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Bat humoral immunity and its
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Bats harbor viruses that can cause severe disease and death in humans including

filoviruses (e.g., Ebola virus), henipaviruses (e.g., Hendra virus), and coronaviruses

(e.g., SARS-CoV). Bats often tolerate these viruses without noticeable adverse

immunological effects or succumbing to disease. Previous studies have largely

focused on the role of the bat’s innate immune response to control viral

pathogenesis, but little is known about bat adaptive immunity. A key

component of adaptive immunity is the humoral response, comprised of

antibodies that can specifically recognize viral antigens with high affinity. The

antibody genes within the 1,400 known bat species are highly diverse, and these

genetic differences help shape fundamental aspects of the antibody repertoire,

including starting diversity and viral antigen recognition. Whether antibodies in

bats protect, mediate viral clearance, and prevent transmission within bat

populations is poorly defined. Furthermore, it is unclear how neutralizing

activity and Fc-mediated effector functions contribute to bat immunity.

Although bats have canonical Fc genes (e.g., mu, gamma, alpha, and epsilon),

the copy number and sequences of their Fc genes differ from those of humans

and mice. The function of bat antibodies targeting viral antigens has been

speculated based on sequencing data and polyclonal sera, but functional and

biochemical data of monoclonal antibodies are lacking. In this review, we

summarize current knowledge of bat humoral immunity, including variation

between species, their potential protective role(s) against viral transmission and

replication, and address how these antibodies may contribute to population

dynamics within bats communities. A deeper understanding of bat adaptive

immunity will provide insight into immune control of transmission and

replication for emerging viruses with the potential for zoonotic spillover.
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1 Introduction

The immune system has innate and adaptive arms that have

evolved to respond to a variety of diverse pathogens (1). Upon

infection, the innate immune system rapidly responds through

germline-encoded innate immune receptors that recognize common

molecular patterns [e.g., Lipopolysaccharide (LPS), flagellin, and RNA]

shared among many pathogens (1). In contrast, the adaptive immune

system recognizes antigens unique to a pathogen (1) and can generate

a “memory” response, which can protect from future infections by the

same or similar pathogen, such as repeated exposures to viruses (1).

Amajor component of adaptive immunity is the humoral response,

comprised of both B and T cells. Antibodies, produced by the former,

have two functional domains: the antigen-binding fragment (Fab) that

recognizes a specific epitope on an antigen and the crystallizable

fragment (Fc) that drives effector functions (2, 3). Antibodies

primarily recognize antigens with complementarity-determining

regions (CDRs) on their Fab domain. Upon viral infection, naïve B

cells that recognize the virus are selected to undergo somatic

hypermutation, a mutational process known as affinity maturation, to

refine specificity and increase affinity to the antigen (4, 5). In this way,

adaptive immunity can generate antigen-specific, high-affinity

antibodies that often neutralize viruses. Once bound to the virus,

antibodies can interfere with key steps in the viral lifecycle. These can

include sterically blocking the virus from binding to host cell receptors,

preventing the virus from undergoing conformational changes required

for fusion or entry, or inhibiting viral progeny release (6–9). The Fc

region of bound antibodies also triggers a series of Fc-mediated

responses that can activate innate immune cells (4).

Although the origin and evolution of humoral responses have

been studied, the specific role and dynamics of antibody responses in

bats are not well understood. Bats are a diverse taxa of mammals,

second in species richness only to rodents, and are host to a wide range

of pathogens (10) (Figure 1A). Their importance to public health have

become increasingly recognized, as viruses that have caused severe

outbreaks in humans have been found to circulate within bats,

including paramyxoviruses, coronaviruses, and filoviruses (14–17)

(Figure 1B). Several aspects of bat ecology and physiology are

thought to make them particularly suitable to contract and maintain

viruses, namely, their long lifespan, dense colonies, and multispecies

roosts (10). Factors such as land use changes, wildlife hunting, and

trade have increased human exposures to bats and their associated

viruses (18, 19). As such, there is an urgent need to understand and

mitigate the zoonotic hazards posed by viruses present in bats.

It is unclear how bat antibody responses impact viral replication,

clearance, and persistence. This knowledge will help clarify infection

dynamics at a population level and may help predict spillover risk. In

this review, we summarize current knowledge of bat antibody immunity

and its similarities and differences to mouse and human repertoires.
2 Antibody genes are diverse among
bat species

Antibodies are generated through the rearrangement of

germline-encoded variable (V), diversity (D), and joining (J)
Frontiers in Immunology 02
immunoglobulin (Ig) gene segments (20) (Figure 2A). The

antibody heavy chain variable region consists of rearranged V, D,

and J gene segments, while the light chain consists of rearranged V

and J segments only (23, 24). The variable region can be further

divided into CDRs and framework regions (FWRs). The FWRs

form, as their name suggests, the structural framework for the CDRs

to protrude, like fingers, to interact with the antigen. Both the

rearranged heavy and light chains have three flexible CDR loops,

which largely determine antigen specificity (25).

Combinatorial diversity is introduced during B-cell

development when V, D, and J segments in the heavy chain and

the V and J segments in the light chain are rearranged to generate a

pre-immune, or naïve, repertoire. Unlike CDR1 and CDR2, which

are encoded by the V gene, CDR3 spans V, (D), and J genes. As

such, gene rearrangement further diversifies the CDR3 through the

addition of non-templated n nucleotides between gene segments.

CDR3 is therefore the longest and the most variable of the CDRs,

contributing significantly toward naïve repertoire diversity. The

resulting naïve antibody is displayed on the surface of B cells as part

of the B-cell receptor (BCR) complex. The genetic architecture of

the Ig loci (i.e., location of gene segments, abundance of V genes,

and sequence conservation between V gene segments) shapes the

initial diversity of the naïve antibody repertoire. Although the

antibody variable regions are further diversified through somatic

mutation during B-cell maturation, baseline antigen specificity is

defined by the germline Ig gene segments.
2.1 Number and sequence variability in bat
immunoglobulin gene segments

The copy number of V, D, and J genes varies greatly between

species (Figure 2B). The abundance of heavy chain V genes (VH)

genes can range anywhere from >100 VH (mice) and 44 VH (humans)

to four VH (goats) (26, 27). Like mice, rabbits also have over 100

functional VH genes but preferentially rearrange one gene to generate

the majority of their antibody repertoire (28). In contrast, chickens

rearrange a single functional VH and numerous VH pseudogenes to

generate their naïve repertoire, a process known as somatic gene

conversion (29). After a B cell recognizes an antigen through the

BCR, rounds of somatic hypermutation (SHM) and affinity-based

selections further refine the specificity defined by the germline

usage and CDR3 compositions (4). This process is called

affinity maturation.

Antibody genes are diverse between bat species. Early

transcriptional and genomic sequencing from the big brown bat

(Eptesicus fuscus) (30), Seba’s short-tailed bat (Carollia perspicillata)

(30), greater short-nosed fruit bat (Cynopterus sphinx) (30), black

flying fox (Pteropus alecto) (23), and large flying fox (Pteropus

vampyrus) (23) identified putative functional VH genes that are

diverse in primary sequences. The little brown bat (Myotis

lucifugus) has an estimated 236 unique VH genes from the VH3

family alone, along with at least 13 JH and numerous DH genes,

though there is yet no reference genome for this species (31). These

Ig sequences were identified using a VH3 family-specific forward

primer and porcine recombination signal sequence (RSS) reverse
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primer to amplify and sequence germline VH3 genes (31). A total of

75 unique sequences were identified, and based on the frequency at

which each unique sequence was recovered more than once, a

probabilistic model was used to estimate the total number of little

brown bat VH3 genes (31). In contrast, the IGDectective algorithm

has been leveraged to predict the Ig genes from four reference

quality bat genomes (32), none of which seem to share the same

expansion of VH genes as the little brown bat (33). This algorithm

identified 10 VH from the velvety free-tailed bat, nine VH from

Kaul’s pipistrelle, 32 VH from the pale spear-nosed bat

(Phyllostomus discolor), and 63 VH from the greater horseshoe bat

(33). It is possible that IGDectective underestimated the number of

VH genes from these four bat species, as divergent RSS that do not
Frontiers in Immunology 03
pass the likelihood threshold of the algorithm are excluded from

analysis (33). If bats do have a significant number of divergent RSS

motifs, one would expect that a porcine RSS reverse primer would

also undersample a significant portion of little brown bat V genes,

unless divergent RSS motifs are highly bat species-specific. It is also

possible that the probabilistic model used to estimate the number of

little brown bat VH genes did not capture the true quantity of V

genes, as it relies on a relatively small sampling of 90 sequences (31).

The most thoroughly annotated bat Ig locus to date is that of the

Egyptian rousette bat (ERB) (Rousettus aegyptiacus), providing the

most detailed understanding of any bat Ig architecture (21). ERB has

66 VH genes (55 functional, 10 pseudogenes, and one truncated),

eight functional DH genes, and nine JH genes (seven functional and
A

B

FIGURE 1

Bat species distribution and viral families. (A) Bats are diverse, with families that inhabit disparate regions across the globe. Calogram at the family level
[adapated from (11)] at the family level. Colors correspond to families with named species in the text; named species are specified in colored boxes.
Species distribution data from IUCN (2023) (12). (B) Bat viruses are similarly diverse. Species viral data from DBatVir (2023) (13). Proportions were
calculated as the number of viruses (as per NCBI taxonomy) in each viral family per total number of viruses recorded for named species in the family.
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two pseudogenes) (21). Unlike other mammalian immunoglobulin

heavy chain (IGH) loci where V, D, and J genes are organized

sequentially, the ERBD and J genes are interspersed (i.e., IGHD-J-D-J)

(21) (Figure 2C). When compared to the predicted Ig genes from

the velvety free-tailed bat (Molossus molossus), Kaul’s pipistrelle

(Pipistrellus kuhlii), and greater horseshoe bat (Rhinolophus

ferrumequinum) with their sequential D to J organization, this

interspersed organization is not shared between all bats (33). It is

unclear how this heavy chain organization impacts recombination

between V, D, and J segments.

The inter-species differences in VH gene sequence and quantity

suggest distinct encoded specificities of each species’ naïve antibody

repertoire. Together, the abundance and primary sequence diversities

of putative functional VH genes between bat species suggest varying

degrees of naïve repertoire diversity and specificities.
2.2 Anti-viral immunoglobulin gene
expansion and germline biasing

Co-evolution with viruses can shape the diversity and specificity

of the naïve repertoire (21, 34). Certain V genes are known to

predispose antibodies toward recognizing specific antigens (35, 36).

These V genes may have germline-associated features that have a

functional effect, such as encoding CDR lengths or amino acids in

fixed positions that facilitate binding (37, 38). V genes are under

positive selection to maximize binding diversity while retaining

specificity (34). This type of selection can present as the genomic
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expansion of V genes encoding antibodies with predispositions

as well as the preferential usage of certain V genes upon infection.

The former would be evident in germline V gene abundance, while

the latter would require transcriptomic and proteomic analyses

of the rearranged and expressed antibody repertoire. Precursor

biasing can be leveraged to design vaccines that target naïve

B-cell precursors from germlines known to elicit broadly

neutralizing antibodies (39–41). It is unclear whether the bat Ig

germlines have similarly been shaped to respond effectively against

the viruses that circulate in them. ERBs, the reservoir for Marburg

virus (MARV) (42), have expanded VH genes that are associated

with protective responses against viruses in humans. In particular,

ERBs have expanded VH genes associated with protection against

Ebola virus (EBOV) (VH1–8, four copies; VH3–23, five copies; VH3–

48, five copies) and MARV (VH4–59, eight copies; one copy each of

VH4–61, VH4–39, and VH3–7) based on sequence similarity to

human V genes (21). Although these expanded V genes suggest that

ERBs could elicit a comparable protective response against MARV

and EBOV, biochemical and biophysical characterization of isolated

monoclonal antibodies is necessary to demonstrate that this

is possible.
3 Affinity maturation and
somatic hypermutation

Antigen specificity is largely defined by three CDRs on the

heavy and light chains, which form the antigen combining site
A B

C

FIGURE 2

Immunoglobulin loci organization and gene abundance. (A) The variable region of antibodies is comprised of somatically rearranged V, D, and J
(heavy chain) or V and J (light chain) genes. During somatic rearrangement, diversity is further introduced in the junctions between rearranged genes
through the addition of non-templated P and N nucleotides (light green). The complementarity-determining regions (CDRs) are shown for both
heavy and light chains. The heavy chain CDRs for antibody CH67 (PDB 4HKB) are highlighted in blue. (B) Functional V gene abundances are variable
between species (*gene conversion). (C) Ig gene organization is unique for Egyptian rousette bats (ERBs) where D and J genes are interspersed
rather than sequential (21), as seen in human and mouse Ig loci (22).
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(34, 43, 44) (Figure 2A). CDR1 and CDR2 are germline encoded by

the VL and VH elements of the light and heavy chains, respectively.

CDR3 of the light chain is encoded primarily by the V segment,

with additional diversity introduced at the V and J junctions during

recombination. CDR3 of the heavy chain spans the end of the V

gene to the beginning of the J gene, with substantial junctional

diversity introduced somatically through V–DJ joining (34). The

heavy chain CDR3 can therefore be variable in length and sequence

identity. It is the key determinant for specificity in antigen

recognition (44). While the germline V(D)J segments form the

initial binding specificity of the naïve repertoire, subsequent rounds

of SHM introduce mutations that improve affinity and refine

specificity (45). Mutations introduced typically occur in the CDRs

to directly influence binding, whereas mutations within framework

regions can impact antibody folding and CDR conformation

(46, 47).
3.1 Bat antibody CDR3 features

The CDR3 lengths of several bat species have been characterized

based on Ig transcript sequences. Black flying fox CDR3 regions

ranged from six to 18 amino acids (aa) in length, comparable to IgG

transcript CDR3 lengths isolated from the little brown bat (4–12

aa), big brown bat (4–13 aa), Seba’s short-tailed bat (8–12 aa), and

greater short-nosed fruit bat (4–12 aa) (23, 30).

The sequence compositions of CDR3 in mice and human

repertoires are typically enriched for tyrosine, glycine, and serine

(48). In the black flying fox, the CDR3 is de-enriched for tyrosine

residues in germline DH and JH segments and in Ig transcripts (23).

The cDNA transcripts of the Jamaican fruit bat (Artibeus

jamaicensis) infected with Tacaribe virus (TCRV) demonstrate a

large distribution of tyrosines within the CDR3, ranging from two

tyrosine residues to six (49). Enrichment of tyrosine residues

specifically for the Jamaican fruit bat could be indicative of

affinity-matured antibodies against TCRV. Some arenaviruses,

including TCRV, bind an exposed tyrosine residue on receptor

TfR1 to mediate viral entry (50). There are human neutralizing

antibodies against arenaviruses that bind the viral receptor binding

pocket with tyrosines on their CDRs (50). It is possible that the

enrichment of tyrosines in Jamaican fruit bats predisposes the

repertoire to neutralize through the same pathway, though this is

unlikely, as experimental infection with TCRV is typically fatal to

Jamaican fruit bats, and only a few surviving bats had detectable

neutralizing antibody titers (51). Without a reference genome, it is

not possible to determine whether CDR3 tyrosine residues were

germline encoded for this bat species, which could indicate

germline biasing toward the generation of neutralizing antibodies.
3.2 Diversification through
somatic hypermutation

SHM, mainly in the CDR regions, enhances diversity (52);

indeed, SHM within the CDR3 can be sufficient to diversify the

antibody repertoire of germline-restricted mice with only one
Frontiers in Immunology 05
functional VH to recognize a multitude of unique antigens (44).

The degree to which affinity maturation diversifies the bat antibody

repertoire is not well characterized. One hypothesis is that the

“accordion-like” expansion of VH3 genes in the little brown bat

provides sufficient combinatorial diversity through recombination

alone and that SHM, which was estimated to be low (31), is not

essential in the little brown bat (31). It is also possible that the

probabilistic model used overestimated the number of germline V

genes. For bat species where germline V gene information is

available, none share this “accordion” expansion of VH3 genes as

inferred for the little brown bat. Indeed, transcriptomic studies of

the Jamaican fruit bat found that activation-induced cytidine

deaminase (AID), the protein involved in class switching and

affinity maturation, was not induced after infection with TCRV

(49, 53). Even without the apparent induction of AID, Jamaican

fruit bats generated multiple class-switched antibody isotypes, a

process that requires functional AID in other animals (49, 53). It is

possible that the apparent lack of AID induction is due to the

difficulty of evaluating enzyme transcripts in RNA-seq data with

differential expression analysis. Although experimental infection of

Jamaican fruit bats with TCRV proved mostly fatal, a minority of

bats survived, with or without detectable neutralizing antibody

titers (51). If AID was not induced in Jamaican fruit bats after

infection, then it is unclear how bats were able to mount

neutralizing antibodies, unless those neutralizing antibodies were

germline encoded. In the black flying fox, nucleotide substitutions

are present in germline and Ig transcript sequences indicative of

SHM (23). However, without more comprehensive analysis of the

transcribed repertoire and annotated bat Ig loci, it is difficult to

accurately describe the degree of SHM that occurs during bat Ig

maturation and whether reliance on SHM is species dependent.
4 Kappa and lambda light chain usage

The antibody variable light chain (VL) also contributes to

antigen recognition by direct binding with light chain CDRs and/

or by influencing the conformation of the heavy chain (54, 55). The

light chain is encoded either by the kappa or lambda loci (56). The

ratio of kappa to lambda antibodies varies between species ranging

from 95:5 in mice, 60:40 in humans, to 7:93 in horses (26, 57). Birds

have evolved to express only lambda light chains (58, 59).

There is evidence that bats generate antibodies with lambda light

chains. For example, a mouse monoclonal antibody specific to big

brown bat lambda light chain Igs cross-reacts with Yangochiroptera

[e.g., little brown bat, hoary bat (Lasiurus cinereus), silver-haired bat

(Lasionycteris noctivagans), and eastern red bat (Lasiurus borealis)]

Igs but not with Yinpterochiroptera [e.g., grey-headed flying fox

(Pteropus poliocephalus), large flying fox, and Indian flying fox

(Pteropus giganteus)] Igs (60), suggesting that the lambda light

chain sequence is conserved within Yangochiroptera, but

Yinpterochiroptera have sequence-divergent light chains. No kappa

light chains were detected in big brown bat serum using Protein L

magnetic beads that bind kappa light chains from many, but not all,

mammalian species (60). It is possible that the big brown bat

expresses kappa light chains and that none were detected in this
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experiment due to the limited breadth of the Protein L beads. Both

kappa and lambda light chain transcripts were identified in the black

flying fox (Yinpterochiroptera) (61). Lambda transcripts were more

abundant than kappa transcripts, which could indicate preferential

lambda usage in Yinpterochiroptera. Several outstanding questions

remain, including whether Yangochiroptera generates kappa light

chain antibodies, the kappa:lambda usage ratio among bat species,

and whether bats rearrange one light chain before the next similar to

humans (62).
5 Antibody isotypes and subclasses

The Fc of an antibody bridges the adaptive and innate immune

systems. The Fc domain engages receptors (FcR) on innate immune

cells and exerts their effector functions (63). Humans have five

antibody isotypes (IgG, IgM, IgD, IgA, and IgE), some of which are

further differentiated into subclasses (e.g., IgG1, IgG2, IgG3, and

IgG4). Each antibody isotype and when applicable, subclass are

recognized by multiple host FcRs, each associated with its unique

set of effector functions (64). The genes that encode the Fc are

located in a cluster downstream of the J segments in the heavy chain

locus (34). After rearrangement, B cells undergo class switching

primarily before entering the germinal center reaction where affinity

maturation of the variable regions takes place (65). The resultant

antibody gains Fc-specific effector functions and retains antigen

binding specificity.

Antibody isotypes are structurally distinct. For example, human

IgM forms pentameric complexes that can avidly bind multiple

antigens at once and activate complement-mediated clearance of

infection (3). Due to their varied functions, each isotype is

differentially expressed in each part of the body, and their

expression levels are tightly regulated.
5.1 Immunoglobulin isotypes and
expression profiles

Our understanding of bat antibody isotypes ranges from

genomic sequences to transcriptomic data and characterizations

of serum antibodies. IgG, IgA, IgE, and IgM isotypes have been

identified both in the bat genome and transcriptionally (21, 30, 61).

So far, IgD transcripts have only been identified in little brown bats

and big brown bats, further illustrating divergent Ig repertoires

among species and suborders (21, 30, 49, 61). Black flying fox IgG

and IgM are abundant in the lymph node and spleen, consistent

with expression patterns in ERBs (21). IgA is highly transcribed in

the lungs of both black flying foxes and ERBs. Black flying fox brain,

heart, and kidney tissues showed low expression of all three Ig

isotypes, whereas ERBs have moderate expression of these isotypes

in the same tissues (21, 66). Circulating antibodies in black flying

foxes are predominantly IgG and IgM, with low levels of IgA

detected (66).

In humans, IgG is the most abundant immunoglobulin isotype in

serum and plays a direct role in controlling viral infections (67). IgG

is similarly abundant in bat serum (68). There is evidence that bats
Frontiers in Immunology 06
transfer maternal IgG through both the placenta and mammary

gland. IgG isolated from three species [long-fingered bat (Myotis

capaccinii), greater mouse-eared bat (Myotis myotis), and common

noctule (Nyctalus noctule)] were able to bind human and mouse

neonatal Fc receptor (FcRn), the receptor responsible for transfer of

maternal IgG across the placenta (69). Unlike other mammals, bat

IgG was dominant over IgA in maternal lacteal secretion, suggesting

an additional pathway to transfer maternal antibodies (66). Pups

born to vaccinated or naturally infected, seropositive dams inherit

maternal virus-specific antibodies (70). Maternal IgG is detectable for

up to 3–5 months in ERB pups (71, 72) and up to 7.5 and 8.5 months

in small flying foxes (Pteropus hypomelanus) and black flying foxes,

respectively (70). Transfer of maternal antibody transfer has

implications for population immunity and viral maintenance as

bats typically have synchronized breeding and birthing cycles

marked by the influx of colony size and routes of transmission

followed by new pups that will lose their maternal antibodies within a

year from birth (73).

The annotated ERB heavy chain locus is the highest resolution

of the Fc segments of an important viral reservoir species. ERB IgA

and IgM are predicted to share similar functions as their human

counterparts. However, gene ontology analysis of ERB IgG and IgE

predicts divergent functions compared to their human

homologs (21).
5.2 Immunoglobulin subtypes are
species specific

ERBs have an expanded set of epsilon genes, with two

functional and three pseudogenes, making this species the only

known mammal with two functional IgE subtypes (21). In humans,

IgE binds to FceRI expressed on the surface of mast cells and

basophils. Though both IgE subtypes are expressed in circulation

and secondary lymphoid organs in ERBs, only IgE2 is detectable in

the lungs and bone marrow (21). Unlike human IgE, ERB IgE1 has

an internal deletion compared to human IgE1 that shortens its

cytosolic tail, potentially impacting downstream signaling (21).

Tissue expression and structural differences between the two IgE

subclasses in ERBs likely indicate divergent functions, though those

functions are not yet known.

Several bat species seem to express multiple IgG and IgM

subtypes. The ERB locus contains four gamma subtypes that have

varying tissue expression profiles and differ primarily in the hinge

and CH2 domains (21, 67). Black flying foxes also appear to have

multiple subtypes of IgG and IgM (66), consistent with transcripts

of multiple IgG subtypes identified in the little brown bat (five

subtypes), greater short-nosed fruit bat (three subtypes), and big

brown bat (two subtypes) (30). There are currently no functional

data for the bat IgG subtypes or whether these subtypes share

structural similarity with human IgG subtypes.

Several outstanding questions remain for bat Ig isotypes. The

handful of species whose Fc compositions have been characterized

show divergence between species. Although we now have more in-

depth knowledge of ERB Fc sequences and tissue expression

profiles (21), their unique Fc makeup is likely not widely
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applicable across all bat species. Speculation on function based on

sequence alone requires further validation. It remains to be seen

what the varying quantities of expressed Ig isotypes are among

species, the affinity of each Ig isotype for their Fc receptors, the

tissue expression profiles for each isotype paired with the

detection of antibody in that tissue (to delineate tissue-specific

expression and recruitment of antibodies to a tissue type from

elsewhere), and, most importantly, detailed understanding of bat

Fc effector functions. There is no reported functional

characterization of bat isotypes, especially in the context of

innate immune cells and complement activation, or the relative

abundance of each isotype produced after infection or vaccination.
6 Biochemical and
structural characteristics

Our understanding of bat antibodies is based almost entirely on

sequencing and bulk serum analysis of antibody responses after

infection. There is limited understanding of the biophysical

characteristics of bat monoclonal antibodies, which appear to

have unique structural properties. An N-linked glycosylation site

at position 297 is conserved across ERB and human IgGs and is

important for FcgR binding. Interestingly, ERB IgG1 contains a

unique N-linked glycosylation motif at the hinge region, in addition

to N297, that is not present in other ERB or human IgGs. Glycans

can shield or cover important functional domains, restrict otherwise

flexible protein domains, and affect protein folding. IgG1 is the most

expressed antibody isotype and subtype in ERBs, and it is unknown

how the N-linked glycan at the IgG1 hinge region may impact

antibody folding, receptor binding, and effector function. Unlike

IgG1, ERB IgG2, IgG3, and IgG4 all lack the canonical CxxC motif

that enables inter-chain disulfide bonding in human IgGs (21).

Without inter-chain disulfide bonding, it is possible that ERB IgG2,

IgG3, and IgG4 can undergo Fab-arm exchange to become

bispecific antibodies, a process observed for human IgG4 (74).

For humans, Fab-arm exchange reduces immune activation as

bispecific IgG4 cannot crosslink antigen (74). In contrast, the

greater short-nosed fruit bat and the little brown bat IgG

subtypes contain the canonical CxxC motif as identified through

Ig transcript sequencing (30). Without structural and biochemical

characterization of bat antibodies, one can only speculate on how

the loss of CxxC impacts Ig folding, assembly, and the types of

antibodies secreted.

ERB IgG2, IgG3, and IgG4 also have an amino acid substitution

(Leu234Pro) in the lower hinge region that removes an important

contact in human IgGs for Fc receptor FcgR (21). This substitution

may impact affinity for FgR and subsequently impact effector

functions downstream of binding [i.e., antibody-dependent cellular

cytotoxicity, immune complex clearance, and phagocytosis of

pathogens] (21). These sequencing differences could be indicative

of biochemical and structural characteristics of bat antibodies that

could further our understanding of anti-viral function and duration

of responses.
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Cysteine-rich V genes from velvety free-tailed bats, pale spear-

nosed bats, and greater horseshoe bats can be found on the IMGT

database (33). These V genes contain more than the two conserved

cysteines that form a disulfide bond between frameworks 1 and 3

(33). They have additional cysteines in both their CDR1 and CDR2

loops (33). The ERB IGH locus similarly contains VH family

cysteines in both CDR1 and CDR2 loops (VH4–30 and VH4–39)

(21). It is likely that the cysteines in CDR1 and CDR2 form an

intrachain disulfide bond that would impact antibody

conformation, hypervariable loop rigidity, and antigen specificity.

There is much to be learned from the biochemical and

structural characterization of individual bat antibodies. These

types of studies can uncover bat antibody binding affinities, viral

epitope targeting, divergent antibody structural features, and more

definitely quantify the neutralization profiles of viral-specific

antibodies. Recombinant bat antibodies would also enable a more

detailed analysis of Fc-mediated effector functions.
7 Antibody responses after infection

Several parameters determine the effectiveness of an antibody

response. The first parameter is the magnitude and durability of the

virus-specific primary and secondary responses (i.e., antibody

titers) (75). The primary response occurs during the first viral

encounter, where naïve B cells affinity-mature to improve specificity

and affinity. Affinity-matured B cells can differentiate into plasma

cells that circulate and secrete high-affinity antibodies or develop

into memory B cells. The secondary response occurs upon re-

exposure to the same or very similar virus. Unlike the primary

response where high-affinity B cells are generated de novo, the

secondary response is marked by rapid and robust antibody

production as class-switched memory B cells already exist (76).

The abundance of neutralizing antibodies within the elicited

antibody pool also influences viral clearance and transmission.

Neutralizing antibodies directly prevent viruses from infecting

host cells, by either blocking receptor engagement or viral fusion.

The longevity of the memory compartment varies between species

and against viruses, which determines the length of protection

offered after primary exposure. For example, the yellow fever

vaccine provides lifelong immunity with measurable IgG titers 40

years after a single vaccination, whereas annual influenza

vaccinations are needed to maintain partial immunity (77). These

temporal dynamics are shaped by both the durability of the

antibody response and the mutability of the viral pathogen.

Viruses that mutate frequently (e.g., influenza virus) can readily

evade humoral memory responses.
7.1 Temporal dynamics of bat
antibody responses

Bats generate antigen-specific antibodies upon immunization and

natural or experimental infection. One of the first studies to
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demonstrate this was through experimental immunization of big

brown bats with bacteriophage øX174 (78). Virus-specific bat

antibodies have since been identified for EBOV (16), Japanese

encephalitis virus (JEV) (79), MERS-CoV (80), Dengue virus (81),

Nipah virus (NiV) (82, 83), Hendra virus (HeV) (83, 84), and MARV

(71, 72, 85–88). Virus-specific antibodies are typically detectable

between 10 and 28 days post-inoculation (dpi) (72, 82, 83, 85), with

peak IgG levels measured at 14 dpi (71, 72). However, some studies

report no seroconversion upon experimental infection with HeV (83),

EBOV (89), and MERS-CoV (80). In humans, after primary infection,

there is typically a lag where antigen-specific responses shift from IgM

to IgG, accounting for B-cell class switching and generation of

high-affinity secreted antibodies. This also appears to be the case for

bats. For example, bats infected with JEV show a delayed shift from

IgM to IgG response approximately 20 dpi (79).

The durability of the primary antibody response varies

widely between bat species, infecting agents, and immune history.

When inoculated with MARV, ERB antibody titers begin to wane as

early as 30 dpi, falling below detection 3–4 months post-infection

(71, 72, 85, 86). MARV-positive, wild-caught ERBs had detectable

antibody titers up to 11 months post-capture, though their exposure

history is unknown (72). This durability could be due to multiple

re-exposures to MARV prior to capture, as re-exposure is known to

maintain the memory B-cell compartment (90). Wild-caught common

vampire bats (Desmodus rotundus), vaccinated and then challenged

with rabies virus, similarly elicit neutralizing antibodies with variable

timelines for decline, from as early as 43 days to 117 days (91). Virus-

specific antibody responses in bats are reported to rapidly decline after

infection with NiV (83), HeV (83), and JEV (92).

The magnitude of antibody responses in bats is generally lower

compared to that of other mammals. Bats immunized with

bacteriophage øX174 elicited a less robust response with lower

anti-phage activity compared to guinea pigs and rabbits in the same

study, despite receiving the same stimuli (78). An early study of bats

immunized with sheep erythrocytes also found that bats generate

fewer primary neutralizing antibody-secreting cells compared to

mice (93). Specific pathogen-free Jamaican fruit bats had low IgG

titers after SARS-CoV-2 infection with low levels of IL-21, which is

expressed by T follicular helper cells that aid B cells undergoing

affinity maturation (94). Jamaican fruit bats also generated low

antibody titers against MERS-CoV (80), H18N11 influenza virus

(95), and TCRV (51). These are surprising observations given the

abundance of B cells in bat spleens and in circulation. Recent studies

report that B cells make up roughly 30% of peripheral blood

mononuclear cells and 35% of spleen cells from black flying foxes

(96), comparable to mice B-cell abundance, and that 90% of B cells

are IgG+ (97). There also appears to be an age-dependent

fluctuation of B-cell quantity, where juvenile ERBs had

approximately fourfold higher numbers of circulating B cells

compared to their adult counterparts (98).
7.2 Efficacy of bat humoral immunity

A major outstanding question is whether antibody responses in

bats are protective against viral infections, as measured by viral
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clearance and degree of viral transmission. Infected bats can shed

their viruses through their bodily fluids (i.e., saliva, blood, and urine).

Viral load in these samples is a proxy for transmission potential. For

grey-headed flying foxes inoculated with NiV (82) or HeV (84), the

presence of virus-specific antibodies coincided with viral clearance.

This is consistent with black flying foxes inoculated with HeV, where

the virus was cleared from blood and urine samples in bats with

measurable antibody titers (83). A single grey-headed flying fox

inoculated with NiV had detectable virus in urine samples despite

the presence of neutralizing antibodies in circulation (82). Wild-

caught great fruit-eating bats (Artibeus intermedius) experimentally

infected with rabies virus rapidly mounted a neutralizing antibody

response and were protected from disease (99), though the immune

history of these bats is unknown.

There is extensive literature focusing on ERB antibody responses

upon experimental infection with MARV. MARV-naïve ERBs

seroconverted within 14 dpi and did not transmit MARV to

co-housed naïve bats (71). Another study reports naïve ERBs

seroconverted with peak MARV-specific antibodies between 14 and

28 dpi. All bats in this study became viremic between 5 and 12 dpi, with

oral and rectal shedding detectable up until 14 dpi and 8 dpi,

respectively (85). This is consistent with the report of Amman et al.

that MARV is cleared from the blood by 10 dpi and that oral shedding

peaks at 9 dpi and lasts up to 14 dpi (88). In these bats, MARV

antibody titers are detectable by 9 dpi (88). In all three studies, MARV-

specific antibody titers coincide with a decline in viral load (71, 85, 88).

Naïve ERBs co-housed with infected ERBs did not develop detectable

viremia and did not seroconvert (71). This suggests that the infected

ERBs did not transmit their virus to their naïve housemates.

Typically, the abundance of neutralizing antibodies is a proxy

for protection. Though virus-specific antibodies correlate with viral

clearance in experimentally infected bats, the protective role

neutralizing antibodies play in bats is still unclear. Serological

surveillance of wild-caught bats from around the world has

identified neutralizing antibodies against paramyxoviruses (e.g.,

NiV) (100), lyssaviruses (e.g., Lagos bat virus) (101), and

flaviviruses (e.g., dengue virus) (81, 102). Bats experimentally

infected with JEV generated 100-fold lower neutralizing titers

compared to guinea pig counterparts (79). Low neutralizing titers

were similarly observed for experimental infection with NiV (83),

HeV (83), and MARV (72). Experimental prime and prime-boost

regimes with EBOV or Sosuga virus did not elicit detectable

neutralizing antibodies from ERBs (87). This is surprising due to

the expanded VH genes associated with protective responses against

viruses that have been identified in ERBs (21). Despite low

neutralizing titers, bats appear to retain short- and long-term

humoral immunity upon re-infection with homologous virus

(discussed in the next section) (72, 85, 86).

Experimental immunization and vaccination studies are direct

measurements of protective humoral immunity. Experimental

vaccination of wild-caught common vampire bats with replicating

vaccinia virus expressing rabies glycoprotein elicits a short-term

protective antibody response (103). Rabies virus is one of few

viruses pathogenic and potentially lethal to bats. After

vaccination, bats are protected between 18 and 90 days post-

vaccination, with maximal protection 30 days after vaccination
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(80% survival) (103). Anti-rabies antibody titers drop by 120 days

after vaccination, and bats are no longer protected upon challenge

(103). The highest rate of seroconversion was observed 30 days after

vaccination, where half of the vaccinated bats had anti-rabies

antibodies (103). Interestingly, bats do not seroconvert by 18 days

after vaccination but are still protected upon challenge with 60%

survival (103). Seronegative bats vaccinated 30 or 90 days prior to

the challenge are similarly protected in the absence of anti-rabies

antibodies (103). It is worth noting that the bats used in this study

were wild-caught, albeit from a region without documented cases of

sylvatic rabies. Note that their immune histories are not known, as

this could impact antibody responses.

A separate study similarly showed that wild-caught common

vampire bats vaccinated with replicating vaccinia virus expressing

rabies glycoprotein are protected from lethal challenge, even

without detectable anti-rabies antibodies (104). In this study, all

bats were challenged 31 days after vaccination. Of the 31 surviving

vaccinated bats, nine did not have detectable anti-rabies antibodies

at the time of lethal challenge (104). Sera collected from

representative bats 90 days after the challenge contained high

titers of anti-rabies antibodies (104). Wild-caught big brown bats

vaccinated with raccoonpox (RCN) virus expressing either rabies

glycoprotein or mosaic rabies glycoprotein did not consistently

mount anti-rabies neutralizing antibodies, though both vaccinated

groups showed improved survival against rabies challenge (91).
7.3 Memory compartment

Memory recall forms the basis of long-term humoral immunity

(90). Upon re-exposure to a homologous or similar virus, high-

affinity memory B cells are quickly reactivated and clonally expand.

Bats immunized with bacteriophage øX174 generate neutralizing

antibody titers that rapidly rise after the first and second boosts

(78). The majority of neutralizing antibodies were initially 2-ME-

sensitive IgM but transitioned to predominantly 2-ME-insensitive

IgG by 28 dpi (78). As expected for animals with a memory

compartment, the secondary antibody response inactivated phage

more rapidly than those in the primary response (78).

ERBs have protective short- and long-term immunological

memory to MARV. ERBs re-challenged with MARV generate a

rapid secondary response as early as 5–10 dpi (71, 72). Rapid

elicitation of virus-specific antibodies indicates a memory B-cell

compartment. Seropositive ERBs challenged with MARV did not

have viremia after 7 dpi, in contrast to their unprimed naïve

counterparts (71). This suggests that immunological memory can

offer short-term protection in ERBs against MARV re-challenge.

The majority of seropositive ERBs re-infected with a

heterologous isolate of MARV became viremic despite a rapid

secondary humoral response (72). ERB immunological memory

to MARV may be relatively limited in breadth. Despite this,

immunological memory seemed partially protective against

heterologous challenge as evidenced by limited MARV replication
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in the spleen and liver of re-infected bats without systemic infection

as seen in their naive counterparts (72).

The durability of the bat memory compartment is not fully

characterized, with data exclusively for ERBs. Seronegative ERBs

that had been previously infected with MARV 2 years prior mount

robust MARV-specific antibodies as early as 7 days post-challenge

with homologous virus (86). This robust secondary response was

protective with no viral replication or shedding detectable (86),

indicating that ERBs retain long-term immunological memory after

primary infection.

Immunological memory has implications for transmission and

viral maintenance in ERBs. In all three re-challenge studies, MARV

was not detectable in any tissues that could contribute toward

transmission (i.e., salivary glands, intestines, reproductive tract, and

bladder) (71, 72), suggesting that MARV may require encounters

with naïve bats or evolve to escape immunological memory for

maintenance within the bat population.

A pitfall in these historical studies using wild-caught bats is that

the immune history of these bats is unknown. Wild-caught bats

without detectable antibody and virus titers at the time of capture are

considered “naïve” in these studies, even though they could have been

infected multiple times and their antibody titers have since waned.

This complicates whether these bats are generating de novo antibody

responses or memory recall upon a secondary exposure. It is likely

that antibody responses of a truly naïve bat would be different from

one that has sero-reverted, as the length of time between exposures as

well as the number of exposures will impact the magnitude of the

secondary response. The benefit of established bat colonies can

remove some of these complicating factors, as the bats would have

known immune histories. However, these colonies often pose

financial and technical challenges, especially for insectivorous bats.
7.4 Immune control in bat populations

The durability and protectiveness of bat antibody responses form

the basis for hypotheses around population immune control of

viruses in bats. Three hypotheses dominate current research on

population-level bat infection: that pulses of infection within

populations are driven by 1) transmission of short-lived infections

that provide long-lasting immunity [susceptible-infected-recovered

(SIR) dynamics], 2) transmission of short-lived infections with

fluctuating host immunity [susceptible-infected-recovered-

susceptible (SIRS) dynamics], and 3) acute infection without

clearance of virus, with subsequent transmission of reactivated viral

infection [susceptible-infectious-latent-infectious (SILI) dynamics]

(105). Within-host immune dynamics are a common driver among

the three scenarios, but with distinct mechanisms to drive

susceptibility and clearance of infection. Understanding the

antibody response and its effects on current and future infections is

a key challenge in deciphering these mechanisms. A better

understanding of antibody responses will be key for interpretation

and parameterization from prevalence and seroprevalence data.
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8 Conclusions and future directions

Antibodies can engage viruses and their surface-exposed

glycoproteins to directly neutralize or contribute to the clearance

of infected cells through Fc-mediated functions. It is still unclear

how such humoral immunity impacts viral pathogenesis,

transmission, maintenance, and evolution in bat populations.

While only a few bat species have been studied in-depth, their

antibody genes and antibody responses vary greatly between

species. This variation has directly contributed to observed

differences in viral pathogenesis and transmission. Furthermore,

studies involving wild-caught bats are complicated by unknown

exposure histories. Establishing bat colonies would therefore enable

controlled infection and vaccination studies to help deconvolute

these complexities. Current studies on bat antibodies have largely

been limited to sequence and transcriptomic data or serum

analyses. Additional biochemical and biophysical characterization

of the bat antibody repertoire including isolating monoclonal

antibodies is needed. Such functional analyses would help

uncover numerous features of bat humoral immunity, including

epitope immunodominance, neautralization profiles, effector

functions, and structural properties. This knowledge will greatly

advance our understanding of host-pathogen interactions in an

important viral reservoir and lay the groundwork for furthering our

understanding of the bat immune system.
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