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Association of different cell
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Acne vulgaris, one of the most common skin diseases, is a chronic cutaneous

inflammation of the upper pilosebaceous unit (PSU) with complex pathogenesis.

Inflammation plays a central role in the pathogenesis of acne vulgaris. During the

inflammatory process, the innate and adaptive immune systems are coordinately

activated to induce immune responses. Understanding the infiltration and

cytokine secretion of differential cells in acne lesions, especially in the early

stages of inflammation, will provide an insight into the pathogenesis of acne. The

purpose of this review is to synthesize the association of different cell types with

inflammation in early acne vulgaris and provide a comprehensive understanding

of skin inflammation and immune responses.
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1 Introduction

Acne vulgaris is a common inflammatory dermatosis, affecting approximately 650

million people worldwide (1, 2). Acne can negatively impact the quality of life of patients

because of physical and psychosocial morbidities (3). Microcomedones and comedones are

primary acne lesions that result from cystic formation in the infundibulum of the

pilosebaceous unit (PSU) (4), and the majority of inflammatory lesions arise from

comedones, including papule, pustule, nodule and cyst (5). The progression of acne

vulgaris may not always occur in a linear manner from microcomedone to inflammatory

lesions (6, 7). The etiology of acne is multifactorial and complex, mainly including

hyperseborrhea and altered sebum composition, follicular hyperkeratinization,

abnormalities of the microbial flora, inflammation and immune responses (8). These

factors together can impair the PSU, leading to transformation of normal follicular canals

into microcomedones and further progression into inflammatory lesions (9). It is now

accepted that inflammation sets in early in the pathogenesis of acne (10).
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Cutibacterium acnes (C. acnes ; formerly known as

Propionibacterium acnes) is a commensal microorganism that

resides mainly in the anaerobic portions of the pilosebaceous

follicles (11). Although C. acnes is observed in normal and acne

skin, intense colonization likely causes inflammatory reactions and

immune cell recruitment through dysbiosis of the skin microbiome

and an imbalance of different C. acnes phylotypes (11–13). Based on

the sequences of the recA and tly genes, C. acnes can be subdivided

into phylotypes IA, IB, II and III (14, 15). Multilocus sequence

typing (MLST) approaches further divide the type I strain into IA1,

IA2, IB and IC clusters, some of which are acne-associated (IA1 and

IC) (16, 17). Within microcomedones, which are usually barely

visible clinically, C. acnes multiplies in the infra-infundibulum,

resulting in bacterial colonization (18). C. acnes produces many

enzymes and biologically active molecules to stimulate immune

cells to secrete proinflammatory cytokines. The immune response

to C. acnes, but not the bacteria itself, has a key role in the

pathogenesis of acne (19).

The immune surveillance of the skin barrier is complex.

Immune cells account for 7% of the cells in skin under normal

conditions (20) and are involved in perceiving alarm signals and

orchestrating immune responses when inflammation occurs.

Because of the absence of the stratum corneum, the skin

appendages become the points of entry for external pathogens,

and skin commensal microbiota can extend within the dermis,

establishing direct communication with the host immune system

(21). The PSU is classified as a site of immune cell recruitment

because alteration in microenvironments can impact skin

immunobiology (22, 23). The anaerobic and lipophilic

microenvironments of the PSU favor the growth of C. acnes,

particularly in acne vulgaris.
2 Inflammation in early acne vulgaris

The early stage of acne is characterized by the subclinical

microcomedones (5). The interior of microcomedones is mostly

composed of lipids with clusters of bacteria, and their outer shell is

made up of corneocyte layers (18). Due to increasing pressure from

the expansion of the keratin layer in a confined space, hypoxia may

facilitate the multiplication of C. acnes and lipid accumulation

(24, 25). Increased sebum production supports C. acnes growth in

the PSU. Moreover, the metabolites of bacteria can alter the sebum

composition, which contributes to the inflammatory response (26).

Eventually, the rupture of the follicular walls causes extrusion of the

content and a rapid inflammatory response. Although both CD4+ T

lymphocytes and neutrophils infiltrate around acne inflammatory

lesions (27), lymphocytes may play a more central role in early acne

lesions than neutrophils, which are strongly attracted after the

follicles have been disrupted (28). Additionally, other

inflammatory cells, especially CD4+ T cells and macrophages, are

also observed in the perifollicular region and dermis in acne-

uninvolved skin (10). This line of evidence suggests the

involvement of innate and adaptive immune processes in the

pathogenesis of acne vulgaris. Further studies indicate that acnes

at early stage, 6-72 hours after the development of lesions, only
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show small papules with a minimal erythema, with neither rupture

of the follicular walls nor neutrophilic infiltration. After 72 hours of

the development of acne, neutrophils can be observed in 33% of

lesions (28). This evidence indicates that acne vulgaris is featured by

microcomedones and small papules in early stage, followed by

neutrophilic infiltration. There is no agreed definition of the early

stages of acne vulgaris. We defined microcomedones and small

papules with no disruption of the follicle wall as the early stage of

acne in our review (Figure 1).
3 Adaptive immune cells

3.1 T helper 1 cells

Epidermal T cells, mainly CD8+ T cells, are distributed in the

stratum basale and stratum spinosum, while dermal T cells are often

situated beneath the dermal-epidermal junction or adjacent to

cutaneous appendages (29). The number of CD4+ T cells in the

epidermis is comparable to that in the dermis, and they are only

found around hair follicles. Under physiological conditions, 98% of

cutaneous lymphocyte-associated antigen (CLA)+ effector memory

T cells reside in the skin and can initiate and perpetuate immune

reactions without recruiting T cells from the blood (30). CD4+ T

helper (Th) cells regulate adaptive immune responses by secreting

cytokines and chemokines to activate and recruit effector cells (31).

Previous studies showed that a subpopulation of C. acnes-

specific Th1 cells is present in early acne lesions, while C. acnes

can stimulate T cell proliferation (32, 33). Acne lesions exhibit high

expression levels of Th1 effector cytokine interferon-g (IFN-g), Th1
polarizing key transcription factor T-bet, and the pivotal Th1

activating cytokine interleukin 12 (IL-12), suggesting the role of

Th1 cells in acne. (33, 34). C. acnes induces production of IL-12 by

monocytes via Toll-like receptor-2 (TLR-2) signaling. The innate

immune system recognizes C. acnes via TLR-2, increasing the levels

of IL-8 and IL-12 (35). In turn, IL-12 activates the transcription

factor signal transducer and activator of transcription 4 (STAT4),

inducing the production of IFN-g by Th1 cells (36), while IFN-g
promotes the differentiation of Th1 cells and induces chemokine

secretion to recruit immune cells. IFN-g–stimulated sebocytes seem

to foster the migration of CD45RO+ T cells with no influence on

cytokine secretion (37).
3.2 T helper 17 cells

In comparison to the skin of healthy individuals, acne-involved

skin displays a high number of IL-17+ cells near the PSU (34, 38,

39). The dermal IL-17+ cells are lymphocytes, which affect

epidermal keratinocytes in a paracrine manner (40). There is a

significant elevation in Th17 lineage signature cytokines, including

IL-1b, IL-6 and transforming growth factor-b (TGF-b), in acne

lesional vs. nonlesional skin (34). C. acnes increases expression

levels of key Th17-related genes in human peripheral blood

mononuclear cells (PBMCs) (38). Correspondingly, an integrated

bioinformatics study demonstrates increased infiltration of Th17
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cells and Th17-related cytokines in acne lesions (41). Moreover, the

number of Th17 cells is increased in the closed comedone stage of

acne, indicating that Th17 cells are involved in the pathogenesis of

acne, at least in early stage (42).

Sebocytes can drive a Th17 immune response via the

production of IL-6, TGF-b and IL-1b. Sebocytes can recruit

various subsets of T cells, including CD4+CD45RO+ effector and

CD4+CD45RA+ naive T cells in a CXCL8-dependent manner.

Although sebocytes do not alter the effector T-cell phenotype,

they affect the migration of naive T cells and alter their

developmental trajectory towards Th17 cells via the secretion of

IL-6, TGF-b and IL-1b (37). In addition to its effects on Th17 cells,

C. acnes can also promote mixed Th17/Th1 cell and Th1-like cell

responses in vitro by inducing concomitant secretion of IL-17A and

IFN-g (39). These mixed Th17/Th1 cytokines are most likely

derived from Th17 subsets displaying a degree of plasticity and

acquiring functional characteristics of Th1 cells (43). Acne-

associated C. acnes strains provide a microbial microenvironment,

regulating the programs responsible for the differentiation of Th17

cells into Th17/Th1 cells (44).

Th17 cells are characterized by the production of IL-17A and IL-

17F and potent inducers of tissue inflammation. IL-17 and IL-22,

effector cytokines of Th17 cells, enhance the expression of

antimicrobial peptides (AMPs), including cathelicidins and b-
defensins (45). Human b-defensin-2 (hBD)-2 is elevated in acne.

AMPs suppress excess cytokine release after minor epidermal injury to

maintain inflammatory homeostasis. Other studies also showed that

AMPs promote additional inflammatory responses in addition to their

antibacterial activity (46, 47). Although Th17 cells can strengthen the

body’s defense against extracellular pathogens, the excessive Th17

responses can drive chronic inflammation, likely contributing to the

development of acne (48). The role of Th17 response in acne cannot

be dissociated from the local microenvironment, i.e., dysseborrhea and

loss of C. acnes phylotype diversity.

While Th17-cell-derived IL-26 exerts direct antimicrobial

activity against extracellular bacteria, it lacks antimicrobial

potency against C. acnes (44, 49). C. acnes phylotypes directly

influence the Th17 cytokine profile and differentially modulate

the CD4+ T cell responses involving the generation of Th17 cells.

C. acnes phylotypes IA2, IB, and IC are increased in acne patients.

The acne-related C. acnes subtypes increase secretion of IFN-g and
IL-17, while decreasing levels of IL-10 in PBMCs. In contrast,

healthy skin-related C. acnes subtypes increase IL-10 levels (50).

IL-10 can repress proinflammatory responses by downregulating

IFN-g and IL-17 (51). IL-10-producing Th17 cells are protective

and exhibit microbicidal activity against C. acnes, whereas IFN-g-
producing Th17 cells are pathogenic without microbicidal activity

(44). Acne-associated C. acnes strains promote the differentiation of

a non-antimicrobial Th17 subpopulation (n-AMTh17). Healthy

skin-related C. acnes strains can specifically stimulate

antimicrobial subpopulation of Th17 cells (AMTh17) to secrete

antimicrobial proteins and generate T-cell extracellular traps

(TETs) capable of capturing and killing C. acnes. C. acnes is

entangled in TETs in proximity to Th17 cells in acne lesional

skin (52). Although TETs are involved in antimicrobial responses,

whether TETs exacerbate inflammation is unclear.
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3.3 Regulatory T cells

In inflammatory disorders, Th17 cells have intimate links with

Foxp3-expressing regulatory T (Treg) cells in immune balance.

Tissue-resident Treg cells are predominantly distributed near the

hair bulge area in the steady state (53). Tregs are efficient

suppressors of both innate and adaptive immune responses,

which are well known to be involved in preservation of cutaneous

homeostasis and in the regulation of skin immune response (54).

Significantly high numbers of Foxp3+ cells are observed in the

papillary dermis in early acne lesions (34, 40). Treg cells in acne

patients may have functional deficiency to suppress the abnormality

persistent immune response in acne lesions. Treg cells lose their

suppressive function and become IL-17-expressing cells under

inflammatory conditions. The dysfunction of Treg cells might be

a underlying mechanism accounting for chronic skin inflammation

(55–57). Moreover, the number of Tregs is lower in acne lesions

than in nonlesional skin of acne patients (41). However, whether an

increase in the number of Treg cells alone can benefit acne remains

to be determined.

Immunopathogenesis of acne vulgaris may be related to

deviations of the Th17/Treg balance (41). Increases in the Th17/

Treg ratio may contribute to the initiation of inflammatory

processes and can negatively affect Treg-controlled homeostasis

and integrity of hair follicles (58). Retinoids exert beneficial effects

on acne, via inhibition of IL-17 and increase in Foxp3 expression,

whereby regulating the balance between Treg and Th17 cell

differentiation (59, 60). The effective drugs treatment should not

only attenuate Th17/IL-17 signaling, but also improve Treg

function in order to stabilize the hair follicles. Comparison of the

ratio of Th17/Treg cells between acne lesional skin and healthy skin

and clarification of Treg-related disturbances of homeostasis of hair

follicle would be helpful to elucidate the pathogenesis of

acne vulgaris.
4 Innate immune cells

4.1 Dendritic cells

Dendritic cells (DCs) are a family of antigen-sensing and antigen-

presenting cells that link the innate and adaptive immune systems (61).

Skin DCs can be classified into four types: epidermal Langerhans cells

(LCs), conventional DCs (cDCs), plasmacytoid DCs (pDCs) and

monocyte-derived DCs (62). DC subsets are developmentally

imprinted and modulated by local microenvironmental and

inflammatory state (63). LCs are the main DC subsets in the

epidermis, taking up and processing antigens for presentation to skin

resident memory T cells or effector T cells (64, 65).

Skin immunohistochemistry revealed that CD1+cells

(considered to be LCs) and CD83+ dendritic cells were

significantly higher in early acne stage than in nonlesional skin

(10, 27, 28, 34). An analysis of skin biopsy samples also noted a clear

increase in the number of LCs and DCs in the closed comedone

stage. Interestingly, cDC2s are associated with perilesional CD4+T

cells (42). Bacterial peptidoglycan (PGN)-activated DCs selectively
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produce IL-1 and IL-23, which efficiently activate protective Th17

cells (66, 67). It has been postulated that changes in the follicular

microenvironment may increase the production of immunogenic C.

acnes proteins. LCs process antigens and migrate to the local lymph

node, where antigens are presented to CD4+T cells (68).
4.2 Macrophages

Macrophages are usually regarded as terminally differentiated

monocytic phagocytes. Monocytes are recruited to the tissue where

they differentiate into macrophages. Macrophages are activated by

different stimuli and exert heterogeneous effects in healthy and

inflamed skin, and based on these effects, they can be classified into

classically (M1) and alternatively (M2) activated subsets (69, 70).

Number of CD68+ macrophages is significantly higher both in

early acne lesions and uninvolved follicles in acne patients

compared with healthy subject (10, 34, 42). C. acnes triggers

inflammatory cytokine expression through the activation of TLR2

on macrophages, followed by the activation of the NOD-like

receptor thermal protein domain associated protein 3 (NLRP3)

inflammasome, Nuclear factor kappa-B (NF- kB) as well as

mitogen-activated protein kinase (MAPK) signaling cascade (71–

74). TLR2+ macrophages are present in acne lesions and increased

during the evolution of the disease (35). C. acnes can also stimulate

type I interferon (IFN-I) synthesis via the wiring of a TLR2- TIR-

domain-containing adapter-inducing interferon-b (TRIF) pathway

in human macrophages (75). In addition, IFN-I stimulates and

amplifies the secretion of chemokines and other immune mediators,

contributing to inflammatory responses (76).

Under normal conditions, M1 macrophages, also termed as

skin-resident macrophages, surround the sebaceous glands (77, 78).

Both M1 and M2 subsets can be found in acne lesions (79), and M1-

like macrophages mount an antimicrobial response against C. acnes

(80). Sebum can affect the polarization of macrophages favoring the

generation of M2 macrophages (81). Lipids that accumulate in the

PSU are oxidized by C. acnes lipase, and macrophages can

phagocytose oxidized lipids, consequently becoming foam cells

(82). These foam cells express TREM2 and infiltrate in acne

lesions. The sebum of acne patients has a higher content of

squalene (83), which can increase TREM2 expression on

macrophages. TREM2 expression enhances the phagocytic

capacity of the macrophages to uptake lipids and bacteria, but

these macrophages are unable to kill the bacteria. Squalene-induced

TREM2 macrophages contribute to inflammation by up-regulating

expression of proinflammatory chemokines, cytokines, MMPs, and

S100 proteins to recruit and activate immune cells (79).

Accumulation of intracellular lipids and lipid metabolic products

trigger the production of proinflammatory cytokines in

macrophages, contributing to the immunopathology of early acne

vulgaris. Notably, TREM2 macrophages are not typically present in

other inflammatory skin diseases, such as psoriasis (84) and atopic

dermatitis (85). However, the pathogenic role of macrophages in

acne has not been fully elucidated yet and more studies are needed

to characterize the functional of macrophage in acne.
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4.3 Mast cells

Mast cells (MCs) are most abundant in the upper dermis and

are located near blood vessels and nerve endings under

physiological conditions. The MC number is not affected by age

or sex (86). MCs are key effector cells that respond to allergic

inflammation and innate immune responses against bacteria. A

number of factors can activate MCs to release granule-stored

mediators and synthesize other types of mediators, leading to the

development of inflammatory dermatoses (87).

The high-affinity IgE receptor (FcϵRI) and CD69 are strongly

expressed in acne lesions (42). MC number and CD69 expression

peaked in the closed comedone stage, indicating that activated MCs

are involved in early acne lesions. The increase in the number of

MCs depends on keratinocyte-produced stem cell factor (SCF).

Lipoteichoic acid (LTA), a gram-positive cell wall component,

stimulates an increase in the production of SCF in keratinocytes,

indirectly influencing the recruitment and maturation of MCs (88).

A colocalization experiment showed that most IL-17A+ cells are

positive for tryptase (a MC marker) and negative for CD3 and CD4,

markers of T cells. Thus, MCs are possibly the cellular source of IL-

17A rather than CD4+ T cells in closed comedone (42). Activated

Th cells drive IL-17A production in MCs via cell-cell contact.

Neither classical MC stimuli nor Th cell cytokines induce IL-17

production in MCs, which means the mechanism underlying IL-17

production by MCs is tightly regulated (42, 89). IL-17A, a

proinflammatory cytokine, increases CXC ligand (CXCL)8

production in epithelial cells and activates fibroblasts to recruit

neutrophils (90), while neutrophils generate reactive oxygen species

(ROS) that irritate and destroy follicular integrity, causing

inflammatory progression of acne lesions, which are then

classified as pustules (91, 92). Moreover, IL-17A synergizes with

other inflammatory cytokines, leading to increased production of

IL-6 and IL-8 (93). IL-17 is not a typical mast cell cytokine, but it is

increasingly appreciated that innate immune cells can produce IL-

17 during an inflammatory response (94). However, the underlying

mechanisms by which mast cells secrete IL-17 are not clear. To

understand the complex pathophysiology of acne vulgaris, it is

imperative to define the mechanisms mediating IL-17 release.
4.4 Innate lymphoid cells

Innate lymphoid cells (ILCs) exhibit a lymphoid morphology;

they do not express rearranged antigen-specific receptors but do

have important functions in innate immunity and tissue

remodeling. ILCs are subdivided into 3 subsets, ILC1s, ILC2s and

ILC3s. ILC2s are the predominant tissue-resident skin ILC subset

under steady state and during inflammation (95, 96). Lack of ILCs

causes sebaceous hyperplasia and alters the equilibrium of skin

commensal bacteria by modulating the production of palmitoleic

acid, a component of sebum with antimicrobial properties, and

inhibiting the growth of several species of gram-positive cocci (97).

Sebaceous hyperplasia and dyshomeostasis of skin commensal

bacteria induce inflammation in the pathogenesis of acne vulgaris,
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which means that ILCs may be involved in the early stage of

inflammation in acne. A large number of ILC3s are present in the

non-lesional skin in hidradenitis suppurativa (HS) (98). Both IL-1b
and IL-23 can activate ILC3s to produce IL-22 and IL-17 (99, 100).

With expression of multiple Th17- and Th1-derived cytokines, ILCs

are subsequently replaced by adaptive Th mediated response. It

remains to be seen whether ILCs operate in the same way in

humans as they do in experimental animal models. Future study

is needed to investigate ILC subsets in skin of patients with acne and

characterize the functional capacity of ILC to contribute to

immune responses.
5 Skin cells involved in
acne inflammation

5.1 Keratinocytes

As themajor cell type in the epidermis, keratinocytes not only form

a physical barrier but also secrete cytokines to modulate the immune

response and inflammation (101). Keratinocytes express different types

of pattern recognition receptors (PRRs), recognizing various pathogens

and secreting cytokines, chemokines, and AMPs (102). Keratinocytes

constitutively synthesize IL-1a and IL-1b (103). Excessive skin

colonization of C. acnes can activate TLR-2 and TLR-4 on

keratinocytes, resulting in the production of a panel of inflammatory

mediators, including IL-8, IL-6, IL-1a, TNF-a, granulocyte–

macrophage colony-stimulating factor (GM-CSF), matrix

metalloproteinase (MMP)-9 and hBD-2 (74, 104–107). These

mediators activate tissue-resident immune cells to induce and

perpetuate an inflammatory response. C. acnes is also recognized by

CD36, a scavenger receptor expressed on keratinocytes, inducing a

rapid production of ROS by keratinocytes, consequently leading to

inhibition of bacterial growth and production of inflammation (108).

Moreover, keratinocytes in hair follicles express squalene epoxidase,

which converts squalene to squalene epoxide (79). Lipid peroxides, in

particular squalene peroxides, have been shown to activate

lipoxygenases and increase the production of IL-6 in keratinocytes in

a dose-dependent manner (109). In addition, hypoxia due to increasing

intraductal pressure may induce hypoxia inducible factor (HIF)-1

production, stimulating keratinocytes to produce proinflammatory

cytokines (24, 110). Thus, keratinocytes can contribute at least in

part to the inflammation in acne vulgaris.
5.2 Sebocytes

Sebocytes form the sebaceous gland acini belonging to the

upper PSU (111, 112). Matured sebocytes secrete their contents in

a holocrine manner, leading to DNase2-mediated programmed cell

death (113), which affects skin barrier function (114). Human

sebum is a lipid mixture, and wax esters and squalene are

characteristic of sebocytes (115, 116). Sebocytes may act as

immune-active cells, recognizing microorganisms and then

producing AMPs and cytokines. Sebocytes are not only a target of

inflammation, but also modulate of immunity (117, 118). Increased
Frontiers in Immunology 05
activity of androgen hormones and insulin-like growth factor 1

(IGF-1) stimulates the proliferation and differentiation of sebocytes,

resulting in hyperseborrhea (119). Clinical research has

demonstrated a positive correlation between serum IGF-1 levels

and disease severity, especially in female acne patients (120). IGF-1

induces the expression of proinflammatory cytokines, such as IL-

1b, IL-6, IL-8, and TNF-a, in sebocytes via the NF-kB signaling

pathway (121). Sebocytes express PRRs, such as TLR2, TLR4, TLR6

and CD14, to recognize C. acnes and produce IL-1b, IL-6 and TGF-

b in vitro, which drives a Th17 immune response (37, 122–125).

GATA6 expressed in differentiating sebocytes can induce the

expression of IL-10 and negatively regulates acne-driven IL-8 and

IL-17 cytokines. Expression levels of GATA6 are reduced in early

acne lesions, resulting in increased acne-driven cytokines (126).

Bacterial lipases hydrolyze some of the triglycerides in the

sebum to free fatty acids (FFAs), which have a proinflammatory

effect and antibacterial activity (127, 128). Proteases produced by C.

acnes activate protease-activated receptor-2 (PAR-2) on sebocytes

can also induce the production of inflammatory cytokines and

antimicrobial peptides (129). FFAs and C. acnes upregulate the

expression of hBD-2 in human sebocytes to enhance innate

immune defense (47, 130). The development of more anaerobic

conditions in hair follicles can lead to outgrowth of C. acnes and

buildup of short-chain fatty acids (SCFAs) (131, 132). SCFAs have

been shown to amplify TLR-driven cytokine responses from

sebocytes through inhibition of histone deacetylase activity and

the activation of fatty acid receptors (132).

Moreover, sebocytes secrete biologically active lipids to regulate

inflammation. Sebum from acne patients contains lower levels of

linoleic acid and higher levels of squalene, lipoperoxides, and

monounsaturated fatty acids (MUFAs), particularly palmitoleic

acid (C16:1) and oleic acid (C18:1) (83, 133–135). Stearoyl-CoA

desaturase (SCD) and fatty acid desaturase (FADS)-2, two enzymes

responsible for the biosynthesis of MUFAs in sebocytes, are

upregulated by the TLR-2 ligand macrophage-activating

lipopeptide-2 (MALP2) (122, 136). Excessive generation of

squalene and MUFAs increases the rate of lipid peroxidation, and

their oxidation products create a proinflammatory environment

and induce comedogenesis (135, 137). Palmitic acid activates the

NLRP3 inflammasome to induce release of IL-1b (138) and

inflammatory response in sebocytes via TLR2 and TLR4 signaling

(128). Epidermal growth factor together with palmitic acid may

augment the inflammatory properties of sebocytes (139). In

contrast, linoleic acid has an anti-inflammatory effect via

inhibition of IL-1b production in C. acnes-activated macrophages

(81). It is qualitative changes, not quantitative changes, in sebum

composition that play a central role in the development of acne

(26). Finally, sebocytes can release leptin after being triggered by

TLR-2 and TLR-4 or mTORC1 pathway (118, 140). Sebocyte-

derived leptin induces the expression of proinflammatory lipids,

such as cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX),

and augments the expression of IL-6 and IL-8 (141, 142). Leptin

also plays a pivotal role in Th17 cell differentiation (143). Sebocytes

expressing leptin receptor (LEPR) may perpetuate inflammation in

an autocrine manner (144). Collectively, sebocytes can provoke

inflammation in acne via multiple mechanisms.
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A B

FIGURE 1

Early acne lesions and late acne lesions. (A) The early stage of acne occurs in the hair follicle infundibulum. Microcomedone is mostly composed of
lipids with clusters of bacteria, and the outer shell is made up of corneocyte layers. (B) The walls of the follicles rupture, leading to extrusion of the
content and causing a rapid inflammatory response.
FIGURE 2

Different cell types at the early stage of inflammation in acne vulgaris. The early stage of acne vulgaris manifests microcomedones and small papules,
which has no disruption of the follicle wall. The change of follicle microenvironment in acne initiate the immune activation of skin cells. Activated
sebocytes, keratinocytes and skin-resident APCs upregulate the production of pro-inflammatory mediators, such as IL-1b, IL-6, IL-12 and TGF-b. IL-6
and TGF-b induce the differentiation into Th17 cells, whereas IL-12 drives a Th1 differentiation program. Healthy-related C. acnes induce IL-10-
producing AMTh17 cells, whereas acne-associated strains promote the development of n-AMTh17 cells. AMTh17 cells release IL-17, IL-22, IL-26, IL-10 and
TETs, n-AMTh17 cells induce IFN-g. Treg lose their suppressive function for deviations of the Th17/Treg balance. MCs are the cellular source of IL-17A in
early acne. Lack of ILCs leads to sebaceous hyperplasia and alters the equilibrium of skin commensal bacteria. Accumulation of intracellular lipids and
lipid metabolic products induce the production of proinflammatory cytokines in macrophages. C. acnes triggers dermal fibroblast differentiation and
enhances cathelicidin expression. APC, Antigen presenting cell; TGF-b, Transforming growth factor- Beta; IFN-g, Interferon gamma; MC, mast cell; TETs,
T-cell extracellular traps; ILCs, innate lymphoid cells. AMTh17 cells, antimicrobial Th17 cells; n-AMTh17 cells, non-antimicrobial Th17 cells.
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5.3 Fibroblasts

Dermal fibroblasts are essential cells that support the structural

integrity of tissues. Dermal white adipose tissue (dWAT) is a unique

tissue layer made up of adipocytes mainly concentrated around the

PSUs (145). Intradermal infection with Staphylococcus aureus induces

proliferation and differentiation of fibroblasts into the preadipocyte

lineage, leading to rapid expansion of the dWAT layer and triggering

the production of antimicrobial peptides, a process dubbed reactive

adipogenesis (146). Recent studies have shown that reactive

adipogenesis occurs in the perifollicular stroma of acne. C. acnes

triggers dermal fibroblast differentiation and enhances cathelicidin

expression, which is partially dependent on TLR2 activity (147).

Hence, dermal perifollicular fibroblasts are involved in the

pathogenesis of acne and represent a potential target for acne therapy.
6 Conclusions

Acne lesions begin with the formation of microcomedones.

Follicular epidermal hyperproliferation, increased sebum

production and the growth of C. acnes in PSUs contribute to

microcomedone formation.

The alteration of the follicle microenvironment stimulates skin-

resident antigen presenting cells (APCs), sebocytes, and keratinocytes

to produce proinflammatory cytokines, such as IL-1b, IL-6, and TGF-

b. Macrophages phagocytose oxidized lipids and produce

proinflammatory cytokines. MCs appeared as pioneer cells to

produce IL-17, followed by the appearance of ILCs and Th cells.

With the expression of multiple Th17- and Th1-derived cytokines,

adaptive Th-mediated response plays a pivotal role in the early stage of

acne. Deviations of the Th17/Treg balance may contribute to the

initiation of inflammatory processes and negatively affect PSU

homeostasis destabilizing the hair follicle infundibulum (Figure 2).

The follicle walls eventually rupture, and neutrophils take over,

increasing the latter stage of IL-17 production and triggering a rapid

inflammatory response. The crosstalk of different skin cells in the early

stage of acne remains to be revealed. Understanding these skin immune

cells in the pathogenesis of early acne can facilitate the identification of

biomarkers as well as the development of targeted therapies for acne

vulgaris. Because of immune overactivation in acne, anti-inflammatory

treatments should be employed in the management of acne.
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