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autoantigens in the context of
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IgG4-related disease
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Oxford, United Kingdom, 2Department of Gastroenterology and Hepatology, Oxford University
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Immunoglobulins are an essential part of the humoral immune response. IgG4

antibodies are the least prevalent subclass and have unique structural and

functional properties. In this review, we discuss IgG4 class switch and B cell

production. We review the importance of IgG4 antibodies in the context of

allergic responses, helminth infections and malignancy. We discuss their anti-

inflammatory and tolerogenic effects in allergen-specific immunotherapy, and

ability to evade the immune system in parasitic infection and tumour cells. We

then focus on the role of IgG4 autoantibodies and autoantigens in IgG4-

autoimmune diseases and IgG4-related disease, highlighting important

parallels and differences between them. In IgG4-autoimmune diseases,

pathogenesis is based on a direct role of IgG4 antibodies binding to self-

antigens and disturbing homeostasis. In IgG4-related disease, where affected

organs are infiltrated with IgG4-expressing plasma cells, IgG4 antibodies may

also directly target a number of self-antigens or be overexpressed as an

epiphenomenon of the disease. These antigen-driven processes require critical

T and B cell interaction. Lastly, we explore the current gaps in our knowledge and

how these may be addressed.
KEYWORDS

IgG4, IgG4-RD, autoantibody, antigen, autoimmunity
1 Introduction

Antibodies are the fundamental component of humoral immune responses, also known

as antibody-dependent responses. These molecules can recognise and neutralise pathogens,

either by binding to molecular antigens and directly preventing their pathogenic effect, or

by opsonising these pathogens and triggering effector functions, such as the complement

system, antibody-dependent cell-mediated cytotoxicity and antibody-dependent

cellular phagocytosis.
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Five different classes of antibodies, or immunoglobulins (Ig) are

found in humans, namely IgM, IgD, IgA, IgE and IgG. IgM and IgD

are involved in primary adaptive humoral immunity and can be

found in mature naïve B cells (1), which undergo specialisation and a

class switch towards long lived B cells and plasmablasts that produce

IgA, IgE and IgG (2, 3). IgA is mainly involved in mucosal humoral

immunity. IgE is one of the main components of allergic reactions.

IgG is part of several different processes both in health and disease.

IgG has four subclasses (i.e., IgG1, IgG2, IgG3 and IgG4) which

form part of the immune response. Under normal conditions, IgG1-

3 can fixate complement and opsonise pathogens, whilst IgG4 only

activates complement under special circumstances, at high antibody

and antigen concentrations. IgG and its subclasses are involved in

autoimmune processes, such as rheumatoid arthritis, systemic lupus

erythematous, ANCA-associated vasculitides, as well as IgG4-

autoimmune diseases (IgG4-AID) and IgG4-related disease

(IgG4-RD).

In this review, we describe the structure and function of IgG4

antibodies, discuss the role of this class in allergy, helminth

infections, malignancies, and autoimmune diseases. A greater

emphasis is placed on IgG4-related disease and the role of IgG4

antibodies in the pathogenesis of the disease.
2 Structure and function of
IgG4 antibodies

Immunoglobulin G has four subclasses, with IgG4 representing

up to 5% of the total IgG concentration (4). Their structure is based
Frontiers in Immunology 02
on 2 heavy and 2 light chains bound together by disulphide bridges.

There are interactions between the light and heavy chains, as well as

a connection between the two heavy chains at the hinge region. This

region is important because it gives structural flexibility to the

molecule. Both the light and heavy chains have antigen-binding

sites, the variable region (VL and VH), and areas responsible for the

effector function of the antibodies, called constant region (CL and

CH1, CH2, CH3, CH4). Furthermore, these molecules can be divided

by function, the “Fragment, antigen binding” (Fab) region and the

“Fragment, crystallised” (Fc) region, which is responsible for the

effector function (5). In the CH2 domain, a switch of proline to

serine at position 228 in the hinge of IgG4 facilitates Fab-arm

exchange (Figure 1). Schuurman, Aalberse and colleagues observed

that this phenomenon is marked by the dissociation of the two

heavy chains and recombination of two random IgG4 monomers

(heavy and light chains) to form a bispecific dimer (6). Even though

this new molecule might recognise two different antigens, it is

functionally monovalent, and cannot form large immune

complexes (7–9). The Fc portion in IgG4 antibodies have a high

affinity for antigens and FcgIIb receptors but low affinity for Fcg
stimulatory receptors and cannot tipically activate the classical

complement pathway (10). These characteristics hinder Fc

mediated effector functions and prevent further sensitisation of

the immune system (8, 11–13). There are, however, situations

where IgG4 molecules can activate the complement pathway. The

first is via recruiting mannose-binding lectins and activating the

lectin pathway, which has been observed in anti-PLA2R

membranous nephropathy (14). The second is through mutations

of the Fc region, enabling these molecules to form hexamers and
FIGURE 1

Fab arm exchange in IgG4 antibodies.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1272084
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Motta and Culver 10.3389/fimmu.2024.1272084
bind to C1q (15). These molecules can also activate the complement

system using the classical pathway when there is high antigen

density and high antibody concentration (16). Finally, Oskam,

Rispens and collaborators showed that in opposition to previous

evidence, the heavy chains of IgG4 molecules can dissociate and

interact with the Fc region of other IgGs. It is not clear whether this

mechanism plays a role in the pathogenesis of autoimmune

diseases, but it modulates the affinity of IgG1 and IgG2 for C1q

(17). Hence, IgG4 has anti-inflammatory properties, and it is

involved both in health, such as the development of tolerance in

allergies (18), as well as disease, such as curbing immune responses

against helminth infections (19) (Table 1).
3 Class switch recombination and
somatic hypermutation

When exposed to antigens, naïve B cells become antibody

secreting B cells via the extrafollicular and follicular pathways,

which are complementary. The initial response to antigens is

predominantly driven by the extrafollicular path (20, 21). It

involves T follicular helper (Tfh) cells driving the differentiation

of naïve B cells into short lived plasmablasts, which will maintain an

immune response for up to a week after the trigger (20, 22).

To create an immune response based on IgG4, B cells must

undergo class switch recombination (CSR) and somatic

hypermutation (SHM) (11, 23, 24). These processes are hallmarks

of follicular responses, which take part in germinal centres (GC) of

lymph nodes and the spleen. In the follicular pathway, antibody

secreting B cells develop high affinity and specificity and become

either memory B cells or long-lived plasma cells (LLPC). The GCs

are divided in dark and light zones, with functional differences. The

dark zone promotes proliferation of B cells, as well as CSR and SHM

(25). CSR is marked by deletional recombination in the heavy chain

gene that leads to a change in Ig class, thus changing effector
Frontiers in Immunology 03
functions of the antibodies, while preserving the affinity for specific

antigens. Given its mechanism, switch in Ig class follows a

sequential pattern from IgM/IgD to IgG3, IgG1 and IgA1, called

proximal classes. A secondary switch then gives rise to distal classes

such as IgG2, IgG4 and IgA2 (23, 26, 27) and has been attributed to

stimuli from T helper 2 (Th2) cells. Interleukin (IL) 4 and IL-13 are

responsible for skewing the antibody production to IgG4 and

stimuli involving IL-10 and/or IL-21 lead to selection of IgG1

antibodies (28). After these clones have developed high-affinity

and specificity, they migrate into the light zone. There, they will

undergo a selection according to interactions with Tfh cells and

follicular dendritic cells (29). Once the highly specific clones are

selected, they leave the GC and become LLPC or migrate to the

bone marrow as memory B cells.
4 IgG4 in allergic reactions

IgG4 antibodies have an important role in the development of

tolerance in atopic patients. It has been extensively shown that

beekeepers develop an IgG4-based response to bee venom

associated with reduction of symptoms after exposure to the toxin

(30, 31), and the same event has been described in other cases of

occupational exposure (32, 33). Furthermore, allergen-specific

immunotherapy is based on the development of IgG4 antibodies

against allergens through regular and incremental exposure to

allergenic antigens (34). IgG4 competitively binds to allergens,

thus hindering the formation of IgE-antigen immune complexes

(35, 36). Furthermore, it also binds to FcgRIIb, an inhibitory Fcg
receptor, preventing the degranulation of mast cells and the cascade

that would lead to allergic responses (37–39).

On the other hand, IgG4 antibodies are also involved in the

maintenance of the disease in cases of eosinophilic oesophagitis

(EoE) and eosinophilic chronic rhinosinusitis (40–42). The most

robust evidence that this class is involved in disease comes from

studies associating it with symptoms in patients with EoE. During

food avoidance tests, patients referred less symptoms and biopsies

showed reduction of IgG4 deposition (43). In addition, histological

levels of IgG4 were found to be significantly lower during remission

when compared to samples collected during disease activity (44).

For a detailed review on the topic, please see (45).
5 IgG4 in helminthic infections

Helminthic infections are another scenario where IgG4

antibodies show their tolerogenic effects. Patients with acute

parasitic infection usually show a balanced Th1/Th2 immune

response, with a predominance of IFN-g over IL-10, and a higher

count of peripheral eosinophils (46). If the pathogen fails to evade

the host response, this leads to parasite clearance and termination of

the infection.

Individuals with chronic infection, however, show an immune

response with a Th2 profile, where IL-10 plays a critical modulatory

role in skewing antibody production towards IgG4 (46). A response

based on parasite-specific IgG4 antibodies, then, dampens IgE-
TABLE 1 IgG4 antibodies: structural characteristics and
functional consequences.

Molecule structure Function

Change of proline (IgG1) to
serine (IgG4) at position 228 in
the core hinge region

Asymmetry in the structure with different
Fab arms. The final antibody is
functionally monovalent.
IgG4 cannot bind to two different
antigens neither form large
immune complexes.

CH2 domain amino acid
substitutions - L234F and P331S

Low-affinity to FcgRIIa and FcgRIIIa.
Weak ability to bind to FcgRI compared
with IgG1

CH2 domain amino acid
substitution - P331S

Negligible binding to the C1q protein
complex.
Cannot trigger the classical
complement pathway

Constant domain links with Fc
portion of other IgG molecules

Compete with other antibodies and
impairs IgG1 ability to activate
complement or form immune complexes.
Anti-inflammatory function
In the function column, the bold values represent the functional outcomes.
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mediated immune response and perpetuates the infection.

Asymptomatic patients show a restricted response to parasite

antigens, while those with severe chronic disease have lower levels

of serum IgG4 antibodies and show signs of organ damage (46).

Studies also show that individuals with a high parasite burden have

higher levels of parasite-specific IgG4 than patients with a lower

parasite burden (47, 48). The immunomodulatory effects of

helminthic infections are also seen in the response to allergens,

where patients with chronic parasitic infection show lower levels of

IgE-reactivity to dust antigens (49).
6 IgG4 in malignancies

Antitumour humoral responses can prevent malignancies from

developing further and even annihilate them by triggering humoral

and cell-mediated immune responses. Some neoplasms induce class

switch of anti-tumour antibodies to the IgG4 class, leading to

immune escape and IgG4-mediated tumour-tolerogenic responses

(50). Melanoma and pancreatic ductal adenocarcinoma cells induce

a modified Th2 immune response around their microenvironment,

triggering B cells to undergo antibody class switch towards IgG4

(51, 52). These antibodies will then competitively bind to cancer

antigens and damp anti-tumour immune responses. Higher serum

levels of IgG4 are associated with fewer cytotoxic T cells (53) and

with a worse prognosis in patients with cholangiocarcinoma and

melanoma (50, 54).

A meta-analysis reported that patients with IgG4-RD have an

increased risk of clonal B cell lymphoma and pancreatic malignancy

when compared with a matched general population (55). The

mechanisms driving this increased risk remain speculative and

include 1) chronic inflammation-induced carcinogenesis; 2) IgG4-

related tumour-induced immune escape; 3) paraneoplastic

phenomenon, as most malignancies detected distant from the site

of disease activity. The class switch towards IgG4 induced by some

malignancies may also play a role in the initiation of IgG4-RD. K-

ras codon gene mutations associated with gastrointestinal cancer

have been reported in patients with IgG4-related pancreatitis (56).

These mutations are also associated with cellular transformation

and genetic instability (57, 58).
7 IgG4 in IgG4-autoimmune diseases

Huijbers et al. were the first to collectively describe IgG4

autoimmune diseases (IgG4-AID) as a spectrum of conditions

characterised by autoantibody responses against a known antigen

(59). Evidence shows that these diseases are caused by IgG4

antibodies recognising autoantigens, although not all antigens

have been validated. The diagnosis of IgG4-AID depends on high

level of suspicion and identification of IgG4 autoantibodies against

the antigen(s) specific to each disease (60). Koneczny proposed a

classification system based on evidence of antibodies against

extracellular antigens, and direct pathogenic mechanism of IgG4

antibodies observed in vitro and validated in animal models

through passive transfer (61). Although 29 antigens have been
Frontiers in Immunology 04
described in IgG4-AID (Table 2), only the six antigens have met

all three Koneczny criteria of IgG4 pathogenicity (61). For a

thorough review on IgG4-AID and autoantigens involved in these

disorders, please read (62).
7.1 Desmoglein 1 (Dsg1) and 3 (Dsg3):

Desmoglein 1 and 3 are transmembrane proteins found in

keratinocytes. Anti-Dsg1 IgG4 is responsible for the development

of pemphigus foliaceous (PF), while anti-Dsg3 IgG4 antibodies, and

in some cases anti-Dsg1 IgG4, cause pemphigus vulgaris. These

antibodies target epitopes in EC1 and EC2 domains, including in

fogo selvagem (FS), an endemic PF specific to Brazil (63), and in the

endemic PF found in Tunisia (64). Qian and Peng observed a cross-

link between anti-LJM11, a protein present in the saliva of sand flies

(L. longipalpis), and anti-Dsg1 antibodies in patients with FS and

healthy controls from the same region (65, 66). The difference being

that antibodies from the healthy population recognised the EC5

domain of Dsg1 rather than EC1 and EC2 (63, 65–67). Studies

investigating the Tunisian population found that endemic PF

patients and healthy controls from the same area had anti-Dsg1

IgG and demonstrated a cross-link between these antibodies and

the salivary extract from P. papatasi (68–70). The antibodies in

healthy Tunisians, instead of targeting the epitopes involved in

endemic PF, bound to epitopes in the EC3, EC4 and EC5 of Dsg1

(64) and were mostly IgG1, IgG2 and IgG3 (71)
7.2 Muscle-specific kinase (MuSK):

MuSK is a tyrosine kinase involved in the transduction of

electrical signals at the neuromuscular junction and is involved in

MuSK myasthenia gravis (MG) (72). Anti-MuSK IgG4 antibodies

often target the Ig-like 1 domain of the protein (73–75), which has

important functional implications. This region contains the site

where lipoprotein receptor-related protein 4 (Lrp4) binds to MuSK

and activates the kinase, which causes clustering of acetylcholine

receptors (AchR) at the synapse. By competitively binding to that

domain, IgG4 antibodies block Lrp4-dependent activation of MuSK

(76, 77), thus impairing migration of AchR to the neuromuscular

junction. Other IgG subclasses might also be involved in MuSK

MG. Huijbers et al. observed that valency affects the outcomes of

antibody binding to MuSK and may, in fact, lead to activation of the

kinase (78). Furthermore, patients with MuSK-MG have higher

levels of IgG4, but they also have higher levels of IgG1 when

compared to controls, which does not corroborate the theory that

these patients have overall responses biased towards IgG4 (79).
7.3 Contactin 1 (CNTN1):

Contactin 1 binds with CNTN1-associated protein 1 (Caspr1)

and neurofascin 155 (NF155), forming an axo-glial complex that is

involved in paranode architecture and maintenance of myelin

in axons (80) . Chronic inflammatory demyel inat ing
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1272084
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 2 Comparison between antigens, symptoms, animal models, HLA associations and responsiveness to immunosuppression between IgG4-AID and IgG4-RD.
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HLA
associations

IgG4 Yes HLA-DQB1*0401,
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Total
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and
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and
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B*38, HLA-B*55
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Antigen Localisation
of antigen

Disease Symptoms Organ affected Evidence
of
passive
transfer

Evide
throu
active
immu

Carbonic
anhydrase II

Cytoplasm IgG4-RD Pseudotumours, fibrosis.
Varies according to
organ affected.

Pancreas, bile ducts,
sallivary and lacrimal
glands, kidneys,
retroperitoneum,
aorta, orbits

No Yes

Plasminogen
binding
protein type
A/UBR2

Cytoplasm
and nucleus

No No

Lactoferrin Pancreatic juice No No

Pancreatic
secretory
trypsinogen
inhibitor
(SPINK1)

Pancreatic juice No No

Trypsinogens Pancreatic juice No No

Annexin A11 Cytoplasm,
cell membrane

Yes No

Laminin
511-E8

Extracellular
matrix

Yes Yes

Galectin 3 Extracellular
matrix, cytosol
and nucleus

No No

Prohibitin Nucleus,
cytoplasm
and mitochondria

No No

Desmoglein 1 Cell membrane Pemphigous foliaceous Blistering lesions Skin Yes Yes

Desmoglein 3 Cell membrane Pemphigus vulgaris Blistering lesions Skin Yes No
n
g
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TABLE 2 Continued

on

Ig
type

Response
to
immunosuppressants

HLA
associations

IgG4 Yes HLA-DQB1*05, HLA-
DRB1*13,
HLA-DRB1*16

IgG4 Variable HLA-DQB1*02

IgG4 Variable

IgG4 Variable

IgG4 Variable

IgG1
and
IgG4

Yes HLA-DRB1*11,
HLA-DRB1*08:03

IgG4 Variable HLA-DRB1*11:01

IgG4 Variable HLA-DRB1*07:01

IgG4 Yes HLA-DQA1, HLA-
DRB1*1501,
HLA-DRB1*0301IgG4 Yes

IgG4
and
IgG1

Yes

IgG4
and
IgG1

Yes

IgG4
and
IgG1

Yes

IgG4 Needs more studies
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Antigen Localisation
of antigen

Disease Symptoms Organ affected Evidence
of
passive
transfer

Evidence
through
active
immunisat

Muscle-
specific kinase

Cell membrane MuSK
myasthenia gravis

Weakness and atrophy of
neck, tongue, shoulder and
bulbar muscles.

Muscles
(Motoneural junction)

Yes Yes

Contactin 1 Cell membrane Chronic inflammatory
demyelinating
polyradiculoneuropathy

Subacute neuropathy, sensory
ataxia and tremor.

CNS and PNS Yes No

Neurofascin
155

Cell membrane Yes No

CASPR1 Cell membrane No No

Neurofascin
140/186

Cell membrane No No

ADAMTS13 Blood circulation Thrombotic
thrombocytopenic
purpura

Thrombotic events Blood Yes No

CASPR2 Cell membrane Isaac’s syndrome,
Morvan’s syndrome,
limbic encephalitis

Epilepsy, behavioural and
mental abnormalities,
autonotmic instability, motor
and sensory neuropathy.

CNS and PNS Yes*** No

LGI1 Cell membrane LGI1-associated limbic
encephalitis,
Isaac’s syndrome

Epilepsy, behavioural and
mental abnormalities,
seizures, dystonia, sensory and
motor neuropathy.

CNS and PNS Yes*** No

PLA2R Cell membrane Membranous
nephropathy

Oedema, fatigue, changes
in urine

Kidneys Yes Yes****

THSD7A Cell membrane Yes No

Alfa-enolase Cell membrane No No

Superoxide
dismutase
2 (SOD2)

Mitochondria No No

Aldose
reductase

Cytoplasm No No

GPIHBP1 Cell membrane GPIHBP1
autoantibody syndrome

Severe hypertriglyceridemia Blood No No
i
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TABLE 2 Continued

nce
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nisation

Ig
type

Response
to
immunosuppressants

HLA
associations

IgG4 Yes HLA-DQB1*0301

IgG1
and
IgG2

Yes HLA-DRB1*1501/
HLA-DR15,
HLA-DRB1*15:03

IgG1 Variable HLA-
DRB1*10:01-
DQB1*05:01

IgG4
and
IgG1

Variable

IgG1,
IgG3,
IgG4

Yes HLA-DRB1*04, HLA-
DRB1*07, HLA-
DRB1*09, HLA-DRB3,
HLA-DRB1*13,
HLA-DQ

IgG1 Yes
Yes

HLA-DQB1*0301
HLA-DQB1*0301

IgG1

IgG1
and
IgG4

Yes*/**

IgG4 Needs more studies
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Antigen Localisation
of antigen

Disease Symptoms Organ affected Evidence
of
passive
transfer

Evide
throu
active
immu

Laminin 332 Cell membrane Mucous
membrane pemphigoid

Blistering mucosal lesions,
mainly in the oral cavity
and conjunctivae

Mucosa Yes No

Type
IV Collagen

Extracellular
matrix

Goodpasture
syndrome,
epidermolysis bullosa
acquisita (EBA)

Haemoptysis, changes in
urine/blistering lesions

Lungs and kidneys, skin Yes Yes

IgLON5 Extracellular
matrix

IgLON5 parasomnia gait instability, non-REM and
REM parasomnia, cognitive
decline, movement disorders.

CNS No No

DPPX Cell membrane Anti-
DPPX encephalitis

Weight loss, gastrointestinal
symptoms, cognitive-mental
dysfunction, tremor, seizures,
autonomic dysfunction.

CNS No No

ANCA Cytoplasm ANCA-
related vasculitides

Fatigue, haemoptysis, muscle
pain, changes in urine

Blood vessels, kidneys Yes Yes

Bullous
pemphigoid
antigen 180

Cell membrane Bullous pemphigoid
Bullous pemphigoid

Blistering lesions
Blistering lesions

Skin Yes Yes

Bullous
pemphigoid
antigen 230

Cytoplasm Skin Yes Yes

IFN 1, IL-
17A, IL-22

Extracellular
matrix

Autoimmune
polyendocrinopathy-
candidiasis-
ectodermal dystrophy

Chronic candidiasis,
hypothyroidism,
hypogonadism

Skin, mucosa,
endocrine organs,
lungs, bowels

No No

P200
(laminin
gamma1)

Cell membrane Anti-p200 pemphigoid Blistering lesions Skin No No

*Only the autoimmune manifestations respond to immunosuppressants.
** Ruxolitinib might be effective in the treatment of chronic mucocutaneous candidiasis in patients with STAT1 gain-of-function mutations.
***Did not trigger all the symptoms observed in patients.
****Knock-in PLA2R mice spontaneously developed MN.
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polyradiculoneuropathy (CIDP) is a IgG4-AID, and one of the

possible antigens in this disorder is CNTN1. Anti-CNTN1 IgG4

antibodies recognise the IgC2 domains of CNTN1 and block its

interaction with NF155, which leads to impaired cell aggregation

and changes in paranodal architecture (81). Patients may present

with other autoantibodies and have different clinical syndromes.

Those presenting antibodies against neurofascin 186 (NF186), for

instance, may present with renal impairment given both CNTN1

and NF186 are found in podocytes (62, 82).
7.4 Neurofascin 155 (NF155):

Neurofascin 155 is expressed by myelinating glial cells and,

alongside Caspr1 and CNTN1, is part of the septate-like junction in

paranodes found both in the central and peripherical nervous

systems. Animal studies have confirmed the pathogenicity of anti-

NF155 antibodies. Manso and colleagues demonstrated that

intrathecal infusion of IgG4 from anti-NF155 CIDP patients

induced similar symptoms in previously healthy mice (83). Early

studies identified that these antibodies recognise the Fn3 and Fn4

domains of NF155, which does not participate in the interaction

with CNTN1, and suggested a possible blocking mechanism that

would cause the clinical presentation (84). Nevertheless, Manso

et al. found that anti-NF155 IgG4 is associated with aggregation of

the antigen and induces its depletion. They could not determine

which mechanism was responsible for the depletion of surface

NF155 and suggested that it might have to do with proteolysis of

the antigen or molecular instability (83, 85).
7.5 ADAMTS13:

ADAM metallopeptidase with thrombospondin type 1 motif 13

(ADAMTS13) is a protease found in the blood circulation. It is

responsible for the proteolytic cleavage of the multimeric form of

von Willebrand factor (vWf) and ensuring normal haemostasis

(86). Anti-ADAMTS13 IgG4 antibodies and vWf recognise the

spacer-domain of the antigen, thus creating a competition for

binding with ADAMTS13 (87). Autoimmune thrombotic

thrombocytopenic purpura (TTP) is marked by an initial

response based on IgG1 antibodies against ADAMTS13. The

chronic antigenic stimulation then promotes class switch towards

IgG4, which perpetuates the disease (88). The accumulation of vWf

causes platelet aggregation and formation of microthrombi, which

leads to the characteristic phenotype of microangiopathic

haemolytic anaemia.
8 IgG4 in IgG4-related disease

IgG4-related disease (IgG4-RD) is a chronic relapsing immune-

mediated fibro-inflammatory disorder and its hallmark is the

presence of IgG4 antibodies in the sites affected (89). The diverse

organ involvement in this disease is linked by a unique

histopathology; a lymphoplasmacytic infiltrate rich in IgG4+
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plasma blasts and CD4+ T cells, storiform fibrosis, and

obliterative phlebitis (90).

There are currently three theories on the role of IgG4 antibodies

in IgG4-RD: 1) IgG4 antibodies directly cause the disease by

targeting self-antigens; 2) IgG4-RD patients have an immune

response inherently biased towards production of IgG4 antibodies

to any stimulus; 3) IgG4 is only present to modulate an immune

response based on different pathways. It continues to be elusive

whether the overexpression of these antibodies is an

epiphenomenon of the inflammatory reaction or has a causal role

in disease pathology.
8.1 Do IgG4 antibodies directly cause
disease by targeting self-antigens?

Next-generation sequencing studies yield evidence to support

that the pathogenesis of IgG4-RD is an antigen-driven process

mediated by B and T cell interactions (91). Circulating B cells are

predominantly IgG4+ B cells with extensive V-region mutations

affecting both hypervariable and framework regions, suggesting

signs of antibody maturation (91, 92). Mattoo et al. observed

expansion of CD19+CD27+CD20-CD38hi plasmablasts, which are

oligoclonally restricted as shown by analysis of immunoglobulin

heavy V and J regions (92). Naïve B cells then undergo de novo

recruitment during disease relapse. In patients who have a disease

flare after treatment with rituximab, activated B cells and

plasmablasts have increased somatic hypermutation when

compared to before B cell depleting therapy, suggesting a possible

driver for the autoreactive pathogenic process (92).

Differences in B cell phenotypes may be clinically important, as

demonstrated by Li and colleagues (93). Patients with active IgG4-

RD had increased plasmablasts (CD19+CD24-CD38hi ,

CD19+CD27hiCD38hi, and CD19+IgD-CD38hi) and reduced

numbers of CD19+ B cells, IgD+CD38+/- naïve B cells and

CD24hiCD38hi B regulatory cells (Breg) when compared to

controls (93). Cluster analysis revealed that patients with a high

count of plasmablast and memory B cells, low count of naïve B cells

and Bregs had a higher disease burden and were predominantly

male (93). This highlights the importance of antigen-specific LLPC

in the pathogenesis of IgG4-RD. Whilst Rituximab (anti-CD20)

reduces the number of short-lived B cells expressing CD20, memory

B cells and LLPC lack this surface protein and can evade depletion,

contributing to the relapse of disease.

Analysis of IgG4-RD lesions showed that tissue CD4+ T cells are

clonally expanded with a cytolytic phenotype, expressing granzyme

A, perforin and SLAMF7+ (SLAM family member 7) (94), and

secreting IL-1b, TGF-b and IFN-g, cytokines associated with

fibrosis (94, 95). Drugs that deplete B cells lead to profound

clinical remission and significantly reduce serum plasmablasts

and CD4+ cytotoxic cell populations. Therefore, the excellent

response to B cell depletion support that these cells are involved

in the pathophysiology of IgG4-RD (93, 96, 97). Overall, this

evidence suggests that T-dependent B cell activation is essential in

the pathogenesis of IgG4-RD. For a thorough review of the roles of

different T cells in IgG4-RD, please see (91).
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HLA-mediated antigen presentation occurs in a number of

autoimmune diseases, such as DRB1*15 in multiple sclerosis,

DRB1*04 in rheumatoid arthritis and DQB1*02 and DQB1*03 in

coeliac disease. A genome-wide association study in 857 Japanese

IgG4-RD patients suggested that the HLA-DRB1*04:05 allele was

important in the development of IgG4-RD (98). Indeed, mice

expressing this risk allele develop autoimmune pancreatitis (99).

This allele is also associated with type 1 diabetes and Crohn’s

disease (100, 101). Furthermore, the single nucleotide

polymorphism (SNP) rs134097 found in FcgRIIb was strongly

associated with IgG4-RD, as well as with two phenotypes of the

disease (pancreato-biliary and Mikulicz), number of swollen organs

and serum IgG4 level at diagnosis. This SNP might play a critical

role in IgG4-RD because its locus directly impacts on the expression

of FcyRIIb, a receptor involved in the elimination of self-reactive

B cells.

8.1.1 Autoantigens in IgG4-RD
Many studies suggest a role of autoantigens in patients with

IgG4-RD. Neonatal mice that received passive transfer of purified

IgG1 and IgG4 from patients with active IgG4-RD showed evidence

of damage to salivary glands and the pancreas (102). Several

autoantibodies have been identified in the context of IgG4-related

autoimmune pancreatitis, such as lactoferrin, carbonic anhydrase,

pancreas secretory trypsin inhibitor, amylase-alpha, heat shock

protein and plasminogen-binding protein. However, many of

these lacked sensitivity and specificity for those with other organ

manifestations (103).

8.1.1.1 Helicobacter pylori antigens

Human carbonic anhydrase II (CAII) is an enzyme found in the

cytoplasm of pancreatic ductal epithelial cells, as well as in kidney

tubules, gallbladder and glial cells. Given the discovery of antibodies

against H. pylori in the sera of patients with IgG4-related

pancreatitis and Sjogren’s syndrome (104–106), it was proposed

that H. pylori infection could be driving the disease through

molecular mimicry with CAII (107). Frulloni and colleagues

identified that, in fact, immunoglobulins from IgG4-RD patients

targeted plasminogen-binding protein type A (PBP), also an antigen

found in H. pylori. This protein shares sequence homology with a

human protein, ubiquitin protein ligase E3 component n-recognin

2 (UBR2). The group proceeded to show that 19 (95%) of their

patients with IgG4-related pancreatitis had antibodies against PBP

and similar results were replicated with UBR2 (108). A large study

by Culver et al., however, did not replicate the findings. Among 69

IgG4-RD patients and 51 controls with autoimmune or

inflammatory diseases, authors found similar T and B cell

reactivity against PBP between groups (109). Jesnowski and

colleagues investigated the presence of conserved sequences of H.

pylori in the pancreatic tissue and juice of patients with IgG4-

related pancreatitis and pancreatic cancer via nested PCR and

couldn ’t identify any signal of H. pylori DNA (110),

corroborating previous findings that the bacterium is unlikely to

be directly involved in the pathogenesis of IgG4-related pancreatitis.
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8.1.1.2 Acinar antigens

Lactoferrin (LF), pancreatic secretory trypsinogen inhibitor

(SPINK1) and trypsinogens have been identified as possible

antigens in IgG4-related pancreatitis (111, 112) and antibodies

against the last two proteins have been reported in different

cohorts of patients with the disease. Löhr and colleagues showed

that patients with chronic IgG4-related pancreatitis have a severely

reduced population of acinar cells in histopathological studies. The

presence of antibodies against trypsinogens was replicated in an

animal model of the disease, thus corroborating this finding (112).

Nevertheless, they could not differentiate between subtypes of

autoimmune pancreatitis and could not explain why acinar cells

resume production of digestive enzymes during remission of IgG4-

related pancreatitis.

8.1.1.3 Annexin A11

Annexin A11 is part of a family of calcium-dependent

phospholipid-binding proteins. It is found in the cytosol of

cholangiocytes, pancreatic duct cells and islands of Langerhans as

well as other tissues. Hubers and colleagues (113) identified IgG4

antibodies against annexin A11 in 9 (18%) patients with IgG4-

related pancreatitis and cholangitis, whilst not in controls with

other pancreatobiliary diseases, including malignancies.

Reinforcing this finding, the location where this antigen was

ident ified corresponded to the pat tern of injury in

pancreatobiliary disease (114). It was also found in patients with

IgG4-related salivary involvement, suggesting that annexin A11 is

not specific to pancreatobiliary involvement.

The ‘biliary bicarbonate umbrella’ is responsible for protecting

human cholangiocytes from hydrophobic bile acid influx (115).

Herta et al. reported that annexin A11 is necessary so that this

defensive mechanism can be adequate. Antibodies against annexin

A11 inhibited the function of this self-antigen, thus the authors

speculate that this may impair the biliary bicarbonate umbrella and

facilitate bile duct damage in patients with IgG4-related

cholangitis (116).

Lastly, Hubers et al. demonstrated that IgG4 antibodies isolated

from patients with IgG4-RD compete with IgG1 for binding to

annexin A11, thus reinforcing that the first has an anti-

inflammatory role in the disease pathogenesis (113). These results

have been replicated in the passive transfer experiment with

neonatal mice, where IgG from IgG4-RD patients induced a

similar pattern of pancreatic and salivary lesion. Shiokawa and

colleagues observed that both IgG1 and IgG4 antibodies could

trigger the injury. The first, however, had its activity dampened

by simultaneous injection of IgG4 antibodies (117).

8.1.1.4 Laminin 511-E8

Laminin is a component of the extracellular matrix (ECM) of

tissues, and integrin alfa-6-beta-4 is a cellular adhesion molecule

that binds to laminins in the ECM. A Japanese group identified

antibodies against laminin 511-E8 in 51% (26/51) of patients with

IgG4-related pancreatitis and in only 1.6% of healthy volunteers

(118). Sixteen percent (4/25) of those who did not have antibodies
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to laminin, had antibodies against its ligand, integrin alpha-6-

beta-1.

Passive transfer and active immunisation animal models

confirmed that mice that received human sera from patients with

IgG4-related pancreatitis and those immunized with human

laminin 511-E8 developed an immune response responsible for

injury in pancreatic tissue and salivary glands in the same pattern as

observed in IgG4-RD (119). Regardless of serum concentration of

IgG4, half of these patients had specific IgG1 antibodies whilst only

one patient had IgG4 against laminin 511-E8. Furthermore, only

pancreatic and salivary gland injury was demonstrated.

Shiokawa observed that anti-laminin 511-E8 antibodies

decreased upon treatment with glucocorticoids in an equivalent

manner as other biomarkers of activity (119) (e.g., serum IgG4

concentration and pancreatic imaging). These results have not been

validated externally. In contrast, In a US IgG4-RD cohort, the

positivity rate for laminin 511-E8 antibody was similar between

IgG4-RD (7%), disease controls, and healthy volunteers (118).

8.1.1.5 Galectin-3

Galectin-3 is a cytoplasmatic b-galactoside-binding lectin

identified in systemic fibroproliferative conditions, such as

systemic sclerosis and pulmonary fibrosis (120). In a US cohort of

121 IgG4-RD patients, using immunoaffinity chromatography and

mass spectrometry of plasmablast clones, 34 (28%) were positive for

IgG4-specific anti-galectin-3 antibody while almost none of the 45

disease controls with interstitial pulmonary fibrosis and 50 healthy

volunteers showed similar results (121). Furthermore, IgE-specific

anti-galectin-3 antibodies were also detected but other IgG

subclasses had little to no reactivity among the participants (121).

Perugino et al. used a galectin level threshold above 10.25ng/

mL, which is independently associated with all-cause mortality in

systemic sclerosis (122), to divide their cohort into two groups;

those with higher levels had 64% positivity for IgG4 anti-galectin-3

antibodies, whilst those with lower levels had 23% positivity (121).

Moreover, the authors reported a correlation between the presence

of these antibodies and lymphadenopathy in IgG4-RD, as well as a

trend between higher serum concentration of galectin-3 and

increased IgG4-RD Responder Index of disease activity, number

of organs and multi-organ involvement.

A Japanese group used proteomic analysis to demonstrate a 13-

fold increased expression of galectin-3 in the pancreas of patients

with IgG4-related pancreatitis compared with heathy pancreatic

tissue (123). Galectin-3 is expressed by different cell lines in affected

organs in IgG4-RD, including pancreas, bile ducts, salivary glands,

kidney, lung, aorta and retroperitoneum, supporting a role in tissue

fibrosis in IgG4-RD (124).

8.1.1.6 Prohibitin

Prohibitins are ubiquitously expressed and are important in

critical cell processes. Prohibitin 1 is involved in transcription,

apoptosis and mitochondrial protein folding (125), while

prohibitin 2 is essential in mitochondrial homeostasis and

autophagy (126). Du and colleagues identified a protein that has

8 unique peptides matched to human prohibitin, and also shares
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40% of sequence similarity, using affinity purification of patient

serum and mass spectrometry (127). Seventy-three percent (65/89)

of patients with IgG4-RD had antibodies against prohibitin, whilst

only 13% with Sjogren’s syndrome and 1.4% of healthy volunteers

showed positivity. Moreover, the anti-prohibitin antibody was

observed in patients with IgG4-related pancreatic disease, salivary

disease, retroperitoneal fibrosis, and other organ involvement (127).

8.1.2 Role of autoantigens as biomarkers
in IgG4-RD

Currently, there is no evidence that measuring autoantigens can

help to diagnose IgG4-RD, detect response to treatment or predict

early signs of a disease flare. There are discrepancies between

cohorts on the relative frequency of each autoantigen; Liu and

colleagues assessed for the presence of autoantigens in a US IgG4-

RD cohort and found 7% positivity for laminin 511-E8, 10% for

prohibitin, 12% for annexin A11 and 28% for galectin-3 (118). The

authors also observed that there was no clinically meaningful

difference between patients with and without the presence of one

autoantibody. Nevertheless, patients with positivity for more than

one antibody had a more severe presentation, usually with higher

levels of inflammatory biomarkers (e.g., total IgG and subclasses, C-

reactive protein, and complement consumption) as well as greater

risk of visceral organ involvement (118). This is in keeping with

findings in other autoimmune diseases.

We can speculate that it is not just one autoantigen that

dominates in IgG4-RD, and that the presence of multiple

autoantigens may promote a larger breach of B cell tolerance and

correlate with a more aggressive inflammatory disease phenotype.

Another possible explanation for the wide variety of autoantibodies

found in IgG4-RDmight be that, in fact, it is not a single disease, but

rather a spectrum of disorders characterised by a similar response to

different stimuli. Further studies need to demonstrate a single

trigger for the disease and/or identify mechanisms to justify why

an autoantigen is not involved in all four phenotypes of the disease.
8.2 Do patients with IgG4-RD have a
biased immune response towards the
production of IgG4 against any stimulus?

Another theory behind the development of IgG4-RD is that

patients have an inherently biased immune response and

preferentially produce IgG4. IgG4 antibody has an important role

in the development of tolerance after chronic exposure to allergens

(34), and an association between allergy and/or atopy and IgG4-RD

has been described by many groups (128–133). There are different

definitions for allergy and atopy, which creates a variance in the

prevalence of these conditions reported in patients with IgG4-RD

(134). Studies observed between 18 and 76% of patients with IgG4-

RD have allergy (130–133) and between 14 and 46% have atopy

(129, 135, 136). A predominance of type 2 immunity has been

reported in such patients. There is an abundance of IL-4 and IL-13,

which drive CSR towards IgG4 and IgE production, as well as

activation of eosinophils (137). Some studies have suggested a

phenotype that is more treatment refractory and aggressive in
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those with allergy/atopy, higher IgE and IgG4 level and peripheral

blood eosinophil counts.

Our group has shown that antigens derived from food and

animals elicited a polyclonal IgG4 response in patients with IgG4-

RD. These food antigens included egg white and yolk, milk, banana,

peanut, rice, wheat, and animal cat dander. Indeed, high serum

levels of IgG4 in this setting may reflect a defective regulation of the

overall immune response (138).

We have also shown that IgG4-RD may be associated with

prolonged contact with occupational antigens. Exposure to solvents,

industrial and metal dusts, automotive’s pigments and oils was

described in up to 61% of patients in two independent cohorts of

IgG4-related sclerosing cholangitis in the Netherlands and the UK

(139). Blue collar workers were further identified as a risk factor for

developing disease in a case-controlled study (140). No single

contaminant was identified, which raises the question whether

prolonged contact with a number of environmental antigens trigger

the disease and drive the IgG4 response. There is also emerging data on

the role of asbestos in IgG4-related retroperitoneal fibrosis, and tobacco

smoking conferring an increased risk of developing the disease.

An IgG4 class switch response and production of excessive IgG4

antibodies in the disease is likely determined by the immune cell

milieu. During active IgG4-RD, restricted clones of B cells and

plasmablasts proliferate through a Tfh2 cell-dependent pathway.

Interleukin (IL)-21 producing Tfh2 lymphocytes promote somatic

hypermutation in B cells inside GC, while IL-4 producing Tfh2 cells

are involved in CSR (141–143). Regulatory T cells and IL-10 are also

involved in the making of an IgG4-based response (144, 145).
8.3 Are IgG4 antibodies trying to curb an
overactive inflammation caused by a
different trigger in IgG4-RD?

Finally, we need to consider whether IgG4 antibodies are an

epiphenomenon and actually are trying to control inflammation

based on a different mechanism. Mouse models confirmed that total

IgG from patients with IgG4-RD caused a similar pancreatic injury

in the animals (113, 117). Shiokawa and colleagues analysed

differences between the pathogenic effect of IgG1 and IgG4 of

patients with IgG4-RD when these antibodies were injected in

mice (117). When injected separately, both classes caused

pancreatic injury and IgG4 also caused salivary damage, but

interestingly, when these antibodies were injected simultaneously,

IgG4 competed with IgG1 and significantly reduced its binding to

pancreatic tissue. Thus, there may be a competitive effect of

producing excess IgG4 anitbodies to dampen an inflammatory

process that precedes them.

Against this theory is the evidence that IgG4 antibodies in

patients with IgG4-RD are highly specific and have high affinity for

their target given that circulating B cells are in their majority IgG4+

B cells with extensive V-region mutations (91, 92). These findings

suggest that these antibodies come from B cells/plasma cells that

have undergone rounds of maturation rather than an inflammatory

response, thus making the case that IgG4-RD behaves more like an

autoimmune disease instead of an inflammatory disorder.
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9 Parallels between IgG4-AID
and IgG4-RD

The antigens proposed for IgG4-RD are ubiquitous and found

both in the cytosol and the extra cellular matrix. Nevertheless, with

the exception of laminin 511-E8, they fall short of meeting either

Witebsky or Koneczny criteria for autoimmunity (61, 146). This

brings into question whether these antibodies are the drivers of

IgG4-RD. There is evidence that antibodies can penetrate the

plasma membrane and recognise intracellular antigens (147–149).

In fact, many entry mechanisms have been studied, such as

interaction of basic residues with a negatively charged cell

membrane (150), Fc-receptor mediated entry (151), endocytosis

(147, 152, 153), and nucleoside transporters (154). Among the six

IgG4-AID that meet IgG4 autoimmunity criteria, however, all the

antigens involved in their pathogenesis are found in the cell

membrane or free in the blood circulation (62).

Another important consideration when analysing the role of

autoantigens in IgG4-RD is the clinical presentation of the disease.

Regardless of phenotype (i.e., pancreatobiliary, head and neck,

retroperitoneum and aorta, and systemic), the hallmarks of IgG4-

RD are proliferative and/or fibrotic lesions in the organs affected.

These findings are diametrically opposed to those from IgG4-AID,

where symptoms are driven by IgG4 antibodies blocking antigen

function, such as in CNTN1-associated CIDP (155). Histological

examination of IgG4-RD lesions shows a massive invasion of IgG4+

B cells and plasmablasts and extensive (storiform) fibrosis (156).

Furthermore, CD4+ and CD8+ cytotoxic T lymphocytes are also

part of the immune response found in organs with active

inflammation and peripheral blood (157), suggesting that the

interaction between T and B cells play a critical role in the

damage caused by IgG4-RD.
10 Current research gaps in IgG4-RD

Despite recent developments in IgG4-RD research, there are

essential questions without an answer. One of the most important

ones is why and how patients develop it. Previous studies reported an

association of HLA-DRB1 and FCGR2B with IgG4-RD, including

with phenotypical characteristics (98), and two studies observed a

relation between HLA genes, particularly HLA-DQB1*04:01", HLA-

DRB1*04:05 and HLA-DRB1*16 in patients with autoimmune

pancreatitis type 1 and 2 (158, 159). Moreover, it is also important

to look at B cell specialisation and how it can impact humoral

immune responses favouring IgG4 expression. As in IgG4-AID, it is

paramount to identify whether naturally occurring antigen(s) is(are)

driving the immune response in IgG4-RD and the evidence

surrounding self-antigens needs to be validated in external cohorts.

We must consider the possibility that, such as IgG4-AID, IgG4-RD is

a spectrum of diseases rather than a single entity. Finally, the

increased expression of IgG4 antibodies and the presence of IgG4+

plasma cells in sites with IgG4-RD inflammation highlights the

importance of clarifying the mechanisms that favour class switch
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towards IgG4 rather than other IgG subclasses. This knowledge is

crucial to understand the pathogenesis of IgG4-RD (160).
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