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Macrophage-induced reactive
oxygen species in the initiation
of pancreatic cancer: a
mini-review
Heike R. Döppler and Peter Storz*

Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
Pancreatic inflammation is a risk factor for the development of pancreatic

cancer. Increased presence of inflammatory macrophages can be found in

response to a KRAS mutation in acinar cells or in response to experimentally-

induced pancreatitis. Inflammatory macrophages induce pancreatic acinar cells

to undergo dedifferentiation to a duct-like progenitor stage, a process called

acinar-to-ductal metaplasia (ADM). Occurrence of ADM lesions are believed to

be the initiating event in tumorigenesis. Here we will discuss how macrophage-

induced oxidative stress contributes to ADM and how ADM cells shape the

fibrotic stroma needed for further progression.
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Introduction

Chronic pancreatic inflammation (chronic pancreatitis) is a risk factor for pancreatic

cancer (1, 2). Macrophages that rapidly increase in numbers after inflammation or in

response to an oncogenic KRAS mutation may either originate from tissue resident

populations (3, 4) or from external sources such as the peritoneum or blood monocytes

(5). Presence of these inflammatory cells can initiate various processes that contribute to

lesion formation and progression. For example, in response to macrophage infiltration

pancreatic acinar cells can undergo acinar-to-ductal metaplasia (ADM), the

dedifferentiation to a progenitor stage with duct-like features (6). ADM lesions are

believed to be the initiating lesions for pancreatic intraepithelial neoplasia 1 (PanIN1)

(7–10). PanIN1 are precancerous low-grade lesions that form in presence of a KRAS

mutation, which occurs in 90-95% of all cases of pancreatic ductal adenocarcinoma (11). In

absence of a KRAS mutation, ADM is a reversible process and may contribute to pancreas

regeneration after the inflammation resolves (12–14). ADM is triggered by oxidative stress

that is generated in acinar cells by macrophage-secreted factors (10, 15–17). ADM cells

once formed then crosstalk with different macrophage populations to further drive

generation of fibrotic stroma in the lesion microenvironment (18, 19). In the following
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we will highlight the role of ROS in driving ADM and in

progression of ADM lesions with KRAS mutations to

precancerous PanIN lesions, but also the contribution of this to

the formation of the fibrotic stroma, thus setting the foundation for

tumor development.
Mutant KRAS as an inducer of
macrophage attraction

Pro-inflammatory macrophages are the major immune cell

population driving the formation of ADM lesions (10, 16, 17),

and their crucial role in this process was demonstrated in vivo (in

mice) by genetic ablation and by chemical depletion (10, 20). Using

the KC (p48Cre;LSL-KrasG12D) mouse model it was shown that

during the development of pancreatic cancer these macrophages

accumulate rapidly in ADM regions (21). In KC mice acinar cells

with an oncogenic KRAS mutation can upregulate the expression of

factors that function as chemoattractants for macrophages or

monocytes (21–23). For example, KRAS induces expression of the

cell surface glycoprotein Intercellular Adhesion Molecule-1 (ICAM-

1, CD54) in acinar cells, and ICAM-1 in its soluble form (sICAM-1)

acts as a chemoattractant for inflammatory macrophages (21)

(Figure 1). Since this leads to focal inflammation, it seems

plausible that the initiating macrophage population is recruited

locally from a tissue resident population (4).

However, the rapid increase in population density suggests that

additional macrophages may be recruited from external sources (5).
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These could include macrophages from the peritoneum or

circulating blood monocytes. Factors to attract both have been

demons t r a t ed to be produced in the ADM le s i on

microenvironment. For example, C-X-C motif chemokine ligand

10 (CXCL10) is produced by ADM lesions in mice and mediates the

chemoattraction of inflammatory macrophages to the pancreas, but

also enhances their proliferation and maintains their inflammatory

identity (22). Other chemoattractants for macrophage are

macrophage inflammatory protein-1 (MIP-1) and macrophage

inflammatory protein-2 (MIP-2), produced by isolated PanIN

lesion cells (22). Further, activated pancreatic stellate cells

produce CXCL12 (24), which can act as a chemoattractant for a

variety of immune cells, including macrophages. Moreover, the

presence of C-C motif chemokine ligand 2 (CCL2), produced by a

multitude of cells in the precancerous environment, attracts bone

marrow-derived monocytes (23). Once attracted to the ADM/

PanIN lesion regions, several cells in their microenvironment

produce macrophage proliferation factors. These include M-CSF,

produced by activated pancreatic stellate cells (24) and by lesion

cells (22).
Macrophage secreted factors and
oxidative stress as drivers of ADM

Pancreatic macrophages can induce acinar-to-ductal metaplasia

(10, 17), and ADM lesions that originate from wildtype acinar cells

are believed to revert to acini to regenerate the pancreas after the
FIGURE 1

Functions of macrophage-induced ROS in developing pancreatic cancer. Expression of an oncogenic KRAS in pancreatic acinar cells upregulates
chemoattractants for monocytes and inflammatory (M1) macrophages including CXCL10 and sICAM-1. M1-secreted factors such as TNFa, CCL5, IL-
6 and IL-1a then increase ROS in acinar cells to drive their transdifferentiation to a duct-like phenotype. This process termed acinar-to-ductal
metaplasia (ADM) in mice has been shown to be an inducing event for PDA formation when ADM lesions further progress to PanIN lesions.
Increasing ROS in PanIN lesion cells can lead to senescence or increased occurrence of DCLK1+ cancer stem cells that produce IL-13. lL-13
mediates a phenotype switch from inflammatory to anti-inflammatory (M2) macrophages in the lesion microenvironment. M2 once abundant can
activate pancreatic stellate cells (PSC) to increase fibrosis but also mediate proliferation of lesion cells. Created with BioRender.com.
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inflammatory stimulus resolves (12, 13, 20). However, in presence

of an oncogenic KRAS mutation, ADM lesions progress to low-

grade lesions (pancreatic intraepithelial neoplasia, PanIN), which

are precursor lesions for PDA (6, 7, 25). The two extreme

polarization phenotypes that have been described in vitro are pro-

inflammatory M1-polarized, classically-activated macrophages

(M1, IM) and anti-inflammatory M2-polarized, alternatively-

activated macrophages (M2, AAM). In vivo, in the inflamed

pancreas there is more of a continuous spectrum, however, the

majority of macrophages show markers of these two groups, and for

simplification we will adhere to these terms (M1 and M2).

Several factors secreted byM1macrophages have been shown to

induce ADM in explant culture. These include TNFa, CCL5
(RANTES), IL-6, and IL-1a (10, 15, 17) (Figure 1). Moreover, M2

macrophages can drive ADM through CCL2 (17). All these factors

have in common that they induce hydrogen peroxide in acinar cells,

which was shown to be the major driver of ADM (16, 17). Hydrogen

peroxide most likely originates at the mitochondria, since

mitochondrially-targeted catalase or the antioxidant MitoQ can

block the initiation of ADM (16).

While several signaling pathways were implicated in driving

ADM (reviewed in (6)), a critical event seems to be the upregulation

of expression of epidermal growth factor receptor (EGFR) and its

ligands TGFa and EGF via ROS-initiated NF-kB signaling in acinar

cells (26). Such auto- or paracrine EGFR signaling then is the key

event driving both the ADM process and ADM lesion growth (27,

28). Here it also should be noted that macrophages produce other

ligands for EGFR including heparin-binding epidermal growth

factor-like growth factor (HB-EGF) and amphiregulin (AR),

which both may potentiate these effects (29–32).

Although it is still unclear how above macrophage-secreted factors

induce ROS at the mitochondria, studies with mitochondrially-targeted

antioxidants link ROS responsive signaling cascades and

transcriptional activation to ADM. One of the main inducers of

ADM downstream of mitochondrial ROS is the PKD1/NF-kB
signaling cascade (16, 26, 33). Other transcription factors that have

been demonstrated to be predominant drivers of ADM are Notch,

Signal Transducer and Activator of Transcription 3 (STAT3), Kruppel-

like factor 4 (KLF4) and Nuclear Factor of Activated T Cells 1/4

(NFAT1/4) (34–38). Some of these factors can be activated by

macrophage-secreted inducers of oxidative stress. For example,

STAT3 activity is upregulated by IL-6 (39) and regulates ADM (35).

Others, such as Notch are activated downstream of oncogenic KRAS

and the ROS-responsive kinase PKD1 (26, 34) and cooperates withNF-

kB to induce ADM (40). However, it should be noted that for most of

them a role of direct activation by ROS to drive the ADMprocesses was

formally demonstrated.
Effects of ROS in low grade lesion
cells and role in further
lesion progression

Established pancreatic low grade lesion cells (PanIN1) show

relatively high levels of oxidative stress as indirectly measured by an
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increase in 4-hydroxynonenal (4-HNE), a a,b-unsaturated
hydroxyalkenal that is produced by lipid peroxidation (41). This

increase in oxidative stress correlates well with markers for cellular

senescence (42). ROS as a driver of oncogene-induced senescence is

established and was implicated in pancreatic lesion cells (42, 43).

However, it was also shown that progressing lesion cells

increasingly express nuclear factor erythroid 2-related factor 2

(NRF2) (26, 44, 45). NRF2 is a stress-responsive transcription

factor that regulates a multitude of genes mediating the

antioxidant response and metabolic changes (44, 46, 47).

Upregulation of this factor is an important mechanism to

overcome ROS-induced damage and senescence in lesion cells

and to mediate further progression (Figure 1).

A small percentage of lesion cells, however, show exuberant

high levels of ROS (48). These cells are positive for DCLK1 and

show defective EGFR signaling due to ROS-mediated blockage of

vesicle transport (48). DCLK1+ cells express stemness markers such

as CD133 and OCT4 (48). Therefore, they have been discussed as

stem cells for pancreatic cancer (49) or progenitor cells that

promote tumorigenesis (50). Indeed, DCLK1+ cells when isolated

and reintroduced in mice, form pancreatic tumors at a faster rate

than other lesion cells (49). This may be supported by their

secretion of factors that alter macrophage polarity and contribute

to generation of the fibrotic microenvironment.
Alternatively activated macrophages
and roles in lesion progression

In presence of an oncogenic KRAS mutation, cells that

underwent ADM further progress to PanIN lesion. ADM and

PanIN lesion cells can produce IL-13, which induces a

polarization switch in inflammatory M1 macrophages to an anti-

inflammatory M2 phenotype (19). Major producers of IL-13 are

DCLK1+ lesion cells (19). Resulting M2 macrophages, best

characterized in mice by expressing arginase (Arg1), YM1 (Chil3),

Fizz1, CD206 and Trem2 as markers (18, 24), have multiple

functions in the progression of lesions. They secrete factors such

as TGFb1 to activate pancreatic stellate cells (PSC) and establish the

lesion microenvironment (24), and their ablation either chemically

or via neutralization of IL-13 in KC mice leads to a drastic decrease

in fibrosis (18, 19). In addition, they secret factors such as TIMP1,

IL-4, IL1-ra and CCL2 that act on lesion cells to stimulate their

growth via activation of ERK1/2 signaling (17–19, 24). By secretion

of CCL2, which generates ROS in acinar cells (17), M2 macrophages

also induce ADM in neighboring acinar cells and thus increase

abnormal areas in the pancreata of mice. During further

progression to PDA, M2 macrophages regulate additional

hallmarks of immune escape such as the exclusion of cytotoxic T

lymphocytes and fibrosis (51). They also crosstalk with dendritic

cells and myeloid derived suppressor cells (MDSC), which inhibit T

cell proliferation and induce of T cell death, to further enhance the

immune suppressive environment (52, 53). Therefore, targeting this

immunosuppressive macrophage population, or initiating their

repolarization to an inflammatory phenotype, both are valid
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strategies to explore for prevention of PDA or to sensitize

pancreatic tumors to T cell immunotherapy (19, 51, 54).
Conclusions

The crosstalk of pancreatic acinar cells with cells of the innate

immune system are initiating events in the development of

pancreatic cancer (summarized in Figure 1). Specifically, the

presence of inflammatory macrophages at acinar cells is tightly

linked to intracellular ROS generation and is prerequisite to ADM.

Dependent of their resistance to ROS, ADM cells can further

progress to PanIN lesions, in which they may proliferate or show

a senescent phenotype, or to DCLK1+ cells that can withstand high

levels of intracellular ROS. At PanIN lesions and their surrounding

microenvironment macrophages are mainly anti-inflammatory and

drive lesion growth and fibrosis (10, 18, 24). But they also produce

factors that induce ROS in neighboring acinar cells. Therefore, it is

fair to say that macrophage-caused oxidative stress is a key driver of

events that occur during initiation of pancreatic cancer. However,

while a role for ROS in initiation of lesion formation is well

established, the roles of ROS in further lesion progression to a

more aggressive phenotype is less defined, and it is not fully clear if,

and how they contribute to further development of PDA.
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