0006413 - GO:0045047,
GO:0072599)

● T cell activation/proliferation (GO:0042110
GO:0030098, GO:0050852, GO:0050863,
GO:0050870, GO:0042129, GO:0046651,
GO:0002285)

● Leukocyte cell-cell adhesion
(GO:1903037, GO:0007159)

● IFN-gamma production
(GO:0032609, GO:0032729)

● Translation with protein targeting to membrane
(GO:0006614, GO:0006413)
The name of each group of GO was given to best represent the categories encompassed, with exact GO ID provided in parentheses. Circles represent the average log2FC (scaled 1/10) of the genes
that contribute to the enrichment; red and blue indicate enrichment from lists of up- and down-regulated genes, respectively. All GO terms considered for this summary were enriched with
p.adjust value< 0.001. Underlined words are to indicated divisions.
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Performance assessment of gene modules
and Garnett markers showed accuracy
above 80% to classify subjects in their
respective disease group

To follow up with the gene modules identified after our

exhaustive GO enrichment analyses, we tested their ability to

classify patients by disease group. First, we used a random forest

algorithm to extract the significant features (i.e., genes) of importance

that contribute the most to the classification model. The combination

of hemostasis, neutrophils, innate immune responses, and T cell

activation modules, a total of 142 genes, returned 28 significant genes

of importance with mean decrease accuracy > 0.5%. A gene

expression score was computed with those 28 genes and ROC

curve analysis indicated a classification accuracy of 0.813 (0.747

sensitivity, 0.878 specificity) (Supplementary Figure 6A). We also

used the Garnett markers identified with pseudotime analysis as the

input for the random forest analysis. Using the score calculated from

the 46 significant Garnet marker, we obtained an accuracy of 0.818

(sensitivity = 0.747, specificity = 0.879) (Supplementary Figure 6B).

These encouraging preliminary findings add support to the tactics we

used to generate infants-appropriate gene targets and hold promise to

improve and refine sepsis biomarkers.
Frontiers in Immunology 12
Immune cell deconvolution of the bulk
RNA expression data emphasized the
reduced involvement of B cell and multiple
T cell subtypes

The immune system is a heterogeneous mixture of cells. Disease

can affect both cell subsets and proportions of cells present. Recently

developed bioinformatic tools allow the extraction of a wealth of

information about cell type composition, a process called

deconvolution, using bulk transcriptomic data, whether RNA-Seq

or microarray-based. Thus, we performed immune cell

deconvolution of the bulk RNA expression data utilizing the

CIBERSORT analytical pipeline (34). CIBERSORT has shown

good validation with flow cytometry for major T and B

lymphocytes (35, 36). The results from CIBERSORT are

expressed as the relative proportion of cell type per sample, such

that the total of all calculated proportions adds up to 100% (an

overview of the results is shown in Supplementary Figure 7A). After

filtering samples with a modelling fit p-value threshold < 0.05, we

retained 149 and 139 samples belonging to the Healthy Controls

and Bacteremia, respectively, and 223, 24, and 41 belonging to

Cluster 1, 2, and 3, respectively. All but one individual from the

Septic Shock group were above the threshold, thus the latter group
A

B

FIGURE 5

Gene ontology (GO) enrichment analysis derived from the up- and down-regulated DEGs lists from disease groups as indicated. (A) The plots show
the enriched GO terms, with the adjusted p-value as the color and the number genes that took part in the enrichment of the terms as the size of
the circles. All plots show the top GO 15 terms by p.adjust rank. (B) Genes belonging to hemostasis related processes (GO:0007596, GO:0007599,
GO:0050817, GO:0002576) were combined, forming a module of 40 genes, and the log2 normalized expression values of all 40 genes were plotted
for each group. Kruskal-Wallis with Dunn’s multiple comparisons test was used to assess significant difference between group as indicated.
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was omitted from the analysis. Figure 7 shows the relative

distribution of the immune cell subsets that were determined to

be significantly different between the disease state groups or

pseudotime clusters.

Amongst the lymphocyte subsets the relative proportion of B cell

(B naïve) and T cell subtypes (CD8, and CD4 naïve, and CD4

memory) were found to be lower in Bacteremia compared with

Healthy Controls. Similar trends were observed when comparing the

pseudotime clusters with Cluster 3 having the lowest proportions.

Interestingly, the proportion of gdT cells was significantly higher in

Cluster 3 compared with Cluster 2 and Cluster 1, suggesting a strong

“engagement” of these pro-inflammatory effector cells.

Among myeloid cells, neutrophils were significantly increased

in Bacteremia compared with Healthy Controls, and Cluster 3

compared with Cluster 2 and Cluster 1. This is concordant with

the DEGs and GO enrichment analyses mentioned above.
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While the proportion of monocytes showed no differences

between any groups (not shown), the proportions of M0

macrophages (undifferentiated) were significantly increased in

Bacteremia compared with Healthy Controls and were also

significantly higher in Cluster 2 and 3, in comparison to Cluster 1.

For mast cells, clearer insights were gained by comparing the

clusters. Results showed that resting mast cells were significantly

lower and activated mast cells significantly higher in Cluster 3

compared with Cluster 2 and Cluster 1, suggesting that they

contribute to the exacerbation of the inflammatory response.

However, mast cells constitute a small proportion of cells present

(~0.01%), thus the observed frequency > 5% in a few individuals

could represent artefact of the analysis.

To support the results generated with CIBERSORT, absolute

deconvolution of 29 immune cell types was also performed using

ABIS (https://github.com/giannimonaco/ABIS). We found
A

B

FIGURE 6

(A) Gene ontology (GO) enrichment analysis derived from the up- and down-regulated DEGs lists from pseudotime clusters as indicated. The plots
show the enriched GO terms, with the adjusted p-value as the color and the number genes that took part in the enrichment of the terms as the size
of the dot. All plots show the top GO 15 terms by p.adjust rank, except “Cluster 3 Down” which shows all 19 GO terms enriched for that gene set,
and “Cluster 2 vs Cluster 3 Up” which shows 11 GO terms enriched for that gene set. (B) Genes belonging to neutrophils (GO:0042119, GO:0043312,
GO:0002283, GO:0002446), innate immune responses (GO:0050727, GO:0045088, GO:0002269), and T cell activation/receptor (GO:0042110,
GO:0030098, GO:0050852, GO:0050863, GO:0050870, GO:0042129, GO:0046651, GO:0002285) related processes were independently
combined to form modules of 75, 23, and 24 genes, respectively. The log2 normalized expression values of the genes in each module were plotted
for each cluster. Kruskal-Wallis with Dunn’s multiple comparisons test was used to assess significant difference between group as indicated.
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A

B

FIGURE 7

Immune cell type deconvolution by CIBERSORT. The cell type is indicated at the top of each graph. The y-axis denotes the relative proportion of
cell type (%). The color of the dots corresponds to the legend color for the different disease groups (A) and pseudotime clusters (B). Depicted are
mean with standard deviation and statistical significance by Kruskal Wallis t test is indicated by asterisk; p.adjust < 0.05 (*), 0.01 (**), 0.001 (***), and
0.0001 (****). The markers used in the reference dataset to define each cell type are: CD19+CD27- IgG/A- for B cells naïve; CD3, CD8, CD45RA for
T cells CD8; CD4+ for T cells CD4 naïve; CD45ROhigh for T cells CD4 memory resting; T cells gamma delta (not reported); macrophage M0 (none
known/reported; identified by morphology and phagocytic capability); macrophage M1 (none known/reported; identified by morphology and
phagocytic capability); mast cells resting (n/a); for mast cells activated (n/a); and CD62L for neutrophils.
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significant differences in the proportion of cell types identified (6

out of 11 types assessed) between disease groups and clusters,

including B cells, T cells, and neutrophils. CIBERSORT provided

greater granularity in terms of cell types assessed (13 out of 22

significantly different proportion), nevertheless, the finding for

major cell populations were concordant between both

methodologies (Supplementary Figure 7B).

Using immune cell deconvolution, we added another dimension

to our transcriptomic analyses and complemented the findings

from DEGs and GO enrichment regarding the role of neutrophils,

naïve B cells, and several subtypes of T cells.
Discussion

Despite the advent of modern protocols for sepsis recognition

and screening, accurate diagnosis and management of sepsis under

hospital conditions to prevent progression to septic shock in infants

remain a key area of concern (37). As such, there is immense value

for determining a blood borne transcriptomic marker signature for

sepsis, either for diagnosis, monitoring, or predictive purposes.

Ultimately, a biomarker gene signature, composed of 5 to 10

targets and whose expression is tested from whole blood, would

have the advantage to be time- and cost-effective. As a first step in

that direction, mining of public datasets serve as a valuable resource

for achieving increased statistical power and encompassing various

clinical settings (11, 20). Furthermore, with sepsis in young infants,

a systematic evaluation of multiple studies is highly desirable due to

sample scarcity. In this study, we established a coherent compilation

of infant-specific transcriptomic datasets. This compilation serves

to bolster the identification and development of sepsis biomarkers

while concurrently enhancing our comprehension of the molecular

and biological alterations occurring during sepsis in infants.

Merging data from multiple studies bears increased data

heterogeneity, discrepant variances, and variable demographic

characteristics, in addition to the inherent differences of the various

sequencing platforms. To minimize the limitations, we 1) curated

studies from similar clinical backgrounds and blood RNA preservation

methods, 2) employed COCONUT to minimize study biases (20), and

3) focused our analysis on the common genes across datasets,

mitigating the putative biases due to probe composition differences

across platforms. Moreover, we used the Wilcoxon rank-sum test to

determine the differentially expressed genes between cases and

controls, as conventional methodology such as DESeq2 (38) would

not have been appropriate for post-transformed datasets. Indeed, the

DESeq2 model internally corrects for library size, so transformed or

normalized values such as counts scaled by library size should not be

used as input (38). In addition, compared to other bioinformatics

methods, the Wilcoxon rank-sum test is the best suited for DEGs

between two conditions using human transcriptomic data (39).

Testing of published sepsis gene signatures with our merged

datasets showed a high degree of accuracy for only one of the

validated signatures (SMS), and highlighted the narrower utility of

other signatures for use in detection of infant sepsis. The

heterogeneous performance between the published gene signatures

is likely an indicator of age-specific processes, as the first 6 months of
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life is a period subject to many immunological adaptations (32, 40,

41). However, we cannot completely disregard the differences in

clinical settings and cohort characteristics between those studies and

ours. As such, the 7-Genes in neonates signature (NS) had a poor

degree of DEG overlap and performed poorly in predicting sepsis

from controls in our infant dataset. In contrast, SMS and the 6-Genes

geriatric gene markers (GD) both exhibited a high degree of overlap

with DEGs generated in our analysis and have the highest accuracy

and precision in differentiating cases from controls. The concordance

with the geriatric markers suggests similarities between the immature

immune state of infants and that of an immunosenescent state

present in the elderly; an intriguing correlation that potentially

warrants further investigation.

Trajectory inference (TI) methods, such as pseudotime analysis,

order samples along a trajectory based on similarities in their

expression patterns. TI methods offer an unbiased and

transcriptome-wide understanding of a dynamic process (42). By

ordering each cell according to its progress along a learned

trajectory, where the total length is defined in terms of the total

amount of transcriptional change, the approach helps understand

the sequence of regulatory changes that occur from one state to

another. The choice of using Monocle as TI method was driven by

the anticipated trajectory topology in the data and usability of the

methods. Monocle projects the data into a low-dimensional space

and uses UMAP instead of t-SNE which allows preservation of

longer-range distance relationships (24, 43). Here, the concordance

of increasing pseudotime mapped with disease severity.

Interestingly, individuals from the Bacteremia group spanned

across the continuum, indicating that the transcriptional profiles

are widespread within this clinically-categorized group. Cluster 2

was composed mostly of Bacteremia individuals and is distinctively

mapped midway between Healthy Controls and Septic Shock

(Figure 3A). Since we did not have exhaustive clinical histories

for the patients, we cannot rule out associations with specific clinical

symptoms and thus represents an aspect of our study that warrants

further evaluations. Nevertheless, our findings illustrate that

molecular analyses can assist in delineating sepsis disease states in

various clinical scenarios. Indeed, as the definition for clinical

diagnosis of sepsis varies substantially in the literature, developing

a practical molecular tool to help classify sepsis disease states is

especially useful and a worthy endeavor.

Our in-depth analyses of gene regulations among the disease

groups and pseudotime clustering provided insights into the

underlying biological perturbations of sepsis progression in infants.

Based on the number of DEGs and the extent of their modulations, we

observed a lower level of molecular perturbations in subjects with

Bacteremia as compared with the Septic Shock group. Notably, GO

enrichment results highlighted the predominance of pro-inflammatory

responses and T cell activation during bacteremia. In stark contrast,

during septic shock, T cell activation/proliferation and IFN-gamma

production were strongly downregulated. Furthermore, our Gene

Ontology (GO) enrichment analysis revealed a growing engagement

of hemostasis processes as disease states advance to septic shock. The

outcomes of immune cell deconvolution not only substantiated the

aforementioned findings but also aligned with prior research indicating

associations between sepsis, progression to septic shock, and
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phenomena such as T cell exhaustion (44, 45), B cell dysfunction (46)

and heightened rates of apoptosis in both the B and T cell

compartments (47).

The central role of neutrophils in sepsis pathogenesis is

highlighted by the gene ontology analysis performed on the

common DEGs. We found additional enriched processes related

to cellular mobilization and stress responses, which are consistent

with innate responses to bacterial infections (48, 49). In the Septic

Shock group, not only hemostasis and myeloid activation were

clearly significantly enriched, but cell cycle processes were also

enriched and could be a consequence of increased catabolic activity

tied to enhanced cellular stress (50, 51). Taken all the results

together, the progression toward septic shock can potentially be

tracked by induction of genes involved in the complement system,

coagulation, platelet degranulation, neutrophil activation (greater

magnitude), and cell cycle transition. Our preliminary assessment

of classification performance using the gene modules yielded

accuracy > 0.8, however the relatively small sample size in the

septic shock group precluded the formation of testing set.

IFN-gamma is a key inflammatory mediator in the establishment

of sepsis and has been shown to work in synergy with TNF-alpha to

induce a cytokine storm (52). In a lipopolysaccharide-induced sepsis

mouse model, Karki et al. (2021) showed that neutralizing both

cytokines drastically improved survival (52). This cytokine synergy,

and possibly others yet to be discovered, could contribute to disease

progression if consistently maintained. This rationale could explain

the wide distribution of the transcriptomic profiles within the

Bacteremia group, as the concerted activation of IFN-gamma,

TNF-alpha, and related pathways would be suppressed among

those in the category with transcriptomic profiles most similar to

Healthy Controls (Cluster 1), low in those Bacteremia group

members that formed Cluster 2, and high in those found in Cluster

3. We speculate that the persistent presence (time dependent factor)

and elevated concentrations (quantitative factor) of both cytokines

may define a molecular threshold that regulates the progression

towards deterioration from bacteremia to septic shock states. We

have seen CXCL10 upregulated in Bacteremia and individuals in the

Bacteremia group whose transcriptomic profiles indicated a

transition towards septic shock. However, the expression of genes

related to IFN-gamma production were downregulated in Septic

Shock. In the situation where adaptive immunity is declining, NK

and NKT are other strong producers of IFN-gamma (53) that could

induce monocytes to secrete CXCL10, which can then exert its

chemoattractant role on monocytes/macrophages, NK cells,

dendritic cells, and T cells (54) (under these conditions T cells may

be responsive to chemotaxis, even where their activity is reduced).

Altogether, this environment may tilt the immune balance toward a

septic shock state. To strengthen our results and enable further

research, we constructed comprehensive cytokine profiles,

encompassing both cytokines and chemokines, extracted

from our list of co-normalized genes. We then proceeded to

showcase the outcomes, delineating the expression patterns of the

identified 70 cytokine genes across different disease groups and

pseudotime clusters. These results are visually depicted in

Supplementary Figure 8.
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Clinical significance and conclusion

The current unmet need in infant sepsis diagnostics goes

beyond distinguishing sepsis from healthy controls, but rather the

ability to differentiate patients along the continuum of progression

from bacteremia to sepsis and shock with the goal to be used

complementarily with clinical examination. The findings from this

comprehensive analysis of infant-specific transcriptomic datasets

hold significant clinical implications for the diagnosis and

management of sepsis in infants. By merging data from diverse

studies and employing robust normalization methods, we have

established a reliable compilation capturing the molecular

landscape across different disease states, from bacteremia to septic

shock. Pseudotime analysis reveals distinct molecular clusters

aligning with disease progression, shedding light on potential risk

transitions for patients clinically categorized as Bacteremia. Our

findings highlighted that disease progression is accompanied by

increasing pro-inflammatory responses, especially via neutrophil

activity, declining T cells activation and relative proportions, and

increasing involvement of hemostasis-related processes. Immune

cell deconvolution provided a snapshot of immune cell proportions

that corroborated with our findings from gene expression analysis.

Collectively, these results offer a valuable foundation for advancing

our understanding of sepsis in infants, providing insights into

molecular alterations, immune responses, and disease progression,

laying the groundwork for potential diagnostic and therapeutic

advancements in this critical clinical context. A final note, future

studies in infants of 6-month of age or younger should be conducted

to capture extensive presentation symptoms and clinical data,

including innate immune responses (multiplex cytokine panels,

neutrophils activation markers) and hemodynamic (coagulation

and fibrinolysis factors, complement system) parameters, to

enhance the integration of transcriptomic, gene ontology, and

pseudotime information.
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SUPPLEMENTARY FIGURE 1

Multivariate analyses of the merged dataset pre- and post-COCONUT

normalization. (A) In the pre-normalization data, gene expression profiles
are separated by the type of microarray platform and data series. (B)
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Conversely, the pre-normalized data show weak separation based on
disease category. (C) Post-normalization, we achieved a more uniform

distribution of gene expression across series and platforms and (D)
enhanced the separation between disease groups. The global gene
expression does not show effects of the (E) age and (F) sex of the subjects.

SUPPLEMENTARY FIGURE 2

The relationship between cases and controls is preserved. Pearson’s
correlation (cor = 0.982, p-value< 2.2e-16) and Empirical Cumulative

Distribution Function were used to assess the prior and post normalized

distributions and the relationships between the control and case groups. The
y-axis denotes the data percentile and can be interpreted as the probability of

an event at the intersection with the x-axis value. The x-axis represents the
observed values.

SUPPLEMENTARY FIGURE 3

Workflow of the comparative analysis approach taken to delineate markers of

disease severity.

SUPPLEMENTARY FIGURE 4

Differential gene expression analysis comparing disease groups and

pseudotime clusters. (A, B) Volcano plots representation of DEGs in each
group against Healthy Controls and (C) for Bacteremia against Septic Shock.

D-E) Volcano plots representation of DEGs in each cluster against #1 and F)

for Cluster 2 against Cluster 3. Analyses was performed using two-sided
Wilcox Rank test. Significance of the DEGs were denoted by the following

thresholds: |log2FC| > 1 and p.adjust < 0.05.

SUPPLEMENTARY FIGURE 5

Gene expression pattern of important modules. Genes belonging to

neutrophils (GO:0042119, GO:0043312, GO:0002283, GO:0002446),

innate immune responses (GO:0050727, GO:0045088, GO:0002269), T
cell activation/receptor (GO:0042110, GO:0030098, GO:0050852,

GO:0050863, GO:0050870, GO:0042129, GO:0046651, GO:0002285),
and hemostasis (GO:0007596, GO:0007599, GO:0050817, GO:0002576)

related processes were independently combined to form modules of 75,
23, 24, and 40 genes, respectively. The log2 normalized expression values of

the genes in eachmodule were plotted for each disease group. Kruskal-Wallis

with Dunn’s multiple comparisons test was used to assess significant
difference between group as indicated.

SUPPLEMENTARY FIGURE 6

ROC curve analysis derived from (A) The combination of hemostasis,
neutrophils, innate immune responses, and T cell activation modules and

(B) Garnet marker signature.

SUPPLEMENTARY FIGURE 7

Summary of the immune cell deconvolution. Deconvolution from bulk RNA
expression data following the approach by (A) CIBERSORT using the LM22

single-cell reference dataset and (B) ABsolute Immune Signal (ABIS)
deconvolution (available at https://giannimonaco.shinyapps.io/ABIS/). Both

results are expressed as the relative proportion of cell type per sample (such

that the total of all calculated proportions adds up to 100%). Groups are
labelled according to the inset and the asterisk denotes where at least one

pair-wise comparison among groups reached significance.

SUPPLEMENTARY FIGURE 8

Profiles of cytokine, including chemokine, coding genes identified among our

co-normalized genes. Each dot represents the log2 normalized expression

values. The significance of differences between groups was assessed using
the Kruskal-Wallis test with Dunn’s multiple comparisons correction.

SUPPLEMENTARY TABLE 1

Assessment of selected public sepsis gene signatures. Description of source
articles, year published, related dataset ID number, age of the subject

evaluated, and gene list that composed each signature.

SUPPLEMENTARY TABLE 2

Varying degree of modulation for the commonly perturbed genes among the
disease groups against Healthy Controls (top panel) and the pseudotime

clusters against Cluster 1. Shown is the log2FC values of the top 10 up- and
down-DEGs which are ranked based on the Bacteremia group (out of 125

common DEGs) or Cluster 2 (out of 29 common DEGs).
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SUPPLEMENTARY TABLE 3

Top 10 unique up- and down-regulated genes, by fold-changes, in the
Bacteremia and Septic Shock groups when compared with Healthy

Controls (top panel) and in pseudotime clusters 2 and 3 when compared to

cluster 1 (bottom panel). Shown in parentheses are log2FC values.

SUPPLEMENTARY FILE 1

List of accessible clinical variable for each dataset used.

SUPPLEMENTARY FILE 2

3D projection of the relationship between all disease groups via the overall

gene expression of the individual subjects onto an assumed continuum of
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disease progression in pseudotime. Each dot represents an individual and is
color-mapped to the disease group.

SUPPLEMENTARY FILE 3

Top 10 genes, aka Garnett markers, expressed specifically in each of
the groups.

SUPPLEMENTARY FILE 4

List of the DEGs obtained from all pair-wise comparisons of disease groups
and clusters.

SUPPLEMENTARY FILE 5

List of enriched GO terms obtained from analyses of DEG lists.
References
1. Rudd KE, Kissoon N, Limmathurotsakul D, Bory S, Mutahunga B, Seymour CW,
et al. The global burden of sepsis: barriers and potential solutions. Crit Care. (2018)
22:232. doi: 10.1186/s13054-018-2157-z

2. Kollmann TR, Crabtree J, Rein-Weston A, Blimkie D, Thommai F, Wang XY,
et al. Neonatal innate TLR-mediated responses are distinct from those of adults. J
Immunol. (2009) 183:7150–60. doi: 10.4049/jimmunol.0901481

3. Dowling DJ, Levy O. Ontogeny of early life immunity. Trends Immunol. (2014)
35:299–310. doi: 10.1016/j.it.2014.04.007

4. Suarez de la Rica A, Gilsanz F, Maseda E. Epidemiologic trends of sepsis in
western countries. Ann Transl Med. (2016) 4:325. doi: 10.21037/atm

5. Ono S, Ichikura T, Mochizuki H. [The pathogenesis of the systemic inflammatory
response syndrome and compensatory antiinflammatory response syndrome following
surgical stress]. Nihon Geka Gakkai Zasshi. (2003) 104:499–505.

6. Haque KN. Definitions of bloodstream infection in the newborn. Pediatr Crit
Care Med. (2005) 6:S45–9. doi: 10.1097/01.PCC.0000161946.73305.0A

7. Oikonomakou M Z, Gkentzi D, Gogos C, Akinosoglou K. Biomarkers in pediatric
sepsis: a review of recent literature. biomark Med. (2020) 14:895–917. doi: 10.2217/
bmm-2020-0016

8. Jabbour JP, Ciotti G, Maestrini G, Brescini M, Lisi C, Ielo C, et al. Utility of
procalcitonin and C-reactive protein as predictors of Gram-negative bacteremia in
febrile hematological outpatients. Support Care Cancer. (2022) 30:4303–14.
doi: 10.1007/s00520-021-06782-w

9. Lukaszewski RA, Jones HE, Gersuk VH, Russell P, Simpson A, Brealey D, et al.
Presymptomatic diagnosis of postoperative infection and sepsis using gene expression
signatures. Intensive Care Med. (2022) 48:1133–43. doi: 10.1007/s00134-022-06769-z

10. Miller RR, Lopansri BK, Burke JP, Levy M, Opal S, Rothman RE, et al. for
discriminating sepsis from systemic inflammatory response syndrome in the ICU. Am J
Respir Crit Care Med. (2018) 198:903–13. doi: 10.1164/rccm.201712-2472OC

11. Sweeney TE, Wynn JL, Cernada M, Serna E, Wong HR, Baker HV, et al.
Validation of the sepsis metaScore for diagnosis of neonatal sepsis. J Pediatr Infect Dis
Soc. (2018) 7:129–35. doi: 10.1093/jpids/pix021

12. Meng Y, Cai XH, Wang L. Potential genes and pathways of neonatal sepsis based
on functional gene set enrichment analyses. Comput Math Methods Med. (2018)
2018:6708520. doi: 10.1155/2018/6708520

13. Mukhopadhyay S, Thatoi PK, Pandey AD, Das BK, Ravindran B, Bhattacharjee
S, et al. Transcriptomic meta-analysis reveals up-regulation of gene expression
functional in osteoclast differentiation in human septic shock. PloS One. (2017) 12:
e0171689. doi: 10.1371/journal.pone.0171689

14. McHugh L, Seldon TA, Brandon RA, Kirk JT, Rapisarda A, Sutherland AJ, et al.
A molecular host response assay to discriminate between sepsis and infection-negative
systemic inflammation in critically ill patients: discovery and validation in independent
cohorts. PloS Med. (2015) 12:e1001916. doi: 10.1371/journal.pmed.1001916

15. Scicluna BP, Klein Klouwenberg PMC, van Vught LA, Wiewel MA, Ong DSY,
Zwinderman AH, et al. A molecular biomarker to diagnose community-acquired
pneumonia on intensive care unit admission. Am J Respir Crit Care Med. (2015)
192:826–35. doi: 10.1164/rccm.201502-0355OC
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