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Whole genome sequencing of
recombinant viruses obtained
from co-infection and
superinfection of Vero cells with
modified vaccinia virus ankara
vectored influenza vaccine and a
naturally occurring cowpox virus
Diana Diaz-Cánova1, Ugo Moens1*, Annika Brinkmann2,
Andreas Nitsche2 and Malachy Ifeanyi Okeke3*

1Molecular Inflammation Research Group, Department of Medical Biology, UiT - The Arctic University
of Norway, Tromsø, Norway, 2WHO Reference Laboratory for SARS-CoV-2 and WHO Collaborating
Centre for Emerging Infections and Biological Threats, Robert Koch Institute, Berlin, Germany,
3Section of Biomedical Sciences, Department of Natural and Environmental Sciences, School of Arts
and Sciences, American University of Nigeria, Yola, Nigeria
Modified vaccinia virus Ankara (MVA) has been widely tested in clinical trials as

recombinant vector vaccine against infectious diseases and cancers in humans and

animals. However, one biosafety concern about the use of MVA vectored vaccine is

the potential for MVA to recombinewith naturally occurring orthopoxviruses in cells

and hosts in which it multiplies poorly and, therefore, producing viruses withmosaic

genomes with altered genetic and phenotypic properties. We previously conducted

co-infection and superinfection experiments with MVA vectored influenza vaccine

(MVA-HANP) and a feline Cowpox virus (CPXV-No-F1) in Vero cells (that were semi-

permissive to MVA infection) and showed that recombination occurred in both co-

infected and superinfected cells. In this study, we selected the putative recombinant

viruses and performed genomic characterization of these viruses. Some putative

recombinant viruses displayed plaque morphology distinct of that of the parental

viruses. Our analysis demonstrated that they had mosaic genomes of different

lengths. The recombinant viruses, with a genome more similar to MVA-HANP

(>50%), rescued deleted and/or fragmented genes in MVA and gained new host

ranges genes. Our analysis also revealed that someMVA-HANP contained a partially

deleted transgene expression cassette and one recombinant virus contained part of

the transgene expression cassette similar to that incomplete MVA-HANP. The

recombination in co-infected and superinfected Vero cells resulted in

recombinant viruses with unpredictable biological and genetic properties as well

as recovery of delete/fragmented genes in MVA and transfer of the transgene into

replication competent CPXV. These results are relevant to hazard characterization

and risk assessment of MVA vectored biologicals.
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1 Introduction

The Orthopoxvirus genus belongs to the Poxviridae family. The

orthopoxviruses (OPXV) are viruses with large linear double

stranded DNA genome (170 to 250kbp) (1). OPXV can infect

vertebrates and insects (2). Among the OPXV that cause human

diseases, Variola virus (VARV), vaccinia-like virus, Cowpox virus

(CPXV) and Monkeypox virus (MPXV) are the most common (3–

6). VARV is the causative agent of smallpox, a deadly viral disease,

which was eradicated in 1980 as a result of a massive vaccination

campaign (7). During the smallpox campaign, Vaccinia virus

(VACV) was used as the smallpox vaccine and several VACV

strains have been developed and used in different countries, such

as New York City Board of Health (NYCBH) was used in the

America, Tian tan in China, Ankara in Turkey, and Lister and

modified vaccinia virus Ankara (MVA) in Europe (8–10).

MVA was administrated to over 120,000 people in Germany

with no reported major side effects (10–13). MVA was derived from

Chorioallantois vaccinia virus Ankara (CVA) by over 570 passages

in primary chicken embryo fibroblasts (14). In this process, CVA

genome suffered modifications including six large deletions and

other mutations that lead to the reduction of the genome from

208kbp in CVA to 170kbp in MVA (15, 16). These mutations

affected many genes involved in virus–host interaction and other

genes responsible for evasion of the host immune response (16, 17).

As a result, MVA is unable to replicate productively in most

mammalian cell lines (15, 17–21). Although some mammalian cell

lines have been reported as permissive to MVA, such as Baby Hamster

Kidney (BHK-21) cells (21, 22), and semi-permissive to MVA, such as

Vero cells (African green monkey kidney epithelial cells) (15, 20).

Recently, it was shown that a repair of the inactivated C16R/B22R in

conjunction with the restoration of the deleted C12L gene restores

production infection of many human cells with MVA (23). The host

range restriction of MVA is considered the major biosafety advantage

for its use as a vaccine vector along with its immunogenicity, its

incapability to cause illness in vivo and its safety record (24–26).

Since the nineties, MVA has been widely tested in clinical trials

as recombinant vector for vaccination against infectious diseases

and cancers in both humans and animals (27, 28). Today, several

MVA vaccines against HIV (29, 30), Ebola (31–34), respiratory

syncytial virus (35), Middle East Respiratory Syndrome (36),

cytomegalovirus (37), influenza (38, 39), tuberculosis (40) and

malaria (41–43) are in different phases of clinical trials. MVA-BN

(JYNNEUS or Imvanex) is licensed as a vaccine against Mpox and

smallpox in both Europe and USA, and is currently being used for

immunization against current global Mpox outbreak (44, 45). Even

though MVA is already deployed as a vaccine and is a promising

viral vector, there are still some biosafety aspects that should be

considered during the biological hazard characterization of MVA

and recombinant MVA (rMVA). One is the potential for MVA or

rMVA to recombine with naturally occurring OPXV, which could

lead to the rescue of interrupted or deleted genes in MVA or to

transfer of the transgene to multiplication competent OPXV (46).

Hence, the recombination could result in the emergence of novel

mosaic viruses with atypical virulence and host range

characteristics. Therefore, studies analyzing the potential of
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recombination between MVA and OPXVs are relevant to hazard

characterization of MVA vectored vaccines. Co-infection and

superinfection experiments constitute cell culture-based models to

examine recombination of MVA with other OPXV during co-

infection of semi-permissive cells as well as evaluate the

possibility of superinfection exclusion in preventing recombination.

Recombination is not a rare event between OPXV. Natural

occurring recombination events between OPXV have been reported

(47–57). However, the possibility of recombination was considered

negligible due to the low likelihood of co-localization of the viruses

in the same cell, poor or no multiplication of MVA in many

mammalian cells and superinfection exclusion (58, 59). The

circulation of naturally zoonotic OPXV, such as CPXV and

MPXV, has increased in recent years (6). Several cases of human

cowpox infections caused by infected animals have been reported in

Europe (49, 60–68) and the global outbreak of human Mpox has

been reported in 110 countries (69) followed by increased

vaccination with MVA. Therefore, the possibility of co-

localization and recombination could have increased. We

highlight that there is a need to better understand the mechanism

of recombination and possible public health threat of

recombination of two poxviruses after co- and superinfection.

In a previous study, we have demonstrated recombination in

Vero cells co-infected and superinfected with recombinant MVA

expressing the influenza virus haemagglutinin (HA) and

nucleoprotein (NP) genes (MVA-HANP) and feline CPXV (27).

In the present study, we sequenced the genome of putative

recombinant viruses produced in semi-permissive Vero cells co-

infected and superinfected with MVA-HANP and feline CPXV-No-

F1, conducted genomic characterization of the parental and the

putative recombinant viruses and mapped genome-wide

recombination events in the recombinant viruses.
2 Materials and methods

2.1 Co-infection and superinfection of
Vero cells

The co-infection and superinfection experiments with MVA-

HANP and the naturally circulating Fennoscandian feline cowpox

strain (CPXV-No-F1) were performed in Vero cells as previously

described (27). The origin of the cowpox strain was described

elsewhere (68). MVA-HANP was kindly provided by Dr. Bernard

Moss, National Institutes of Health, USA. MVA-HANP contains

the influenza virus HA (A/PR/8/34) and NP gene inserts (70).

MVA-HANP was propagated in BHK-21 cells (ATCC CCL-10).

CPXV-No-F1 and recombinant viruses were cultured on Vero cells

(ATCC CCL-81). Vero cells and BHK-21 cells were propagated in

minimal essential medium (MEM) supplemented with 10% fetal

bovine serum (FBS). The cell cultures were maintained in a

humidified 5% CO2 atmosphere at 37°C.

Vero cells are semi-permissive to MVA-HANP (15, 20) and

permissive to CPXV (71). Vero cells were co-infected with MVA-

HANP and CPXV-No-F1 at a multiplicity of infection (MOI) of 5

infection units per cell for each virus strain (Supplementary Figure 1).
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Superinfection with CPXV and MVA-HANP in Vero cells was

performed in four experiments (Supplementary Figure 1). Vero

cells were infected with CPXV-No-F1 at a MOI of 5. The infected

Vero cells were superinfected with MVA-HANP at same MOI (of 5)

after 4-hours (superinfection 1) or 6-hours post primary infection

(ppi) (superinfection 3). The cells were incubated for 72 hours at 37°

C. The same procedure was repeated for superinfection 2 and 4, but

the primary infection was with MVA-HANP and the secondary

infection with CPXV-No-F1 after 4-hours (superinfection 2) or 6-

hours ppi (superinfection 4). After 72 hours ppi, the cells were

harvested, freeze-thawn three times and sonicated. The co-infection

and superinfection experiments were performed at the Poxvirus

Laboratory (Biosafety Level-2), Department of Medical Biology,

UiT - The Arctic University of Norway. The experiments were

carried out at the appropriate containment levels.
2.2 Selection of putative recombinant
viruses, plaque purification
and immunostaining

The putative recombinant viruses were identified and selected

in Vero Cells. The selection was based on (1) the expression of the

Influenza virus HA protein and (2) plaque phenotype. The putative

recombinant viruses that formed different plaque phenotype from

the parental viruses were selected. The sonicated cells suspensions

were inoculated on Vero cells and the viruses were plaque-purified

several times before plaque amplification. The stock of the viruses

was prepared from plaque purified viruses. The putative

recombinant viruses carrying the influenza virus HA protein were

detected by immunostaining, as described previously (22).

Moreover, the plaque phenotype of the parental viruses was also

examined in Vero cells.
2.3 Genome sequencing, genome
assembly and annotation

Viral DNA of the plaque purified putative recombinant viruses

and the parental virus MVA-HANP was isolated using QIAGEN

Genomic-tip 100/G and QIAGEN Genomic DNA Buffer Set,

following the manufacturer’s instructions (Qiagen, Hilden,

Germany). The genomes were sequenced with Illumina MiSeq

(Illumina Inc., San Diego, CA, United States) using reagent kit v3

with 2 × 300 bp paired-end reads and Oxford Nanopore

Technology GridION (ONT; Oxford, United Kingdom), as

previously described (49). Nanopore and Illumina library

preparation have been described elsewhere (49). Nanopore

sequencing was performed at the Genomics Support Centre

Tromsø at UiT—The Arctic University of Norway and Illumina

sequencing was conducted by the Norwegian Sequencing

Centre, Oslo.

The genome assembly was performed using SPAdes v3.15.3

(72), as previously described (49). For the assembly of MVA-

HANP, the parameter trusted-contigs and the reference genome

MVA were used. The viral genomes were annotated using the
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Genome Annotation Transfer Utility (GATU) (73), as previously

reported (49). Vaccinia virus Copenhagen (VACV-Cop),

Choriollantois vaccinia virus Ankara (CVA) and MVA were used

as reference genomes for the genome annotation of MVA-HANP.

VACV strains were retrieved from the Viral Orthologous Clusters

(VOCs) database (74). The parental viruses, CPXV-No-F1

(Genbank accession number OP125538) and MVA-HANP, were

used as reference genomes for the genome annotation of the

putative recombinant viruses. The complete genome of the

parental CPXV-No-F1 has been published elsewhere (68).
2.4 Recombination analysis

The putative recombinant viral genomes were analyzed for

possible recombination events using recombination detection

program 4 (RPD4) (75) and SimPlot v3.5.1 (76) as described

previously (49). The progeny virus genomes were aligned to the

parental viruses and other CPXV strains (CPXV-Br and CPXV-Gri)

with MAFFT v1.4.0 (77) implemented in Geneious Prime 2020.2.4.

The CXPV strains were retrieved from the Viral Orthologous

Clusters (VOCs) database (74). The gaps were not removed from

the alignments. The recombination events identified by 5 of 7

methods (RDP (78), GENECONV (79), Bootscan (80), MaxChi

(81), Chimaera (82), SiScan (83), and 3Seq (84)) with significant p-

values (p ≤ 0.01) were considered potential recombinant events.

Furthermore, the breakpoints in the recombinant genomes were

checked manually in the alignments in case both programs could

not detect the recombination event.
3 Results

3.1 Plaque phenotype formed by the
putative recombinant viruses after co-
infected and superinfected Vero cells

The plaque phenotype caused by the putative recombinant

viruses and the parental viruses were examined in Vero cells. The

parental CPXV-No-F1 forms medium, semilytic plaques. Whereas

MVA-HANP do not produce plaques; however, some Vero cells

have positive immunostaining for the HA transgene as a result of

MVA-HANP limited infection and expression of its HA

transgene (Figure 1).

Different plaques phenotypes and transgene-expressing plaques

were observed in co-infected Vero cells. One putative recombinant

virus was isolated from co-infected Vero cells, which was named V-

Rec1 (Supplementary Table 1). The plaque of this recombinant

virus is large, lytic, and characterized by syncytium formation and

cell lysis (Figure 1C). In addition, this recombinant forms HA

transgene negative plaques.

Similarly, different plaque phenotypes were observed in

superinfected Vero cells regardless the virus strain used for the

primary infection and the timing (4 and 6 hours ppi). Additionally,

both the transgene-expressing and non-transgene-expressing

viruses display different plaque phenotypes (Figures 1D–N). Two,
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three, five and one viruses were selected from superinfection 1,

superinfection 2, superinfection 3 and superinfection 4, respectively

(Supplementary Figure 1). We referred to these putative

recombinant viruses as V-Rec2, V-Rec3, V-Rec4, V-Rec5, V-Rec6,

V-Rec7, V-Rec8, V-Rec9, V-Rec10, V-Rec11 and V-Rec12

(Supplementary Table 1).
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V-Rec2 from the superinfection 1 expresses the HA transgene

and produced small and non-lytic plaques with secondary spread

(comet formation) (Figure 1D). Whereas V-Rec3 from the same

experiment is transgene negative and forms medium and lytic

plaques (Figure 1E). The plaques of V-Rec4 and V-Rec5 from

superinfection 2 are large, lytic and transgene positive. Unlike V-
B

C D E

F G H

I J K

L M

A

N

FIGURE 1

Plaque phenotypes of the parental viruses and the putative recombinant viruses. Confluent Vero cells were infected with the respective viruses and
HA expression was monitored 48 h.p.i. by immunoperoxidase staining of fixed cells. (A) The parental virus MVA-HANP. (B) The parental virus CPXV-
No-F1. (C) V-Rec1 from co-infection MVA-HANP and CPXV-No-F1. (D, E) V-Rec2 and V-Rec3 from superinfection 1 (primary infection with CPXV-
No-F1 and secondary infection with MVA-HANP at 4h post primary infection, ppi). (F–H) V-Rec4, V-Rec5 and V-Rec6 from superinfection 2 (primary
infection with MVA-HANP and secondary infection with CPXV-No-F1 at 4h ppi). (I–M) V-Rec7, V-Rec8, V-Rec9, V-Rec10 and V-Rec11 from
superinfection 3 (primary infection with CPXV-No-F1 and secondary infection with MVA-HANP at 6h ppi). (N) V-Rec 12 from superinfection 4
(primary infection with MVA-HANP and secondary infection with CPXV-No-F1 at 6h ppi). All panels show representative fields at approximately
200× magnification.
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Rec4 and V-Rec5, V-Rec6 is transgene negative and forms medium

and semilytic plaques with extensive secondary spread

(Figures 1F–H).

V-Rec7, V-Rec8 and V-Rec9 from superinfection 3 form large

and lytic plaques (Figures 1I–K). However, compared to V-Rec7

and V-Rec8, V-Rec9 do not express the transgene and forms

syncytia. The other two putative recombinant viruses were chosen

from superinfection 3, the progeny virus V-Rec10 and V-Rec11.

Both viruses express the HA transgene and form semilytic plaques

(Figures 1L, M). However, the size of their plaques are different. V-

Rec11 produces large plaques, whereas V-Rec10 generates medium

plaques. V-Rec12 from superinfection 4 expresses theHA transgene

and displays small and non-lytic plaques with comet

formation (Figure 1N).
3.2 Different genome size of the putative
recombinant viruses

The complete genomes of twelve putative recombinant viruses

and the parental virus MVA-HANP were sequenced, assembled, and

annotated (Figure 2). The whole genome sequences of MVA-HANP

and V-Rec1 - V-Rec12 are available in GenBank, with Accession

Number: OQ818667 and OQ822790 - OQ822801, respectively. The

assembled genome of the parental MVA-HANP has a length of

181,712 bp, with inverted terminal repeats (ITR) of 9.8 kbp. Genome

annotation predicted 199 coding sequences (CDS) in MVA-HANP
Frontiers in Immunology 05
genome (Supplementary Table 2). The sequencing analysis of the

parental MVA-HANP showed that the double expression cassette

containing the influenza HA and NP transgenes was inserted in

A51R/A55R hybrid gene. However, the assembly of MVA-HANP

showed that there are two populations of MVA-HANP, one with the

complete double expression cassette (181,712 bp) and another with

an incomplete double expression cassette (178,579 bp). A small part

of NP transgene (~6%), wholeHA transgene and downstreamMVA-

HANP flanking sequence (containing VACV-Cop A56R gene) are

deleted in the latter. It only contains major part of the NP transgene

(94%) and the upstream flanking MVA sequence.

The genome size and the number of predicted CDS of the

parental and the progeny virus genomes are shown in the Table 1

and Supplementary Tables 2, 3. The length of progeny virus

genomes was not uniform, ranging from 176.9 kbp to 221 kbp.

Three putative recombinant viruses (V-Rec3, V-Rec5 and V-Rec9)

have similar genome size to that of the parental CPXV-No-F1 and

one recombinant virus (V-Rec12) possesses a smaller genome than

that of the parental MVA-HANP (Table 1). The ITR of the progeny

viruses ranged from 4.7 kbp to 8.3 kbp.

The number of predicted CDS in the genomes of the putative

recombinant viruses varied from 197 to 220 CDS (Table 1). The

genomes of the putative recombinant viruses included more CDS

than the parental MVA-HANP, with exception of V-Rec10 and V-

Rec12. Furthermore, there were three viruses (V-Rec3, V-Rec6 and

V-Rec9) that contained the same number of predicted CDS as the

parental CPXV-No-F1.
FIGURE 2

Genome map of the parental viruses (CPXV-No-F1 and MVA-HANP) and the putative recombinant viruses. The putative recombinant viruses were
produced in Vero cells either co-infected or superinfected with CPXV-No-F1 and MVA-HANP. Superinfection 1, primary infection with CPXV-No-F1
and secondary infection with MVA-HANP at 4h post primary infection (ppi); Superinfection 2, primary infection with MVA-HANP and secondary
infection with CPXV-No-F1 at 4h ppi; Superinfection 3, primary infection with CPXV-No-F1 and secondary infection with MVA-HANP at 6h ppi;
Superinfection 4, primary infection with MVA-HANP and secondary infection with CPXV-No-F1 at 6h ppi. Blue blocks represent the coding
sequences (CDS) from CPXV-No-F1. Red blocks represent CDS from MVA-HANP. Green blocks represent the influenza virus hemagglutinin (HA) and
nucleoprotein (NP) transgenes. Turquoise blocks represent deleted regions in the recombinant viruses. Yellow block represents the conserved
central region (VACV-Cop F4L – VACV-Cop A24R) in orthopoxvirus genomes.
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3.3 Mosaic genome of the
recombinant viruses

In order to localize the possible recombination events in the

putative recombinant viruses, the twelve putative recombinant

viruses were examined for recombination. The analysis confirmed

recombination across the genome of eleven recombinant viruses

(Supplementary Table 4). Only one virus, V-Rec9 from

superinfection 3, does not show any recombination event based

on the recombination analysis. The location of recombinant events

in the genome of the progeny viruses are random, there are no

recombination distribution pattern along their genomes. The

recombination events occur both in the conserved central region

(VACV-Cop F4L to VACV-Cop A24L) and the variable regions,

including ITR (Supplementary Table 5; Figure 2). The number of

recombinant breakpoints distribute in the central region varied

from 0 to 16, whereas the number of breakpoints in the variable

regions ranges from 1 to 6. The genomes of the recombinant viruses

are a mosaic of the two parental strains. The lengths of the DNA

segments exchanged between the parental viruses range from

approximately 200 bp to 36 kbp (Figure 2). The percentage of

DNA derived from the parental strains in the recombinant viruses is

variable (Figure 3). The majority of the recombinant viruses have

more DNA from the parental CPXV-No-F1 (∼45,9%-99,9%) than
that from the parental MVA-HANP (∼0,1%-54,1%); nevertheless,
some of them contain the HA and NP transgenes. Only two

recombinant viruses, V-Rec2 and V-Rec12, contain more DNA

from the parental MVA-HANP (Figure 3; Supplementary Table 5).
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3.4 The influenza HA and NP transgenes
are inserted in the same position in many
of the recombinant viruses, but other
genetic changes outside of recombination
are present

The parental MVA-HANP harbored a double expression

cassette containing the influenza HA and NP transgenes. The

sequencing analysis of the eight HA transgene expressing

recombinant viruses (V-Rec2, V-Rec4, V-Rec5, V-Rec7, V-Rec8,

V-Rec10, V-Rec11 and V-Rec12) confirmed that these viruses

contain an intact double expression cassette and its flanking

sequences. The sequencing analysis of non-HA-transgene

expressing recombinant viruses (V-Rec1, V-Rec3, and V-Rec6)

revealed that the HA-NP insert is absent in V-Rec3 and V-Rec6,

but not in V-Rec1. Interestingly, the latter (V-Rec1) contains part of

the double expression cassette. It comprises major part of the NP

transgene (94%) and the upstream flanking MVA sequence

(Figure 4A) similar to the incomplete MVA-HANP. The presence

of the incomplete MVA-HANP population with a partial deleted

double cassette expression was corroborated by the occurrence of

recombinant virus V-Rec1.

In addition to the recombination events, our analyses revealed

that the eleven viruses underwent other genetic variations, such as

deletions. Although most of them are located outside of the CDS

regions (Supplementary Table 6). A large deletion of 16,761 bp is

found close to the left terminal genomic region of V-Rec10 and V-

Rec12 (Figure 4B). The deleted sequence comprises from CXPV-
TABLE 1 Genome size and number of predicted CDS of CPXV-No-F1, MVA-HANP and the putative recombinant viruses.

Experiment Virus
Genome

(bp)
Inverted terminal

repeat (bp)
CDS

Expressing
HA transgene

MVA-
HANP

181,712 9882 199 Yes

CPXV-
No-F1

221,334 7929 217 Not Applicable

Co-infection
CPXV-NO-F1/
MVA-HANP

V-Rec1 218,322 8219 216 No

Superinfection

Superinfection 1
(CPXV-NO-F1/MVA-

HANP 4h)

V-Rec2 215,275 8251 220 Yes

V-Rec3 221,213 7929 217 No

Superinfection 2
(MVA-HANP/CPXV-

NO-F1-4h)

V-Rec4 199,702 7045 210 Yes

V-Rec5 220,926 7813 214 Yes

V-Rec6 218,106 8365 217 No

Superinfection 3
(CPXV-NO-F1/MVA-

HANP-6h)

V-Rec7 216,643 5908 213 Yes

V-Rec8 216,086 8339 218 Yes

V-Rec9 221,198 7853 217 No

V-Rec10 185,955 6959 198 Yes

V-Rec11 204,628 8054 212 Yes

Superinfection 4
(MVA-HANP/CPXV-

NO-F1-6h)
V-Rec12 176,918 4694 197 Yes
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BR016 gene to CPXV-BR029 gene. Most of these genes encode

proteins involve in host range. Additional small deletions and

insertions are also detected within these two recombinant genomes

(Supplementary Table 6). The other recombinant viruses also contain

deletions, insertions and/or non-synonymous single-nucleotide
Frontiers in Immunology 07
mutations (nsSNMs). Interestingly, we found two nsSNMs in

VACV-Cop N2L and VACV-Cop K2L genes of non-recombinant

virus V-Rec9 (Supplementary Table 6). The nsSNM in the VACV-

Cop K2L gene resulted in the introduction of a premature stop codon

and consequently the truncation of the protein.
FIGURE 3

Percentage of DNA derived from the parental viruses (CPXV-No-F1 and MVA-HANP) in the putative recombinant viruses. The putative recombinant
viruses were produced in Vero cells co-infected and superinfected with CPXV-No-F1 and MVA-HANP. Superinfection 1, primary infection with
CPXV-No-F1 and secondary infection with MVA-HANP at 4h post primary infection (ppi); Superinfection 2, primary infection with MVA-HANP and
secondary infection with CPXV-No-F1 at 4h ppi; Superinfection 3, primary infection with CPXV-No-F1 and secondary infection with MVA-HANP at
6h ppi; Superinfection 4, primary infection with MVA-HANP and secondary infection with CPXV-No-F1 at 6h ppi. Blue blocks represent the coding
sequences (CDS) from CPXV-No-F1.
B

A

FIGURE 4

Comparison of the recombinant viruses with the parental virus. (A) Comparison of the recombinant region of V-Rec1 with MVA-HANP and
incomplete MVA-HANP. V-Rec1 was produced in Vero cells co-infected with CPXV-No-F1 and MVA-HANP. Green blocks represent the influenza
virus hemagglutinin (HA) and nucleoprotein (NP) transgenes. Red blocks represent the coding sequences (CDS) from MVA-HANP. (B) Deletion in V-
Rec10 and V-Rec12. V-Rec10 was produced in Vero cells infected with CPXV-No-F1 and superinfected with MVA-HANP at 6h post primary infection
(ppi) (superinfection 3). V-Rec12 was produced in Vero cells infected with MVA-HANP and superinfected with CPXV-No-F1 at 6h ppi (superinfection
4). Yellow blocks represent the deleted sequence in the progeny viruses.
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3.5 Rescue of loss genes and fragment/
disrupted genes

Asmentioned before there are two recombinant viruses with >50%

of their genome derived from MVA-HANP. These two recombinant

viruses rescued disrupted/deleted genes and, furthermore, gained genes

that were absence in MVA-HANP. V-Rec12 rescued CPXV-Br009,

CPXV-Br032, CPXV-Br033, CPXV-Br034, CPXV-Br035 and CPXV-

Br036 genes (homologs to VACV-Cop C16L, C5L, C4L, C3L, C2L and

C1L genes, respectively) that were lost in MVA during the attenuation

process. Additionally, four fragmented/disrupted genes, CPXV-Br037,

CPXV-Br039, CPXV-Br043 and CPXV-Br078 (homologs to VACV-

Cop N1L, K1L, K5L and O1L genes, respectively), were rescued in the

recombinant virus V-Rec12 by recombination. Although O1L gene is

also fragmented in VACV-CVA. Moreover, the recombinant virus

gained seven more genes that were absent in MVA and VACV-CVA

strains: CPXV-Br010, CPXV-Br011, CPXV-Br012, CPXV-Br013,

CPXV-Br014, CXPV-Br015 genes and one gene (No-F1-009 gene)

that encodes BTB Kelch-domain containing protein. Compared to

V-Rec12, V-Rec2 gained six additional genes (CPXV-Br002, CPXV-

Br016, CPXV-Br017, CPXV-Br018, CPXV-Br19 and CPXV-Br020

genes) by recombination. Furthermore, the recombination events in

V-Rec2 rescued deleted genes: CPXV-Br005, CPXV-Br009, CPXV-

Br032, CPXV-Br033, CPXV-Br034, CPXV-Br035, CPXV-Br036,

CPXV-Br039, CPXV-Br040, CPXV-Br213, CPXV-Br217 and CPXV-

Br226 genes (homologs to VACV-Cop B28R, C16L, C5L, C4L, C3L,

C2L, C1L, M1L, M2L, B20R, C12L and C22L genes). Additionally,

twelve fragmented/disrupted genes in MVA were also rescued in this

recombinant virus (CPXV-Br003, CPXV-Br006, CPXV-Br008, CPXV-

Br023, CPXV-Br025, CPXV-Br027, CPXV-Br041, CPXV-Br078,

CPXV-Br207, CPXV-Br212, CXPV-Br223 and CPXV-Br227 genes).
4 Discussion

In our previous study, we performed co-infection and

superinfection experiments with a naturally circulating

Fennoscandian CPXV-No-F1 and MVA carrying an influenza HA

and NP transgene in semi-permissive Vero cells. We have showed

that recombination between these viruses occurred in both co-

infected and superinfected Vero cells. Although the likelihood of

recombination in co-infected and superinfected Vero cells was

always considered low because (1) Vero cells are semi-permissive

to MVA (15, 20) and (2) mechanisms as superinfection exclusion

prevent the superinfection of the infected cell with a second virus

(58, 59). A previous study has reported recombination between

human CPXV (hCPXV) and MVA-HANP in co-infected BHK-21

cells (22). Compared to Vero cells, those cells are fully permissive to

MVA-HANP and CPXV (20). Viral DNA replication in non-

permissive cells to MVA infection is not blocked (85), therefore

the likelihood of recombination increases since recombination and

viral DNA replication are connected (86, 87). In our superinfection

experiments, the time gap between the first and the second infection

was 4h and 6h ppi to ensure the establishment of primary infection

since it has been reported that VACV DNA synthesis in HeLa cells

starts 2 hours postinfection (88). Although the viral DNA synthesis
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of the primary virus is not needed for superinfection exclusion (59,

89). A study demonstrated the time of superinfection of 4 and 6

hours after primary infection with VACV produced 90% and 99%

exclusion of superinfecting virus, respectively (89).

The recombination between MVA-HANP and CPXV-No-F1

generated mosaic genomes containing genomic material from both

parental viruses. Several progeny viruses displayed plaque

morphologies different from that of the parental viruses. This was

also observed in the progeny viruses arising from superinfected

Vero cells with MVA-HANP and CPXV-No-F1, using 2h ppi (27).

Similarly, the recombinant viruses from BHK-21 cells co-infected

with MVA-HANP and hCPXV displayed non-parental and

parental traits with respect to plaque phenotype, in vitro host

range and cytopathogenicity (22, 71).

Our recombinant viruses showed different plaque phenotypes. It

has been reported that the proteins encoded by VACV-Cop F5L, F11L,

F12L, F13L, A33R, A34R, A36R, A56R, and B5R genes may be

involved in determining the plaque morphology (90–95). Some of

these genes were fragmented (i.e. VACV-Cop F5L and VACV-Cop

F11L gene) or encompassed some deletions (i.e. VACV-Cop A36R) in

MVA (16). Two of our recombinant viruses (V-Rec2 and V-Rec12)

formed small and non-lytic plaques. These recombinant viruses

contained the defective VACV-Cop F5L, F11L and VACV-Cop A36R

genes fromMVA-HANP. F5L and F11L proteins are required to form

normal plaques. They increase the plaque size and only F5L protein

promotes the formation of central plaque clearing (90–92). The

deletion of the gene encoding A36R protein decreased the plaque

size (96). Additionally, these two recombinant viruses displayed

plaques with comet formation, similar to those of the recombinant

virus V-Rec6. The genes associated to the formation of comet-shaped

plaques are VACV-Cop A33R, A34R and B5R (93, 94, 97). Those

recombinant viruses contained VACV-Cop A33R, A34R and B5R

genes from MVA-HANP, except for recombinant virus V-Rec6 that

contained VACV-Cop B5R gene derived from CPXV-No-F1. Other

recombinant viruses that only have VACV-Cop B5R gene fromMVA-

HANP, as well as VACV-Cop A33R and VACV-Cop A34R genes from

CPXV-No-F1, did not show plaques with comet formation.

Only two viruses produced syncytial plaques: recombinant virus

V-Rec1 and non-recombinant V-Rec9. The latter produces a

truncated K2L protein due to the introduction of an earlier stop

codon in the VACV-Cop K2L gene as a result of a nsSNM. It has

been reported that the lack of K2L protein causes the fusion of

infected cells (98–100). This protein forms a complex with A56

protein, and the heterodimer prevents syncytia formation (101)

(98–100, 102). The VACV-Cop A56R gene of V-Rec9 was intact; in

contrast, this gene was deleted in the recombinant virus V-Rec1.

Several recombinant viruses were transgene positive. The

proportion of HA-expressing recombinant viruses in the co-

infected and superinfected Vero cells were reported elsewhere (27).

The HA-expressing recombinant viruses had the complete double

expression cassette, while the non-HA-expressing recombinant virus

V-Rec1 contained an incomplete expression cassette without the HA

transgene similar to the incomplete MVA-HANP. It seems that this

progeny virus was the result of recombination of CPXV-No-F1 and

the incomplete MVA-HANP. The instability of the transgene in

MVA-HANP as well as in recombinant progeny viruses from BHK-
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21 cells co-infected with MVA-HANP and CPXV-No-H1 has been

previously reported. MVA-HANP and the recombinant viruses were

genetically unstable and lost the transgene during cell culture

passages (22, 71). The instability of the transgene is one of the

major concerns in the production of viral vector vaccines because any

mutation in the expression cassette could lead to unpredicted

characteristics. Furthermore, the transgene is used as a tag to

monitor the expression cassette in the recombinant progeny

viruses. Therefore, the loss or partial loss of the transgene hinders

the tracking of released recombinant progeny viruses. Another

concern about the use of MVA-HANP is to transfer the transgene

into a multiplication competent OPXV (46). In this study, we have

shown that the transgenes were transferred to the recombinant

viruses with a genome mainly derived from CPXV-No-F1.

Furthermore, the recombinant progeny viruses with the transgene

displayed new and non-parental plaque phenotypes. A biological

characterization of the recombinant viruses is required to investigate

their host range, multiplication curves at low and high moi, cell

tropism, transmissibility and virulence.

Compared to CVA, MVA had lost several genes and 25 genes were

fragmented and/or suffered mutations during the attenuation process,

such as the host range genes VACV-Cop K1L and C12L (16, 18). The

recombination of MVA with a multiplication competent OPXV may

lead to the restoration of disrupted/deleted genes inMVA. In this study,

we observed that two of our recombinant viruses, that had >50% DNA

from MVA-HANP, rescued deleted and fragment host range genes,

such CXPV-Br009 (VACV-Cop C16L) and CPXV-Br041 (VACV-cop

K1L) (23, 103). Even these recombinant viruses gained new host range

genes, crmB/CPXV-Br226 (VACV-Cop B28R) and vCD30/CPXV015

(103, 104). The recombination of MVA with a wild OPXV was

considered negligible since smallpox was eradicated. However, the

circulation of the naturally OPXV (3, 49, 68, 105–107) and the

emergence of new OPXV in the last few years (50, 108, 109) have

increased the likelihood of recombination between MVA and a

naturally replication competent OPXV during co-infection or

superinfection of the same cell or host. For instance, the ongoing

global outbreak ofMpox and prophylactic or post-exposure vaccination

with MVA-BN provide a good scenario for co-infection/superinfection

and subsequent recombination between MVA andMPXV. In addition,

several orthopoxvirus outbreaks in humans have been reported

worldwide (6, 110). Our study has shown that insertion of the

transgene into the genome of a co-infecting or superinfecting OPXV

was specific, but recombination in other parts of the genome were

nonspecific and unpredictable. In addition, some of the recombinant

viruses lost some or part of the transgenic cassette even when they were

inserted into the intended genomic regions, and the loss of transgene

may preclude tracking of recombinant viruses. To evaluate the potential

for recombination and robust monitoring of potential recombinant

viruses, hazard characterization and risk assessment of MVA vectored

biologicals should include genome wide characterization.

Finally, it is important to highlight the limitations of this study.

First, the high MOI used in our co-infection and superinfection

experiments may not be achievable under natural co-infection/

superinfection. Second, our experiments were done in cell cultures

and an extrapolation cannot be made to animals with an intact

immune system Vero cells in particular is a continuous cell line
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lacking type 1 interferon gene although it still has interferon receptors

(111). Third, our use of selection markers like plaque phenotype,

expression or non-expression of the transgene may have introduced a

selection bias and thus underestimate the pattern and diversity of

recombination between co-infecting or superinfecting viruses. Fourth,

the likelihood of recombination in co-infected and superinfected cells

is low; however, the possibility of co-localization has raised because the

circulation of naturally zoonotic OPXV (e.g. CPXV and MPXV) has

increased in recent years as well as the vaccination with MVA. Fifth,

this study did not calculate recombination frequency (RF) with respect

to the transgene cassette (112), and the number of recombinant

viruses selected was low to statistically infer genome-wide patterns

and diversity of recombination between CPXV and MVA-vectored

vaccine during co-infecting and superinfecting scenarios. Future

studies will address these limitations through plaque independent

deep sequencing analysis of cell cultures and animals co-infected or

superinfected with MVA and CPXV under conditions that better

reflects natural infection.

In conclusion, superinfection exclusion and low permissivity of

Vero cells to MVA did not prevent the recombination between MVA

vectored vaccines and the naturally circulating CPXV during

superinfection of cells. The recombination between MVA-HANP

and the naturally circulating CPXV-No-F1 in co-infected and

superinfected Vero cells lead to the generation of progeny viruses

with non-parental biological and genetic characteristic as well as the

regaining of delete/fragmented genes in MVA-HANP, transfer of the

transgene into CPXV and introgression of other MVA genes to

CPXV. This is a proof-of-concept study and future studies will

examine the risk of recombination between MVA or rMVA and

naturally circulating OPXV during co-infection and superinfection

by determining the likelihood of recombination and its consequences.
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