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Aims: The aim of this study was to develop and validate a prognostic model based

on clinical laboratory biomarkers for the early identification of high-risk patients

who require intensive care unit (ICU) admission among those hospitalized with

the Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) and complicated with myocardial injury (MI).

Methods: This single-center study enrolled 263 hospitalized patients with

confirmed Omicron variant infection and concurrent MI. The patients were

randomly divided into training and validation cohorts. Relevant variables were

collected upon admission, and the least absolute shrinkage and selection

operator (LASSO) was used to select candidate variables for constructing a Cox

regression prognostic model. The model’s performance was evaluated in both

training and validating cohorts based on discrimination, calibration, and

net benefit.

Results:Of the 263 eligible patients, 210 were non-ICU patients and 53 were ICU

patients. The prognostic model was built using four selected predictors: white

blood cell (WBC) count, procalcitonin (PCT) level, C-reactive protein (CRP) level,

and blood urea nitrogen (BUN) level. The model showed good discriminative

ability in both the training cohort (concordance index: 0.802, 95% CI: 0.716–

0.888) and the validation cohort (concordance index: 0.799, 95% CI: 0.681–
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0.917). For calibration, the predicted probabilities and observed proportions were

highly consistent, indicating the model’s reliability in predicting outcomes. In the

21-day decision curve analysis, the model had a positive net benefit for threshold

probability ranges of 0.2 to 0.8 in the training cohort and nearly 0.2 to 1 in the

validation cohort.

Conclusion: In this study, we developed a clinically practical model with high

discrimination, calibration, and net benefit. It may help to early identify severe and

critical cases among Omicron variant-infected hospitalized patients with MI.
KEYWORDS
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Introduction

Since the emergence of the coronavirus disease 2019 (COVID-

19) pandemic, various variants of the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) have emerged, including

the Omicron variant (1, 2). Although the Omicron variant may

have lower virulence and pathogenicity than the previous Alpha

and Delta variants (3–5), its remarkably high transmissibility and

mild symptoms warrant attention (6–8). Therefore, the severity and

mortality associated with the Omicron variant, especially among the

elderly population, should not be overlooked (9, 10). Since early

2022, the rapid spread of the SARS-CoV-2 Omicron variant has

triggered a surge in new cases across China, with the majority

occurring in Shanghai (11, 12). Since March 2022, Shanghai has

been facing the Omicron wave, witnessing a significant increase in

severity and mortality rates, particularly among the elderly

population, especially those with comorbidities (13, 14).

According to clinical case series, the incidence of myocardial

injury (MI) during the SARS-CoV-2 epidemic varies from 7.2% to

36% (15–19), indicating its high prevalence in patients with COVID-

19. Moreover, MI has been found to be significantly associated with

the severity and mortality of COVID-19 (20). Several lines of

evidence have demonstrated that MI is an independent risk factor

for adverse outcomes. For example, a clinical study involving 41

COVID‐19 patients reported that 5 (12%) of them suffered from

myocardial damage due to SARS-CoV-2 infection. Among these

patients, four were treated in the intensive care unit (ICU),

accounting for 31% of the total ICU admissions (19). Another

clinical study involving 138 COVID‐19 patients also revealed that

patients with MI during infection had a higher risk of deterioration,

resulting in ICU admission (16). MI is a common complication

observed in individuals infected with SARS-CoV-2, especially in

elderly patients with multiple comorbid chronic diseases (17, 21–

23). This association is important as it contributes to severe clinical

manifestations and poor outcomes in COVID-19 patients.
02
Geriatric patients infected with the Omicron variant are a focus

of clinical care as they have a higher risk of severity and mortality.

Therefore, there is an urgent need in clinical care to stratify

COVID-19 patients according to the presence of MI and to

implement more aggressive treatment strategies. The aim of this

study was to develop and validate a prognostic model to identify

Omicron variant-infected hospitalized patients with MI who are at a

higher risk of ICU admission, based on their age, gender, and

clinical laboratory biomarkers.
Methods

Participants

A single retrospective cohort study was carried out at Shanghai

Fourth People’s Hospital from 12 April to 17 June 2022. We

enrolled 263 Omicron variant-infected hospitalized patients aged

>60 years with MI in our study. Of these, 53 patients with Omicron

infection and MI were admitted to the ICU and categorized as the

ICU group. The remaining 210 hospitalized patients with Omicron

infection did not require ICU admission and formed the non-ICU

group. Omicron variant infection was diagnosed and confirmed by

positive real-time polymerase chain reaction results. Serum

troponin I (TnI) was measured in patients who were admitted to

the hospital within the first 24 h. MI was defined as a serum level of

the cardiac biomarker TnI above 99% of the upper reference limit

(15). The detailed inclusion process is shown in Figure 1.

The study was conducted following the 1975 Declaration of

Helsinki (24), was approved by the Ethics Committee of the Fourth

People’s Hospital of Tongji University (No. 2022097-001), and was

published in the Chinese Clinical Trials Registry (CHiCTR2200065440).

Written informed consent was waived by the ethics commission of the

designated hospital for patients during the pandemic of the SARS-CoV-

2 Omicron variant.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1268213
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2024.1268213
Predictors and outcomes

Two researchers extracted demographic characteristics (age and

gender) and clinical data (laboratory findings, treatments, and

outcomes) from the hospital’s electronic medical records database

for each patient admitted to the hospital.

Laboratory indicators, including data on (1) immune cells:

white blood cell count (WBC, 109/L), neutrophil count (NEUT,

109/L), neutrophil percentage (NEUT%), lymphocyte count (LYM,

109/L), lymphocyte percentage (LYM%), and hemoglobin (g/L) (2);

inflammatory biomarkers: C-reactive protein (CRP, mg/L),

procalcitonin (PCT, ng/mL), serum amyloid A (SAA, mg/L), and

interleukin-6 (IL-6, pg/mL); and (3) liver function and myocardial

enzyme spectrum: myoglobin (MYO, ng/L), creatine kinase-

myocardial band (CK-MB, ng/L), N-terminal pro-B-type

natriuretic peptide (NT-proBNP, pg/mL), total protein (TP, g/L),

lactate dehydrogenase (LDH, U/L), aspartate aminotransferase

(AST, U/L), alanine aminotransferase (ALT, U/L), estimated

glomerular filtration rate (eGFR), blood urea nitrogen (BUN),

and serum creatinine (sCr), were measured within the first 24 h

of hospital admission, before transferring the patients to the ICU.

Patients received standard treatment according to the Diagnosis

and Treatment Scheme of Pneumonia Caused by Novel

Coronavirus of China (ninth version). Severe cases were defined

as patients who had at least one of the following conditions:

respiratory distress, low oxygen saturation, low PaO2/FiO2 ratio

(PaO2 denotes partial pressure of oxygen in arterial blood and FiO2

denotes fraction of inspired oxygen), or progressive worsening

symptoms with pulmonary imaging showing significant

progression of lesions (>50%) within 24–48 h. Critical cases were

defined as patients who met any of the following criteria: respiratory

failure, shock, or organ failure requiring ICU admission (25). The
Frontiers in Immunology 03
outcome we focused on was ICU admission for the identification of

severe or critical cases.
Statistical analysis

We applied a 20% threshold for missing data, and variables with

more than 20% missing values were excluded. For variables with

less than 20% missing values, we used the R package “mice” to

perform multiple imputation and generate reliable imputed values.

Subsequently, one imputation result was selected for analysis. The

eligible patients were divided into two cohorts: the training cohort,

which included 70% of the patients, and the validation cohort,

which included the remaining 30%. The least absolute shrinkage

and selection operator (LASSO) was used for variable selection in

the training cohort. To avoid overfitting and simplifying the model,

we used LASSO regression to automatically screen features and

shrink the coefficient estimates to zero. We also tuned the

parameter selection in the LASSO model using minimum criteria.

Based on the screening results of the LASSO methods, final

predictors were used to establish Cox regression as the eventual

prediction model.

The discrimination of the model was evaluated by the receiver

operating characteristic (ROC) curve, the area under the receiver

operating characteristic curve (AUROC), and the concordance

index (C-index) with 95% confidence interval (95% CI).

Calibration was assessed using a calibration curve that

compared predicted probabilities with actual probabilities. The

consistency between the predicted probabilities of the model and

the actual proportions was evaluated by plotting calibration

curves. Decision curve analysis (DCA) was used to demonstrate

clinical net benefits under different threshold probabilities. The
FIGURE 1

Flowchart of patient selection. TnI: Cardiac troponin I.
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nomogram integrated multiple prediction indicators and presents

the results graphically.
Results

Demographics and clinical characteristics

We included a total of 263 eligible hospitalized patients in our

study (Figure 1). The median age of the eligible hospitalized patients

was 87 (61–104) years, and 155 patients (58.94%) were women. Of

these, 39 patients (73.58%) had severe disease courses. The patients

had a high prevalence of comorbidities, with hypertension being the

most common, followed by coronary artery disease and

cerebrovascular disease. Among the patients, 53 (20.15%) had

disease progression and required ICU admission (the ICU group),

while the other 210 (79.85%) did not need ICU admission during

their hospital stay (the non-ICU group). We systematically

documented and analyzed the baseline characteristics of the

patient cohort, including demographic and clinical laboratory

biomarkers (Table 1). We found several variables that differed

between the ICU and non-ICU groups: gender, leukocyte count,

neutrophil count, lymphocyte count, D-dimer level, PCT level, CRP

level, SAA level, MYO level, CK-MB level, NT-proBNP level, ALT

level, eGFR, BUN level, and sCr level. Most of the patients were

incompletely vaccinated (0 or 1 dose). There were no significant

differences in the rates of full vaccination (2 or more doses) and

incomplete vaccination (0 or 1 dose) between the ICU and non-ICU

groups. Regarding the in-hospital treatment, the patients in the ICU

group had a higher use of antiviral (plaxlovid) therapy,

glucocorticoid therapy, transnasal high flow oxygen therapy, non-

invasive ventilation, and invasive mechanical ventilation than the

patients in the non-ICU group (Table 1).
Predictor screening and construction of
the prognosis model

We collected 24 independent variables, including age, gender,

and all laboratory biomarkers in Table 1. We applied a 7:3

nonrepetitive random sampling approach to the original dataset,

partitioning it into the training and validation sets. To assess the

validity of this division and detect any potential biases in data

distribution, we performed a series of comparisons between the

training and validation cohorts (Supplementary Table S1). None of

the comparisons yielded p-values <0.05, indicating no statistically

significant differences between the two cohorts.

We used these 24 independent variables for LASSO regression

analysis. In the context of LASSO regression (Figures 2A, B), we

identified WBC, PCT, CRP, and BUN as the variables with nonzero

coefficients when the partial-likelihood deviance reached its

minimum. We then included these variables in the Cox

regression model, which we called the LASSO model (Figure 3A).
Frontiers in Immunology 04
Model validation

We used the four variables selected by LASSO regression to

build the final Cox regression model (Figure 3A). Concurrently, the

performance of the LASSO model was also evaluated. We used the

ROC curve to assess the model’s accuracy in predicting the risk of

COVID-19 disease progression. The LASSO model showed good

performance, with C-indexes of 0.802 and 0.799 in the training and

validation cohorts, respectively. The AUROC values at 7, 14, and 21

days were also above 0.7 (Figures 3B, C), indicating its reliable

discriminatory ability. The time-dependent AUC values were

consistently above 0.7 as well, confirming the model’s excellent

discrimination (Figure 3C). The LASSO model had the optimal

predictive value on day 16. The calibration plot showed a close

agreement between the predicted no ICU admission (NIA)

probabilities and the observed NIA proportions, verifying the

model’s accuracy in both the training and validation sets

(Figures 4A, B). We presented the DCA for the LASSO model in

Figures 4C, D. Over time, from 7 days to 14 days and then to 21

days, the threshold probability ranges with positive net benefit

increased. In the 21-day DCA, the ranges in the training and

validation cohorts were 0.2 to 0.8 and nearly 0.2 to 1,

respectively. If the patient’s threshold probability is within these

ranges, using the LASSO model to predict ICU admission provides

more benefit than either the treat-all-patients scheme or the treat-

none scheme. Since this model was built based on imputed data, we

validated the model with the data before imputation

(Supplementary Figure S1). The ROC curve and calibration plot

showed that the model sti l l had good discrimination

and calibration.
Model specification

We constructed a nomogram based on the Cox regression

analysis of the LASSO model. This nomogram allows the accurate

calculation of the NIA probability at 7, 14, and 21 days after

hospitalization (Figure 5). The figure shows the non-ICU patients

as blue dots and the ICU patients as red dots. The risk score has a

dotted line that indicates the cutoff value. Patients to the left of the

dotted line are classified as the low-risk score group, while those to

the right are classified as the high-risk score group (Figures 6A, B).

Moreover, the high-risk group had higher values of WBC, CRP,

PCT, and BUN, indicating a positive correlation between risk scores

and the probability of ICU admission (Figure 6C).
Discussion

Despite the reports that most of the Omicron-infected patients

were asymptomatic or mild cases during the Omicron variant

pandemic, the elderly population had significantly higher rates of
frontiersin.org
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TABLE 1 Demographics and clinical characteristics of 263 Omicron variant-infected hospitalized patients complicated with myocardial injury in the
ICU group and non-ICU group.

Patients, n (%)

Characteristic Total (n = 263) ICU group (n = 53) Non-ICU group (n = 210) p-value

Demographics

Age, median (range), years 87 (61–104) 88 (66–98) 87 (61–104) 0.42

Female 155 (58.94%) 39 (73.58%) 116 (55.24%) 0.015

Previous madical history

Hypertension 184 (69.96%) 38 (71.70%) 146 (69.52%) 0.758

Coronary artery disease 117 (44.49%) 22 (41.51%) 95 (45.24%) 0.625

Cerebrovascular disease 92 (34.98%) 26 (49.06%) 66 (31.43%) 0.016

Diabetes 57 (21.67%) 12 (22.64%) 45 (21.43%) 0.848

Arrhythmia 47 (17.87%) 9 (16.98%) 38 (18.10%) 0.850

Neoplasm 21 (7.98%) 4 (7.55%) 17 (8.10%) 1.000

Chronic kidney disease 34 (12.93%) 11 (20.75%) 23 (10.95%) 0.057

Chronic pulmonary disease 6 (2.28%) 1 (1.89%) 5 (2.38%) 1.000

Heart failure 12 (4.56%) 2 (3.77%) 10 (4.76%) 1.000

Vaccination

Unvaccinated/Partially (0/1 dose) 206 (78.33%) 41 (77.36%) 165 (78.57%) 0.848

Fully vaccinated/Booster doses (2/3 doses) 11 (1.42%) 2 (0.76%) 9 (1.77%) 1.000

Unknown 46 (8.55%) 10 (5.70%) 36 (10.02%) 0.768

Clinical laboratory biomarkers, median (IQR)/mean ( ± SD)

Ct-ORF1ab 20.22 (17.8–23.63) 20.11 (18.61–23.94) 20.23 (17.79–23.69) 0.594

Ct-N 20.65 (18.3–24.15) 20.65 (18.75–24.63) 20.65 (18.21–24.01) 0.511

WBC, 109/L 5.41 (4.18–7.08) 7.94 (5.42–11.39) 5.13 (4.01–6.66) <0.001

NEUT, 109/L 3.63 (2.44–5.68) 6.23 (3.80–8.97) 3.25 (2.27–4.59) <0.001

NEUT, % 68.22 ± 14.51 78.02 ± 13.02 65.74 ± 18.83 <0.001

LYM, 109/L 1.05 (0.73–1.45) 1.05 (0.60–1.39) 1.05 (0.75–1.46) 0.319

LYM, % 19.65 (11.8–30.28) 11.50 (8.15–19.80) 21.60 (13.90–31.65) <0.001

Hemoglobin, g/L 117.43 ± 21.40 112.42 ± 22.91 118.70 ± 20.86 0.056

D-dimer, mg/L 1.05 (0.63–2.04) 1.78 (1.07–4.21) 0.90 (0.56–1.79) <0.001

Interleukin-6, pg/mL 44.60 (25.90–149.18) 69.30 (27.94–164.05) 43.65 (24.70–137.33) 0.113

Procalcitonin, ng/mL 0.075 (0.023–0.229) 0.241 (0.097–0.947) 0.06 (0.02–0.13) <0.001

CRP, mg/L 21.45 (7.11–63.99) 72.03 (12.97–146.63) 16.42 (5.55–50.24) <0.001

SAA, mg/L 74.81 (23.88–305.76) 288.22 (49.87–320.00) 58.40 (19.99–219.29) <0.001

Myoglobin, ng/L 96.24 (66.70–229.48) 161.80 (82.99–567.65) 92.24 (63.77–166.70) <0.001

CK-MB, ng/L 3.01 (1.83–4.86) 4.27 (2.34–7.43) 2.77 (1.77–4.22) <0.001

NT-proBNP, pg/mL 1,022.00 (413.58–2,504.00) 2,054.00 (890.40–5,621.00) 892.40 (353.60–2,134.00) <0.001

TP, g/L 59.49 ± 5.95 59.77 ± 5.88 58.39 ± 6.20 0.145

AST, U/L 16.42 (10.79–24.37) 16.83 (10.66–24.63) 16.14 (10.78–24.48) 0.775

ALT, U/L 27.81 (21.20–40.29) 33.66 (21.53–49.65) 26.62 (21.20–37.65) 0.047

(Continued)
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severe/critical infection and mortality than the rest of the

population (26). Geriatric patients with multiple comorbidities

were more prone to have serious outcomes. Cardiovascular injury

was a major risk factor for developing severe infection (27, 28).

Throughout the COVID-19 pandemic, many studies have shown

that patients with concurrent MI were more prone to requiring ICU

care than those without MI (29). As the Omicron variant spreads

rapidly and many countries are relaxing their strict COVID-19

management measures, Omicron variant infections are becoming

more prevalent, resulting in a spike of cases. Therefore, it is essential

to identify and prevent potential severe cases, especially for the

high-risk groups. In this study, we analyzed the clinical features and
Frontiers in Immunology 06
developed a prognostic model based on laboratory biomarkers to

early predict the probability of patients with Omicron variant

infection and MI progressing to a severe condition.

During the outbreak of wild-type SARS-CoV-2, biomarkers that

have been clinically validated or newly discovered have the potential

to predict the severity and prognosis of COVID-19 patients. Pier

Paolo Sainaghi and colleagues pointed out that among several

cytokines and chemokines analyzed, IP-10 was positively

associated with increased disease severity and poor prognosis, but

negatively associated with faster recovery. Baseline serum levels of

IP-10 and CRP after 7 days in the hospital independently predicted

disease progression (30). Novel bioanalytes, such as Growth Arrest-
TABLE 1 Continued

Patients, n (%)

Characteristic Total (n = 263) ICU group (n = 53) Non-ICU group (n = 210) p-value

eGFR 80.00 (47.50–107.00) 61.00 (34.00–97.00) 83.00 (55.00–107.50) 0.012

BUN, mmol/L 8.12 (5.80–11.98) 10.64 (7.32–16.13) 7.64 (5.59–10.76) <0.001

sCr, mmol/L 75.20 (55.80–106.45) 87.80 (61.30–161.20) 72.65 (55.63–100.80) 0.041

Therapy

Antivirus(plaxlovid) 238 (90.49%) 52 (98.11%) 186 (88.57%) 0.035

Heparin 213 (80.99%) 48 (90.57%) 165 (78.57%) 0.051

Glucocorticoids 67 (25.48%) 39 (73.58%) 28 (13.33%) <0.001

Transnasal high flow oxygen therapy 19 (7.22%) 12 (22.64%) 7 (3.33%) <0.001

Non-invasive ventilation 48 (18.25%) 35 (66.04%) 13 (6.19%) <0.001

Invasive mechanical ventilation 20 (7.60%) 19 (35.85%) 1 (0.48%) <0.001
fro
Values were presented as mean ± SD for continuous variables with a normal distribution, or median (IQR) for continuous variables without a normal distribution.
Ct-ORF1ab, Cycle Threshold-ORF1ab gene; Ct-N, Cycle Threshold-N gene; WBC, white blood cell; NEUT, neutrophil; LYM, lymphocytes; CRP, C-reactive protein; SAA, serum amyloid A; CK-
MB, creatinine kinase-myocardial band; NT-proBNP, N-terminal pro-B-type natriuretic peptide; TP, total protein; LDH, lactate dehydrogenase; AST, aspartate aminotransferase; ALT, alanine
aminotransferase; eGFR, glomerular filtration rate (estimated); BUN, blood urea nitrogen; sCr, serum creatinine.
The cutoffs for laboratory examinations: WBC: 3.5–9.5 × 109/L; Neut: 1.8–6.3 × 109/L; Neut%: 40%–75%; LYM: 1.1–3.2 × 109/L; LYM%: 20%–50%; hemoglobin: 120–150 g/L; D-Dimer ≤ 0.5 mg/
L; Interleukin-6 ≤ 6.6 pg/mL; Procalcitonin < 0.5 ng/mL; CRP: 0–6 mg/L; SAA: 0–10 mg/L; Myoglobin: male: 26.56–72.48 ng/L, female: 24.24–57.57 ng/L; CK-MB: male: ≤4.88 ng/L, female: ≤3.63
ng/L; NT-proBNP < 900 pg/mL; Tp: 65–85 g/L; Potassium: 3.5–5.3 mmol/L; Sodium: 137–147 mmol/L; Chlorate: 99–110 mmol/L; LDH: 120–250 U/L; ALT: male:9–50 U/L, female: 7–40 U/L;
AST: male: 15–40 U/L, female: 13–35 U/L; eGFR: 90–120; BUN: male: 3.6–9.5 mmol/L, female: 3.1–8.8 mmol/L; sCr: male: 57–111 mmol/L, female: 41–81 mmol/L.
A B

FIGURE 2

Variable selection: LASSO multiple logistic regression model. (A) After verifying the best parameter (l) in the LASSO model, we draw a partial
likelihood deviation (binomial deviation) curve and pair number (l), and draw a vertical dashed line based on 1 SE. (B) By deriving the best l, four
variables with nonzero coefficients were selected.
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A B

C

FIGURE 3

LASSO regression for selection of variables and discrimination performance. (A) The forest plot displaying Cox regression results of the LASSO model
as HR values with 95% CI and p-values. (B) ROC curves of the LASSO model with AUROC and C-indexes with 95% CI in training and validating
cohorts. Red: the 7-day ROC curve; blue: the 14-day ROC curve, yellow: the 21-day ROC curve. (C) Time-depentdent AUC curves of the LASSO
model in training and validating cohorts.
A B

C D

FIGURE 4

Calibration curve and decision curve analysis of the LASSO model. (A) Calibration plots of 7, 14, and 21 days displaying the relationship between
predicted NIA probabilities and actual NIA proportions in training cohorts. (B) Calibration plots of 7, 14, and 21 days in validating cohorts. (C) Decision
curves of the LASSO model showing the net benefit under different threshold probabilities in 7, 14, and 21 days in training cohorts. Yellow: LASSO
model; blue: all patients receiving treatment; pink: no patient receiving treatment. (D) Decision curves of the LASSO model showing the net benefit
under different threshold probabilities in 7, 14, and 21 days in validating cohorts.
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Specific 6 (Gas6), a secreted glycoprotein that played a key role in

regulating immune homeostasis, fibrosis, and thrombosis, were also

found to have prognostic value. Plasma levels above 58.0 ng/mL

indicated a higher risk of severe disease progression (31). Moreover,

a prospective observational study showed that reduced levels of
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Gas6 and its soluble receptors, especially sAxl, were related to a

history of post-COVID-19 hair loss (32). In summary, these

findings highlight the potential of both established and novel

biomarkers in improving our knowledge and management of

COVID-19 outcomes.
FIGURE 5

The nomogram of the LASSO model. Values in the scale ruler of each variable corresponded to their points in the first line. A summary of these
points was displayed as the total points, and the total points corresponded to a patient’s NIA probability in 7, 14, and 21 days.
A

B

C

FIGURE 6

The linkage diagram of risk factors of the LASSO model. (A) The Y axis displayed the detailed risk score of each patient. (B) The Y axis displayed the
follow-up time since admission along with patients’ outcomes. (C) Heatmap showing the standardized level of each variable in all patients.
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In our prognostic model, we identified higher levels of WBC,

PCT, CRP, and BUN as significant factors that increased the

probability of ICU admission. WBCs are the main immune cells

in the body, involved in combating pathogen invasion and

facilitating immune reactions. In Omicron infection, changes in

WBC count may be related to the severity and prognosis of the

disease. There is also an association between increased WBC and

MI. This may be due to the inflammatory response induced by MI,

which activates the immune system. PCT has a role in MI and the

prognosis of COVID-19. PCT is a prohormone produced by the

thyroid C cells, and it is normally present in very low levels in the

blood. However, during MI, especially when associated with

infection, inflammation, or trauma, PCT levels may rise. Higher

levels of PCT may indicate the severity of myocardial damage and

the patient’s condition. PCT has been widely studied in the

prognosis of COVID-19. Some studies have found that elevated

PCT levels are associated with the severity of infection,

inflammatory response, and tissue damage in COVID-19 (33–35).

Higher PCT levels may also indicate worsening infection and poor

prognosis (36, 37). In patients with COVID-19 infection or MI, the

levels of CRP often increase (38). This may be because MI triggers

an inflammatory response, activating the immune system and

leading to more CRP production. By measuring the levels of CRP

in the blood, the degree of inflammation and prognosis in patients

with COVID-19 infection and MI can be assessed (35, 38). In the

study of 182 COVID-19 patients by Li et al., WBC, hs-C-reactive

protein, and PCT were independently associated with MI in a

multivariable adjusted analysis (39). Furthermore, elevated BUN

levels were observed, suggesting potential renal function

impairment or dehydration, which can be associated with a

poorer prognosis (40–42). The pathogenic mechanisms leading to

MI, such as reduced cardiac output and subsequent renal

hypoperfusion, could elucidate the observed increase in BUN

levels (43, 44). Consequently, monitoring BUN levels could

provide valuable information about renal health and the overall

hemodynamic status of the patient.

The predictors used in this study were obtained from the

patients’ admission data, enabling the early identification of

potentially severe cases at the start of hospitalization.

This proactive approach enables the prompt initiation of

suitable treatment interventions. Additionally, it facilitates the

efficient allocation of medical resources, thus enhancing their

utilization for optimal patient care. In our study, we focused on

laboratory biomarkers as our model’s predictors, because laboratory

biomarkers are objective and impartial, and in emergency situations

such as when patients are unconscious or unable to communicate

their medical condition clearly, laboratory biomarkers can quickly,

easily, and accurately indicate the patient’s status. Furthermore, the

evaluation of these four predictors is cost-effective and feasible.
Limitations

Our study has several limitations that should be acknowledged.

Firstly, this is a single-center study that only included elderly

patients from a designated hospital in Shanghai, which may affect
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the generalizability of our findings to other settings and

populations. The incomplete characterization of the population,

such as the details of pre-hospitalization treatment, prior infection

status, and other factors, may also limit the validity of the findings.

To obtain more robust and comprehensive scientific analyses, it

would be desirable to include multiple centers and participants with

diverse and more complete population characteristics and health

conditions. Secondly, the missing data in laboratory examinations

and viral shedding time may introduce potential biases in data

analysis and interpretation. Thirdly, the model of this study may

not be fully applicable to all patients infected with the Omicron

variant and complicated with MI, such as outpatients in isolation

sites or communities, because all participants involved in this study

were hospitalized patients.
Conclusion

We developed and validated a prognostic model based on four

laboratory biomarkers—WBC, CRP, PCT, and BUN—to predict

the severity of Omicron variant infection complicated with MI. This

prognostic model demonstrated superior discriminatory ability,

calibration, and net benefit, indicating its high potential for

clinical application. This study contributed to further refine and

identify the “high-risk population” among elderly individuals with

infection and associated complications, who are prone to severe

disease progression. This model can alert healthcare professionals to

provide timely and appropriate care and treatment to

these individuals.
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