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c-MET in regulating
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Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China, 3Department
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Background: Given the lack of research on disulfidptosis, our study aimed to

dissect its role in pan-cancer and explore the crosstalk between disulfidptosis

and cancer immunity.

Methods: Based on TCGA, ICGC, CGGA, GSE30219, GSE31210, GSE37745,

GSE50081, GSE22138, GSE41613, univariate Cox regression, LASSO regression,

andmultivariate Cox regression were used to construct the rough gene signature

based on disulfidptosis for each type of cancer. SsGSEA and Cibersort, followed

by correlation analysis, were harnessed to explore the linkage between

disulfidptosis and cancer immunity. Weighted correlation network analysis

(WGCNA) and Machine learning were utilized to make a refined prognosis

model for pan-cancer. In particular, a customized, enhanced prognosis model

was made for glioma. The siRNA transfection, FACS, ELISA, etc., were employed

to validate the function of c-MET.

Results: The expression comparison of the disulfidptosis-related genes (DRGs)

between tumor and nontumor tissues implied a significant difference in most

cancers. The correlation between disulfidptosis and immune cell infiltration,

including T cell exhaustion (Tex), was evident, especially in glioma. The 7-gene

signature was constructed as the rough model for the glioma prognosis. A pan-

cancer suitable DSP clustering was made and validated to predict the prognosis.

Furthermore, two DSP groups were defined by machine learning to predict the

survival and immune therapy response in glioma, which was validated in CGGA.

PD-L1 and other immune pathways were highly enriched in the core blue gene

module fromWGCNA. Among them, c-MET was validated as a tumor driver gene

and JAK3-STAT3-PD-L1/PD1 regulator in glioma and T cells. Specifically, the

down-regulation of c-MET decreased the proportion of PD1+ CD8+ T cells.
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Conclusion: To summarize, we dissected the roles of DRGs in the prognosis

and their relationship with immunity in pan-cancer. A general prognosis

model based on machine learning was constructed for pan-cancer and

validated by external datasets with a consistent result. In particular, a

survival-predicting model was made specifically for patients with glioma to

predict its survival and immune response to ICIs. C-MET was screened and

validated for its tumor driver gene and immune regulation function (inducing

t-cell exhaustion) in glioma.
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1 Background

Regulated cell death (RCD) refers to a controlled and orderly

type of cellular death (1, 2). The subtypes of these death modalities

have been enriched with more and more RCDs uncovered, for

instance, apoptosis (3–5), autophagy (6–8), necroptosis (9),

ferroptosis (10), pyroptosis (11), cuproptosis (12), disulfidptosis

(13), etc. Disulfidptosis is the latest type of RCD proposed in 2023

by Gan et al. (13). What distinguishes it from other forms of cell

death is the feature that the aberrant accumulation of disulfides

without enough nicotinamide adenine dinucleotide phosphate

(NADPH) supply from glucose can induce this specific cell death

(13–17). Disulfidptosis holds potential as an alternative therapeutic

tactic for patients resistant to existing therapies.

Cancer is a notoriously formidable disease that is characterized

by abnormal growth and division. Many types of cancer can

metastasize to surrounding tissues or even distant organs. Until

now, 14 hallmarks of cancer have been discovered, which have been

summarized well by Douglas Hanahan (18). Resisting cell death, as

one of the classical hallmarks, is always the fundamental and final

objective for all other hallmarks. With each discovery of an

innovative modality of cell death from apoptosis to cuproptosis,

our understanding of cancer will be expanded further in that

perspective. Numerous RCD-related prognostic signatures have

been made and validated by different researchers. In the recent

decade, ferroptosis (19, 20), pyroptosis (21–23), cuproptosis (24–

27) have been well-explored in many types of cancer based on the

cancer genome atlas (TCGA), gene expression omnibus (GEO),

international cancer genome consortium (ICGC), etc. These studies

give us a deeper understanding of RCD in the context of cancer.

Machine learning (ML), a subdomain of artificial intelligence

(AI), can be divided into supervised, unsupervised, and

reinforcement learning. In the era of big data, it can be applied

everywhere (28, 29). And in oncology, ML techniques have also

been employed to gain insights into the complex interactions

between tumors and the immune system. For instance, in
02
lymphoma, artificial neural networks were taken advantage of to

construct an immune-oncology panel to differentiate molecular

subtypes and predict prognosis (30). In solid tumors, ML-assisted

analysis based on genomics or radiomics also gives us better models

to identify treatment success rates (31–34).

However, to our knowledge, there are only limited studies on

disulfidptosis. Given the lack of research on this phenomenon, our

study aimed to delve into the role of disulfidptosis in pan-cancer

relying on well-recognized databases by constructing a prognostic

signature related to disulfidptosis. We mainly focused on

investigating the crosstalk between disulfidptosis and tumor

immune responses.
2 Methods

2.1 Data collection

Clinical features and gene expression of TCGA, ICGC, and

PCAWG patients were obtained in UCSC Xena (http://

xena.ucsc.edu). The validated transcriptomic data and clinical

characteristics from glioma were fetched from CGGA (http://

www.cgga.org.cn). The external gene expression and prognosis

datasets of LUAD, UVM, and HNSC (GSE30219, GSE31210,

GSE37745, GSE50081, GSE22138, GSE41613) were downloaded

from GEO (https://www.ncbi.nlm.nih.gov/geo/). DRGs (ACTB,

TLN1, CAPZB, STN, FLNB, IQGAP1, ACTN4, MYL6, FLNA,

MYH9, MYH10, PDLIM1, CD2AP, and INF2) were extracted

from Gan et al.’ disulfidptosis paper (13). Different immune cell

infiltration markers were obtained from the cancer immunome atlas

(TCIA) (35), Genecard (https://www.genecards.org/), GEPIA

(http://gepia2.cancer-pku.cn/#index), Cibersot (https://

cibersortx.stanford.edu/). The prognosis of different c-MET level

glioblastoma patients treated with anti-PD1 therapy was obtained

from Kaplan Meier-plotteR (http://kmplot.com/analysis/

index.php?p=background).
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2.2 Bioinformatic analysis

2.2.1 Pathway score calculation and immune
cell infiltration

ssGSEA was used to assess immune activity, function, and

programmed cell death pathways in each sample. Immune cell

marker genes were used for analysis. ESTIMATE calculated

immune, stromal, estimate scores, and tumor purity based on

immune and stromal cell proportions. TIMER and CIBERSORT

predicted infiltrating immune cell composition. Immune

checkpoint inhibitors were compared across clusters and risk

groups. By analyzing ssGSEA, ESTIMATE, immune cell

infiltration, and immune checkpoints, we gained a comprehensive

understanding of the tumor immune landscape. Infiltration

immune cell fractions were calculated in CIBERSORT in R4.2.0,

and the estimate package in R4.2.0 predicted the immune score.

2.2.2 Prognosis model construction
Univariate Cox regression, LASSO regression, and multivariate

Cox regression were used to construct the gene signature. The

previous survival and ROC analyses were made using survival and

survivalROC packages in R4.2.0.

2.2.3 DRGs-based subgroups identification
ConsensusClusterPlus package in R4.2.0 was used to perform

consensus clustering analysis based on the DRGs (parameter:

maxK=10, reps=50). AI modeling for DRGs-based prognosis

model was developed by six AI functions, including extreme

gradient boosting (XGboost, xgboost package in R4.2.0), support

vector machine (SVM, e1071 packages in R4.2.0), multi-logistic

(nnet packages in R4.2.0), random forest (RF, randomForest

package in R4.2.0), deep learning (DL, h2o package in R4.2.0)

and K-Nearest Neighbor (KNN, kknn package in R4.2.0). During

the model construction, randomly select 75% as the training cohort

and randomly select 25% as the testing cohort. Gene expression

value was standardized to range “0~1” with preProcess function

(caret and tidyverse packages).

2.2.4 Tumor mutation analysis
We analyzed somatic mutations in TCGA data using “maftools”

and calculated TMB for each group. Furthermore, we visualized

somatic mutations of selected genes in the signature using

cBioPortal. This analysis helped understand mutations and their

potential role in disulfidptosis.

2.2.5 Drug sensitivity prediction
Drug sensitivity prediction was performed by the oncoPredict

package in R4.2.0. This package leverages machine learning

algorithms trained on large datasets of cancer cell lines to

estimate the response of individual patient tumors to a wide

range of therapeutic agents. By analyzing the gene expression

profiles of the tumor samples, oncoPredict can identify potential

therapeutic targets and guide personalized treatment strategies.
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2.3 Biological experiments

2.3.1 Cell culture and reagents
Ln299 and Jurkat cell lines were purchased from the Chinese

Academy of Science cell bank with STR matching analysis. Cells

were cultured in recommended conditions. Co-culture was done by

placing the transwell containing Jurkat cells (2.5 × 105) or

alive PBMC (2.5 × 105) in the 6-well plate seeded with ln299

cells (20 x 104). Cabozantinib (BMS-907351) was purchased

from Selleck.

2.3.2 SiRNA transfection
Ln299 cells were transfected with c-MET small interfering RNA

(siRNA) (5′-AAG GAC CGG UUC AUC AAC UUC-3′) or non-
targeting negative control siRNA (RiboBio, China) using

LipofectamineTM 3000 (Invitrogen, USA) according to the

manufacturer’s protocol.

2.3.3 5-ethynyl-2′-deoxyuridine and live/
dead staining

The live/dead staining kit was purchased from YEASEN

Biotech, the Edu staining kit was purchased from APExBIO

(K1077), and OPTI-MEM was purchased from (ThermoFisher,

Gibco). 1×105 ln299 cells were seeded into 24-well plates. The

treated cells were stained according to the kits’ instructions and

then observed under an inverted microscope.

2.3.4 Western blotting
Total cellular proteins were extracted using lysis buffer (5 mM

EDTA, 300 mMNaCl, 0.1% NP-40, 0.5 mMNaF, 0.5 mMNa3VO4,

0.5 mM PMSF, and 10 mg/mL each of aprotinin, pepstatin, and

leupeptin; Sigma-Aldrich). 30–50 mg protein was separated using

10% SDS-PAGE and transferred to polyvinylidene difluoride

membranes (Millipore, Bedford, MA, USA). Then immunoblotting

was performed using antibodies against c-MET (25869-1-AP,

Proteintech), PD-L1 (28076-1-AP, Proteintech), p-JAK3 (29101-1-

AP, Proteintech), JAK3 (80331-1-RR, Proteintech), p-STAT3 (#9145,

Cell Signaling Technology), STAT3 (#9139, Cell Signaling

Technology), GAPDH (AF7021, Affinity Biosciences), IL-2 (16806-1-

AP, Proteintech), INF-g (15365-1-AP, Proteintech), PD1 (18106-1-AP,
Proteintech), beta-tubulin (10068-1-AP, Proteintech). The

immunoblots were visualized using an enhanced chemiluminescence

detection system (Amersham Pharmacia Biotech, Uppsala, Sweden).

2.3.5 PBMCs extraction
Simply, PBMCs were isolated via Ficoll-Paque density gradient

centrifugation: 5 mL of peripheral blood was collected from healthy

female volunteers, diluted with PBS at a 1:1 ratio, followed by gentle

mixing. Add 10 mL of the diluted blood to 2 mL of Ficoll liquid

(density 1.077). The clear stratification of blood and Ficoll liquid

confirmed success. Carefully transferred the sample to the

centrifuge and spin at 500 g for 15 minutes. Removed the

centrifuge tube with care, aspirate the white thin film layer in the
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middle, representing individual nucleated cells. Wash the isolated

nucleated cells with 10 mL of PBS, centrifuge at 250 g for 10

minutes, and discarded the supernatant. Repeat the washing step

once and the suspended cells were frozen in vials at 100 million

cells/mL in HI FBS with 5% DMSO after washing. Stored in liquid

nitrogen, they were revived gradually and washed in pre-warmed

RPMI with FBS and pen/strep. Following a 4-5 hour incubation at

37°C, viability was assessed using Trypan blue (0.1%).

2.3.6 Flow cytometry
The co-cultured PBMC were stained with Fixable Viability Stain

(Thermo, L34965) and Fc receptor blocking reagent [Ultra-LEAF™

Purified anti-mouse CD16/32 (101320, BioLegend)]. Next, they

were stained with CD-3 (BD 557943), PD-1 (BD 561273), and

CD8 antibody (thermo, A15448). The prepared single-cell

suspensions were filtered through 40-mm nylon meshes (352340,

Corning). Results were then acquired using BD Calibur, BD

Fortessa, or Miltenyi MACSQuant systems. Data were analyzed

with FlowJo_V10 software (TreeStar).

2.3.7 ELISA
Supernatants from PBMC co-cultured with glioma cell line were

collected and analyzed using ELISA kits for IL2(Proteintech,

KE00017), IFN-g (Proteintech, KE00146), CXCR9 (Proteintech,

KE00165). The levels of each cytokine were compared between

the c-MET knockdown group and control groups.
2.4 Statistical analysis

Statistical analyses were performed with R (4.2.0) and

GraphPad Prism (version 8.0.1). Discontinuous data were

expressed as numbers/percentages, and continuous data were

expressed as mean ± standard deviation (SD). P < 0.05 was

considered a statistically significant difference.
3 Results

3.1 The expression landscape and
prognosis significance of DRGs in
pan-cancer

In TCGA, the 14 validated disulfidptosis-related genes (DRGs) -

ACTB, TLN1, CAPZB, STN, FLNB, IQGAP1, ACTN4, MYL6,

FLNA, MYH9, MYH10, PDLIM1, CD2AP, and INF2 - were

generally expressed in all 33 types of cancer (Figure 1A). The

correlation analysis between the DRGs indicated that MYH9 and

ACTN4 were the most positively related gene pair, while MYH10

and PDL1M1 were the most negatively related (Figure 1B). And the

DRGs’ expression comparison between tumor and nontumor

tissues implied a significant difference in most types of them

(Figure 1C). MYH10 showed the highest 2.34-fold change

between glioma and normal brain tissues among all the DRGs

(Figure 1D). Moreover, the univariate Cox regression of the DRGs
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showed that almost all 14 DRGs could predict prognosis well in

patients with glioma, kidney carcinoma (KCA), kidney renal clear

cell carcinoma (KIRC), etc. (Figure 1E). Interestingly, DRGs were

the completely hazardous factors in glioma (Figure 1F).
3.2 The correlation between immunity and
disulfidptosis in pan-cancer

Following the ssGSEA analysis of different immune cell

infiltration and programmed cell death, the correlation analysis

indicated a strong association between disulfidptosis and most

immune cells. For the most significant glioma, the R-value

between disulfidptosis and exhausted T cells (TEX_Genecard),

central memory CD8 T cell, effector memory CD8 T cell, gamma

delta T cell, regulatory T cell, macrophage was over 0.5 (Figure 2A).

Interestingly, the correlation between disulfidptosis and other

modalities of cell death like ferroptosis (R-value = 0.651),

necroptosis (R-value = 0.612), pyroptosis (R-value = 0.609),

immunogenic cell death (ICD) (R-value = 0.559) are also very

high in glioma compared with other types of cancer (Figure 2A).

The univariate Cox regression indicated that T cell exhaustion

(Tex), immature B cell infiltration, etc., were the dangerous

factors in glioma patients. In contrast, the activated NK cells’

infiltration was a beneficial factor for survival (Figure 2B). More

importantly, a higher T cell exhaustion (TEX_GEPIA or

TEX_Genecard) could predict a lousy prognosis in the glioma

cohort from TCGA (Figure 2C).
3.3 Gene signature construction based on
disulfidptosis for prognosis of patients
with cancer

The univariate Cox regression, least absolute shrinkage and

selection operator (LASSO) regression, and multivariate Cox

regression were used to construct a gene signature for each type

of cancer. Except for thyroid cancer (THCA) and uveal melanoma

(UVM), the gene signatures that could predict the prognosis for

patients with all other types of cancer, respectively, were

successfully made (Figure 3). For the top 6 gene signatures

ranked by c-index, i.e., the gene signature in adrenocortical

carcinoma (ACC), pheochromocytoma and paraganglioma

(PCPG), lymphoid neoplasm diffuse large B-cell lymphoma

(DLBC), prostate adenocarcinoma (PRAD), kidney chromophobe

(KICH), and thymoma (THYM), the receiver operating

characteristic (ROC) curves showed a very high area under the

curve (AUC) for 1-year, 2-year, 3-year, 4-year, and 5-year survival

(Figure 3). And in glioma that showed the most outstanding

relation between disulfidptosis and immune cell infiltration

(Figures 2A, B), its 7-gene signature (risk score = 1.56709174 *

APOBEC3C + (-3.2556028) * GLUD1 + (-2.0800874) *

KIAA1671 + 1.08729963 * KIF4A + (-7 .9141641) *

RPL3 + 1.83720741 * TAGLN2 + 1.89252831 * TSPAN31)

(Figures 4A–C) was further validated by dividing the TCGA

cohort into a training group and a testing group. And both the
frontiersin.org
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Kaplan–Meier (KM) analysis and ROC curve (0.5-year, 1-year, 3-

year, 5-year, and 10-year) indicated significant results in the

training group, testing group, and the whole group (Figures 4D,

E). Then, the multivariant Cox analysis of the gene signature and

the clinical characteristics implied that the gene signature was an

independent hazard factor for the prognosis of patients with glioma

(Figure 4F). The nomogram indicated the relation of age, gender,

DRGs gene signature, and the survival probability (0.5-year, 1-year,

3-year, 5-year, 7-year, and 10-year) for glioma patients (Figure 4G).

Furthermore, the model based on age, gender, and DRGs gene

signature was validated in the Chinese Glioma Genome Atlas

(CGGA) with AUC over 0.72 (Figure 4I). In both glioma patients

from TCGA and CGGA, there was a consistency between the

predictive model and survival rate in the real world (Figures 4J, K).
3.4 Unsupervised pan-cancer clustering
analysis based on DRGs and tumor
mutation burden comparison

The unsupervised clustering analysis based on the 14 DRGs’

expression was used to categorize the TCGA cohort into
Frontiers in Immunology 05
disulfidptosis (DSP)1, DSP2, and DSP3 groups (Figures 5A–E).

The KM analysis suggested the DSP groups had significantly

different survival in the disease‐free interval (DFI), disease‐

specific survival (DSS), overall survival (OS), and progression‐free

interval (PFI) (Figure 5F). In line with the KM analysis of pan-

cancer, the KM analysis or univariate Cox regression in individual

cancer type indicated that the 3 DSP clusters could serve as a

significant survival-related factor in colon adenocarcinoma

(COAD), CRCA [COAD + rectum adenocarcinoma (READ)],

glioblastoma multiforme (GBM), glioma, head and neck

squamous cell carcinoma (HNSC), kidney chromophobe (KICH),

kidney renal clear cell carcinoma (KIRC), lung adenocarcinoma

(LUAD), lung carcinoma (LCA), stomach adenocarcinoma

(STAD), uterine corpus endometrial carcinoma (UCEC), and

uveal melanoma (UVM) (Figures 5G–I). Next, the top 10

mutated genes (TP53, TTN, MUC16, etc.) were listed and

compared among DSP1, DSP2, and DSP3 groups (Figures 6A, C).

Besides, the disulfidptosis, stromal score, immune score, tumor

purity, Tex, and tumor mutation burden (TMB) were significantly

different among the 3 DSP groups (Figure 6B). Since the previous 7-

gene model included APOEBC3C, the TMB between APOBEC-

enriched and APOBEC-unenriched groups was also compared in
A B

D

E F

C

FIGURE 1

The pan-cancer landscape of DRGs. (A) The expression of 14 validated DRGs in all types (36) of cancer from TCGA. (B) The expression correlation
analysis of DRGs, in which no significance of correlation was observed between MYH9 and MYH10, DSTN and TLN1, CD2AP and MYL6, IQGAP1 and
MYL6, DSTN and ACTB. (C) The expression difference of DRGs between tumor samples (TCGA) and non-tumor samples (para tumor from TCGA +
normal tissues from GTEx) in each type of cancer, expression difference existed in all DRGs in GBM, PAAD, PRAD, and TGCT. (D) The expression
comparison between glioma tissues from TCGA and normal brain tissues from GTEx. (E) Univariate Cox regression analysis of DRGs in each type of
cancer. (F) Univariate Cox regression analysis of DRGs in glioma, in which all DRGs were risk factors in glioma (HR>1, P<0.001).
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each DSP group (Figure 6D). Immune cell infiltration and immune

molecules differed greatly among the 3 DSP groups (Figures 6E, F).

Each cancer type’s total T-cell infiltration ratio was also listed to

give a whole landscape (Figure 6G). In particular, the glioma, in

which DRGs models showed the most significant relationship with

survival and immunity, implicated a significant difference in

disulfidptosis, Tex_GEPIA, Tex_genecard, CD8 (+) T cell

subtypes, immune score, and tumor purity between the two DSP

subgroups (Figures 6H–J).
3.5 Refined DSP models construction and
validation by WGCNA and machine
learning in pan-cancer

The weighted correlation network analysis (WGCNA) was used

to extract the gene module most associated with disulfidptosis,

immune cell infiltration, etc. (Figures 7A–C). Next, the ten hub

genes (PRSS8, CRB3, ILDR1, ELF3, TMEM184A, AP1M2, TMC4,

TJP3, CLDN7, HOXB7) within this cyan module were further

abstracted by the STRING database and cytoHubba (Figures 7D,

E). The refined DSP models based on the ten hub genes were then
Frontiers in Immunology 06
constructed by employing the best method of machine learning-

randomForest, in which the training and testing cohorts have the

highest AUC (Figure 7F). Moreover, compared with the original

DSP groups, it could better predict the prognosis in pan-cancer

patients (Figure 7G). The refined DSP models could differentiate the

prognosis more evidently in patients with glioma (Figure 7H). After

that, the new DSP model was also validated in pan-cancer cohorts

from PCAWG and ICGC, glioma from CGGA, LUAD from GEO

(GSE30219, GSE31210, GSE37745, GSE50081), and UVM from

GEO (GSE22138) with significant p-value (Figures 8A–F).
3.6 Enhanced refined DSP models
construction in glioma

Since the refined DSP model performed exceptionally well in

glioma among all the types of cancer, the unsupervised consensus

clustering and non-negative matrix factorization (NMF) clustering

were further utilized to categorize the DRGs into different groups

(Figures 9A, C). Finally, the more practical and evident two-DSP-

group classification by the NMF method was chosen for further

construction of gene signature. Compared with a lack of
A

B C

FIGURE 2

The correlation of immunity and other PCDs with disulfidptosis. (A) The correlation analysis between disulfidptosis and immune cell infiltration/other
PCDs, in which disulfidptosis score was positively correlated with PCDs, including ferroptosis, ICD, necroptosis, and pyroptosis, and disulfidptosis
was positive correlated with TEX, CD8+ T cells. (B) The univariate Cox regression of disulfidptosis, immune cell infiltration, and other PCDs in glioma,
LGG, GBM, and pan-cancer. (C) The Kaplan–Meier survival analysis of Tex_GEPIA and Tex_GeneCard in pan-cancer, a higher score of both
parameters was accompanied by worse prognosis in glioma (p<0.0001) evaluated by K-M analysis or unicox regression analysis.
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significance between the survival of some subtypes by the consensus

clustering (Figure 9B), the KM analysis indicated a significant

difference (p < 0.0001) between DSP1 and DSP2 with Hazard

Ratio (HR) equal to 5.47 (Figure 9D). Furthermore, the blue

module, most correlated with DSP subtypes classification and

immune cell infiltration, was extracted by WGCNA (Figures 9E–

G). Ten hub genes (IL2RB, CD96, CD3D, HOXC9, HOXC5,

SLAMF6, GZMH, CD3E, GZMK, and GZMA) from this module

were screened by cytoHubba to construct an enhanced refined DSP

clustering model by ML in glioma (Figure 9H). Surprisingly, the

glioma-customized DSP model trained from TCGA could predict

survival well in the glioma cohort from CGGA (Figures 9I, J).

Moreover, The DSP1 has a 3-fold immune therapy response rate

than the DSP2 group by oncoPredict package prediction (R.4.2.0).
3.7 The c-MET mechanism exploration
by experiments

The pathway enrichment of the blue gene module implied that

these genes might be involved in PD1 regulation (Figures 10A–C).

The c-MET inspired us to explore its function further since it was

one of the top 2 genes in both the blue module and tumor driver
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genes (TDG) (36) (Figure 10D). High expression of c-MET was

associated with poor survival among glioma patients from TCGA

and CGGA (Figures 10D, E). More importantly, the survival

tendency in glioblastoma patients receiving anti-PD1 therapy

agreed with the previous two cohorts (Figure 10F). Interestingly,

its expression differed significantly between tumor and nontumor

samples in over 90% of cancer types (Figure 10G). Interestingly,

most immune markers in glioma had an expression difference

between the high-c-MET and low-c-MET groups (Figures 10H,

I). The expression of c-MET was positively linked with PD-L1, PD2,

IL-10, IRF1, JAK3, and STAT3 (Figure 10J). Furthermore, the in-

vitro experiment results indicated that the knockdown of c-MET

could decrease the survival (Figure 11A) and proliferation

(Figure 11B) of glioblastoma cell line ln299, which could be

further enhanced by the combination treatment with cabozantinib

(2mM, a c-MET inhibitor) (Figures 11A, B). In line with our

previous data, the decrease of c-MET could down-regulated the

p-JAK3, p-STAT3, and PD-L1 (Figure 11C). Furthermore, the

Jurkat T cell co-cultured with the ln299 of c-MET knockdown

obtained a higher level of IL-2, IFN-g, and PD-1 (Figure 11D).

To further verify the regulation of c-MET on PD1/PDL1,

peripheral blood mononuclear cells (PBMC) were extracted from

healthy females. Through the co-culture of PBMC and glioma cells,

our data showed that down-regulation of c-MET in Ln299 significantly
FIGURE 3

DRGs-based prognosis model and ROC curve. The DRGs-based gene signature for prognosis was constructed for each type of cancer (the left part),
and the multi-gene-based model index was greater than 0.9 in ACC, DLBC, KICH, KIRP, PCPG, THYM, and TGCT. Multi-gene-based models for all
cancer types were significantly constructed. The 1-year, 2-year, 3-year, 4-year, and 5-year ROC curve of the abovementioned gene signature was
made for patients with ACC, PCPG, DLBC, PRAD, KICH, and THYM, respectively (the right part). * p<0.05, **p<0.01, ***p<0.001.
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decreased the activation of STAT3 and the expression level of PDL1 in

this cell (Figure 12A). In contrast, the expression level of IL2, IFN-g,
CD8 and CXCR9 were elevated in PBMC (Figure 12A). Furthermore,

extracellular level of IL2, IFN-g, and CXCL9 were also significantly

increased in the culturemedia (Figure 12B). Next, FACS was applied to

detect the c-MET-mediated CD8+ T cell immunity inhibition. In

Figure 12C, we found that the proportion of CD8+ T cells was

increased a little after co-culture with glioma cells while it could

return to normal level (Figure 12C). However, this phenomenon was

very marginal compared with the PD1 change in CD8+ T cells. The
Frontiers in Immunology 08
CD3+ CD8+ T cells with high PD-1 expression elevated from 8.8% to

16% after co-cultured with ln299 cells. In contrast, the knockdown of

c-MET almost reversed the T-cell exhaustion completely (Figure 12D).
Discussion

Disulfidptosis was a new modality of programmed cell death

coined by Gan et al. in 2023 (13), with very little further research on

cancer immunity. Our study explored the DRGs’ role in 33 types of
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FIGURE 4

The gene signature of prognosis based on DRGs in glioma. (A) The flow chart and the LASSO regression results were listed, after which 29 genes
were screened out, and (B) their effect on the prognosis of glioma was evaluated by univariate Cox, attached with HR and p-value. (C) The gene
signature of glioma prognosis was made by multivariate Cox regression, in which APOBEC3C, GLUD1, KIAA1671, KIF4A, RPL3, TAGLN2, and TSPAN31
were input into the model. (D) The Kaplan–Meier curves were made in the training, testing, and all glioma cohorts from TCGA, and all displayed a
similar result that a higher risk score was accompanied by a worse prognosis in glioma. (E) The ROC curves of 0.5-year, 1-year, 3-year, 5-year, and
10-year were presented in the training, testing, and all glioma cohorts from TCGA. (F) The gene signature based on DRGs and clinical characteristics
for glioma were shown with HR value, in which age, gender, and multi-gene-based risk score were input into the model. (G) The glioma nomogram
of gene signature based on DRGs and clinical characteristics. The glioma ROC curve of gene signature based on DRGs and clinical characteristics in
TCGA (H) and CGGA (I). The glioma nomogram prediction of gene signature based on DRGs and clinical characteristics in TCGA (J) and CGGA (K).
*p<0.05, **p<0.01, ***p<0.001.
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FIGURE 5

DRGs-based clustering and prognosis analysis in pan-cancer. (A) The unsupervised clustering of DRGs in pan-cancer based on the 14 DRGs (MYL6,
CD2AP, INF2, PDLIM1, ACTN4, FLNB, ACTB, MYH9, IQGAP1, CAPZB, DSTN, MYH10, FLNA, TLN1). (B) PCA analysis shows the sample distribution
amongst subgroups (DSP1, DSP2, DSP3). (C) DRGs expression profile feature in subgroups. (D) Tumor sample distribution amongst subgroups.
(E) Subgroup distribution proportion in 36 kinds of cancer. (F) OS, DSS, PFI, and DFI analysis among different DSP groups in pan-cancer were all
significant (p<0.001). (G) The univariate Cox regression (OS) of DSP clusters in every type of cancer from TCGA, in which significance was observed
in BLCA, CESC, COAD, CRCA, Glioma, HNSC, KICH, KIRC, LCA, LUAD, LUSC, PRAD, STAD, UCEC and UVM. OS analysis (H) and DSS analysis (I) in
COAD, CRCA, GBM, glioma, HNSC, LUAD, LCA, STAD, and UCEC. * p<0.05, **p<0.01, ***p<0.001.
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FIGURE 6

Gene mutation comparison among DSP groups in pan-cancer. (A) Gene mutation landscape among DSP groups in pan-cancer. (B) Pathways score
in DSP groups in pan-cancer. (C) Mutation comparison between every two DSP groups. (D) Mutation comparison between APOBEC-enriched and
non-APOBEC-enriched patients in each DSP group. Immune cell infiltration (E) Immune cell infiltration in DSP group, (F) Immunocheck points
expression in DSP groups. (G) Immune score status in 36 types of cancer. (H) Disulfidptosis score, TEX_GEPIA, and TEX_gencard were higher in
DSP2 in glioma (p<0.001). (I) Various types of CD8+ T cells infiltration differences in DSP groups in glioma (p<0.001). (J) Immune score and tumor
purity differences in DSP groups in glioma (p<0.001). **p<0.01, ***p<0.001; ns, significant.
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cancer in detail. The limma package and univariate Cox regression

indicated that the 14 validated DRGs did not only manifest

significantly different expressions between tumors and normal +

para tumor tissues, but they could also predict differential survival
Frontiers in Immunology 10
in glioma, KCA, KIRC, MESO, and UVM (Figures 1C, E). In

particular, each gene of the 14 DRGs could play a significant role

in the prognosis of patients with glioma (Figure 1F). Although some

genes in the DRGs had been reported to be involved in glioma, our
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FIGURE 7

Refined prognostic model construction in pan-cancer by WGCNA and Machine learning. (A) Gene modules correlated with DSP pathways and
immune cell infiltration by WGCNA, in which (B, C) module gene cohorts were most linked with DSP grouping and disulfidptosis (Cor=0.79, p<1e-
200), while deep blue module gene cohorts were most correlated with immune cell infiltration (Cor=0.77, p<1e-200). (D) Gene interaction network
about top 50 DSP grouping related genes in cyan module gene cohorts (E) Hub genes of the cyan gene module. (F) Refined prognostic model
construction based on pan-cancer by supervised machine learning, in which random forest algorithm displayed as the most efficient (Training
AUC=0.9082). (G) K-M analysis indicated the prognosis differences amongst DSP groups in the training cohort, testing cohort (original groups), and
predicted group (AI-identified group using test cohort data). (H) Refined prognostic model performance in the OS analysis of COAD, CRCA, GBM,
glioma, HNSC, LUAD, LCA, STAD, and UCEC.
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results implicated how the disulfidptosis pathway is regulated by

these genes in glioma deserves more research (37–42).

Besides other types of PCDs, the correlation analysis showed that

the disulfidptosis was also closely related to immune cell infiltration,

including Tex_Genecard, Tex_GEPIA, CD8 (+) T cells, regulatory T

cells, and macrophages (Figure 2A). Our data even suggested that

disulfidptosis-postively-related Tex by both gene cards and GEPIA

was a harmful factor in the prognosis of glioma (Figure 2B). PCD of

different cells in the tumor microenvironment (TME) has been found

to complicate cancer therapy. On the one hand, evidence suggested

that cancer cells undergoing PCD in TME might render them more

difficult to survive (43–46). On the other hand, other immune

components undergoing RCD in the TME could alter immune

attacks on tumor cells. For instance, the necroptosis induced in the

TME was reported to enhance the immune surveillance from the

BATF3 (+) conventional dendritic cells 1 (cDC1) and CD8 (+) T

cells, leading to the release of many immunostimulatory cytokines

(47–51). However, necroptosis induction in pancreatic cancer was

found to protect the tumor cell from attacks by immune cells (52).

While pyroptosis could induce antitumor effects by increasing the

infiltration of dendritic cells (DC), CD4 (+) T cells, and CD8 (+) T

cells (53, 54). For ferroptosis, it was reported to promote

immunogenicity, induce DCs’ phenotypic development, and elicit a

vaccination-like response (55). The expression of cuproptosis-related

genes was positively correlated with PD-L1 expression and negatively

associated with regulatory T-cell infiltration in melanoma (56). To
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our knowledge, our study was the first to explore disulfidptosis and

tumor immune infiltration in pan-cancer patients and gave a

complete picture of disulfidptosis’ role in immune regulation.

Our study even constructed a rough gene signature based on

disulfidptosis genes to predict the survival of all patients of every

cancer from TCGA (Figure 3). In ACC, PCPG, DLBC, PRAD, KICH,

and THYM, the DRGs-based model could predict 1-year, 2-year, 3-

year, 4-year, and 5-year survival with over 0.9 AUC (Figure 3). The

gene signature based on PCD-related genes has always been a popular

research direction. However, there is still a lack of the DRGs-related

prognostic gene signature (57–62). Our research is the first to make a

gene signature for each type of cancer patient from TCGA.Moreover,

we further analyzed the DRGs-based model in glioma in which Tex

and immune cell infiltration was strongly associated with

disulfidptosis (Figure 2B). In both the TCGA and CGGA glioma

cohorts, the gene signature’s predictive effect was significant and

consistent (Figures 4D, E, H–K). To further dissect the role of

disulfidptosis in pan-cancer, we clustered the 14 validated DRGs by

their expression pattern in pan-cancer. The three DSP groups had

significantly different OS, DSS, PFI, and DFI in pan-cancer

(Figure 5F). More importantly, DSP groups also had disparate DFI

andOS in COAD, CRCA, GBM, glioma, HNSC, LUAD, LCA, STAD,

UCEC, and UVM (Figures 5F–I). The consistent survival significance

of DSP clustering indicated that this new form of PCD was important

in these types of cancer. Further tumor mutation burden (TMB)

analysis suggested that the TP53, TTN, and IDH1 mutations may be
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C

FIGURE 8

Validation of the refined prognostic model in external datasets. Expression of DRGs and validation of the refined prognostic model in pan-cancer
from (A, B) PCAWG (p<0.0001) or ICGC (p=0.022), both of them showed significant prognosis differences in AI-identified DSP subgroups. (C) The
Glioma cohort from CGGA manifested significant prognosis differences amongst AI-identified DSP groups (p=0.027). (D), LUAD from GEO datasets
(GSE30219, GSE31210, GSE37745, GSE50081) presented significant prognosis differences amongst AI-identified DSP groups (p=0.0013), (E) UVM
from GSE22138 showed significant prognosis difference amongst AI-identified DSP groups (p=0.019) (F) HNSC from GSE41613 (exhibited
insignificant prognosis difference amongst AI-identified DSP groups (p=0.8). ****p<0.0001.
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involved in the disulfidptosis. Despite the regulation on nearly all

previously reported PCD by TP53, no studies have explored its role in

disulfidptosis until now (63). Our data provided many possible

candidates to uncover more mechanisms of disulfidptosis.
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Consistent with the previous immune cell infiltration analysis, our

result showed that there was a higher Tex within the DSP2 than DSP1

in glioma patients (Figure 6G), which gave more evidence that

disulfidptosis was closely linked with Tex (Figure 6I).
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FIGURE 9

Enhanced prognostic model in glioma by WGCNA and machine learning. (A) Unsupervised consensus clustering of 14 validated DRGs (B) and its
survival analysis in the glioma cohort, which displayed a significant difference in prognosis (p=6.7e-10). (C) The clustering of 14 validated DRGs by
Non-negative Matrix Factorization (NMF) divided the glioma cohort into two groups with (D) significantly different prognoses (p=5e-44). (E) WGCNA
for NMF clustering DSP groups, in which blue module gene cohort was the most correlated to DSP grouping, immune cell infiltration, and
immunecheckpoint expression (p<0.0001). (F) The correlation analysis of the blue gene module from WGCNA and DSP subtypes. The blue gene
module (G) and its hub genes (H) network. (I) Enhanced prognostic model based on hub genes for patients with glioma by machine learning, among
which the xgboost algorithm showed the best accuracy (testing AUC=0.9480). (J) The validation of the enhanced prognostic model in glioma
patients from CGGA by KM analysis and immune checkpoint inhibitors response prediction (p<0.001).
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FIGURE 10

The pathway enrichment and tumor driver genes analysis from the blue gene module. Pathway enrichment of blue gene module by KEGG (A), Reactome
(B), and WikiPathways (C). (D) The tumor driver genes’ extraction from the blue module. (E) The c-MET survival analysis of patients with glioma from TCGA
and CGGA (HR>1.25, p=1.5e-20). (F) The c-MET prognosis analysis was validated in the glioblastoma cohort receiving anti-PD1 treatment from “Kaplan-Meier
Plotter” (http://kmplot.com/analysis/index). (G) The expression of c-MET in pan-cancer and non-tumor tissues(data from TCGA and GTEx). The immune
markers expression was based on the c-MET expression in the glioma cohort from TCGA (H) and CGGA (I). (J) The expression correlation analysis between
different immune markers (PDL1, PD2, IL10, IRF1, JAK3, STAT3) and c-MET in the glioma cohort from TCGA. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001
A B

DC

FIGURE 11

C-MET was a tumor driver gene and could inhibit the JAK3-STAT3 pathway. (A) The live and dead cell staining by Calcein and PI, in which siRNA-c-
MET treatment increases the dead cell proportion induced by cabozantinib treatment. (B) The Edu and DAPI staining of the ln299 cell line. (C) The
protein expression alteration after c-MET knockdown in the ln299 cell line, in which PDL1, p-JAK3, JAK3, and pSTAT3 were down-regulated, while
(D) the expression of IL2 and IFN-g were up-regulated in the Jurkat cell line in co-culture system. *p<0.05, ***p<0.001.
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To further obtain a refined DSP model, WGCNA, followed by

machine learning, was employed to explore the most relevant gene

modules with disulfidptosis. Ten hub genes, including PRSS8, CRB3,

ILDR1, ELF3, TMEM184A, AP1M2, TMC4, TJP3, CLDN7, and

HOXB7, were extracted from the most related gene module

(Figure 7E). Next, randomForest machine learning, dependent on
Frontiers in Immunology 14
the ten hub genes, produced the best prognosis model by virtue of

categorizing different DSP groups in pan-cancer, which was even

validated in external databases (Figures 7G, 8A–F). Our study

proposed a generally effective prognosis model for pan-cancer.

Interestingly, it worked exceptionally well in glioma, LUAD, and

UVM. Combined with the abovementioned results, it inspired us to
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FIGURE 12

Down-regulation of c-MET within glioma enhanced the PBMC-derived CD8+ T cell function and proportion in the co-culture system. Glioma cell line
Ln299 cells were treated with c-MET siRNA for 24h and co-cultured with PBMC for another 24h. (A) WB was used to detect the relevant protein
expression in Ln299 and PBMC, in which PDL1, STAT3, pSTAT3, and pSTAT3 were down-regulated in Ln299. At the same time, IL2, IFN-g, and CXCR9
were up-regulated in PBMC. (B) ELISA was applied to detect extracellular protein levels in the co-culture system, in which IL2, IFN-g, and CXCL9 were
higher in the si-c-MET group than those in the NC group. (C) The proportion of PD1+ PBMC was decreased by the down-regulation of c-MET in
ln299 a little. (D) PD1+ CD3+CD8+ T cells were reduced evidently in the si-c-MET group than those in the NC group. **p<0.01, ***p<0.001.
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continue analyzing disulfidptosis in glioma. A specific prognosis

model for patients with glioma was constructed based on ten hub

genes (IL2RB, CD96, CD3D, HOXC9, HOXC5, SLAMF6, GZMH,

CD3E, GZMK, and GZMA) (Figures 9H, I). Glioma was divided into

DSP1 and DSP2 groups, where the DSP1 group was predicted to

have a much higher response rate to immune checkpoint inhibitors

(ICIs) than the DSP2 group (Figure 9J).

Finally, our further mechanism exploration revealed that c-MET

might play a vital role in the interaction between disulfidptosis and

glioma immunity. The high expression of c-MET could even predict a

poor prognosis in glioblastoma patients receiving anti-PD1 treatment

(Figure 10F). This tumor driver gene also manifested a positive

relation with the JAK3-STAT3-PD-L1 pathway (Figure 10J). JAK/

STAT signaling is reported to play pivotal roles in tumor immunity,

including the maintenance of activated T cells (64–68). This

phenomenon was further validated in in-vitro experiments where

we co-cultured the c-MET-knockdown glioblastoma cell line with the

Jurkat T cell line (Figures 11A–D, 12A–D). The promotion of cell

death and inhibition of cell proliferation by c-MET knockdown

indicated that it could serve as a tumor driver gene. Its regulation

on JAK3-STAT3-PD1/PD-L1 in T cells indicated the crosstalk

between disulfidptosis and T-cell exhaustion. Targeting c-MET by

siRNA or cabozantinib might be a promising way to enhance the T

cell function implicated by the decreased high-PD1 T cells proportion

and the increased CXCR9, CXCL9, IL2, and INF-g (Figures 11D,

12A–D). Although we uncovered many potential and exciting

candidates for further research on disulfidptosis and cancer

immunity, more efforts are needed to validate their functions.

Conclusions

To summarize, we dissected the expression of DRGs between

cancerous and noncancerous tissues, their roles in the prognosis,

and their relationship with immunity in pan-cancer. A general

prognosis model based on machine learning was constructed for

pan-cancer and validated by external datasets with a consistent

result. In particular, a DSP prognosis model was made specifically

for patients with glioma to predict its survival and immune

response to ICIs. Many potential candidates were screened,

among which c-MET was validated for its TDG and immune

regulation roles (inducing t-cell exhaustion) in glioma.
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Gating strategy for PBMC co-cultured with Ln299 cells. (A) The gating detail

for PBMC only. (B) The gating detail for PBMC co-cultured with ln299 cell for
48h. (C) The gating detail for PBMC co-cultured with c-MET-knockdown

ln299 cell for 48h.
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Glossary

ACC Adrenocortical carcinoma

AUC Area under the curve

AI Artificial intelligence

CGGA Chinese Glioma Genome Atlas

COAD Colon adenocarcinoma

cDC1 Conventional dendritic cells 1

CRCA COAD + rectum adenocarcinoma

DC Dendritic cells

DFI Disease-free interval

DSS Disease-specific survival

DSP Disulfidptosis

DRGs Disulfidptosis-related genes

Edu 5-ethynyl-2′-deoxyuridine

GEO Gene expression omnibus

GBM Glioblastoma multiforme

HR Hazard Ratio

HNSC Head and neck squamous cell carcinoma

ICIs Immune checkpoint inhibitors

ICD Immunogenic cell death

ICGC International Cancer Genome Consortium

KCA Kidney carcinoma

KICH Kidney chromophobe

KIRC Kidney renal clear cell carcinoma

LASSO Least absolute shrinkage and selection operator

LUAD Lung adenocarcinoma

LCA Lung carcinoma

DLBC Lymphoid neoplasm diffuse large B-cell lymphoma

ML Machine learning

NADPH Nicotinamide adenine dinucleotide phosphate

NMF Non-negative matrix factorization

OS Overall survival

PBMC peripheral blood mononuclear cells

PCPG Pheochromocytoma and paraganglioma

PFI Progression-free interval

PRAD Prostate adenocarcinoma

ROC Receiver operating characteristic

RCD Regulated cell death

ssGSEA Single-sample Gene Set Enrichment Analysis

siRNA Small interfering RNA
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STAD Stomach adenocarcinoma

Tex T cell exhaustion

TCGA The Cancer Genome Atlas

TCIA The Cancer Immunome Atlas

THCA Thyroid cancer

THYM Thymoma

TDG Tumor driver genes

TME Tumor microenvironment

TMB Tumor mutation burden

UCEC Uterine corpus endometrial carcinoma

UVM Uveal melanoma

WGCNA Weighted correlation network analysis
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