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Background: Circulating immune cells have gained interest as biomarkers of

hepatic steatosis. Data on the relationships between immune cell subsets and

early-stage steatosis in population-based cohorts are limited.

Methods: This study included 1,944 asymptomatic participants of the Multi-

Ethnic Study of Atherosclerosis (MESA) with immune cell phenotyping and

computed tomography measures of liver fat. Participants with heavy alcohol

use were excluded. A liver-to-spleen ratio Hounsfield units (HU) <1.0 and liver

attenuation <40 HU were used to diagnose liver fat presence and >30% liver fat

content, respectively. Logistic regression estimated cross-sectional associations

of immune cell subsets with liver fat parameters adjusted for risk factors. We

hypothesized that higher proportions of non-classical monocytes, Th1, Th17, and

memory CD4+ T cells, and lower proportions of classical monocytes and naive

CD4+ T cells, were associated with liver fat. Exploratory analyses evaluated

additional immune cell phenotypes (n = 19).

Results: None of the hypothesized cells were associated with presence of liver

fat. Higher memory CD4+ T cells were associated with >30% liver fat content, but

this was not significant after correction for multiple hypothesis testing (odds ratio

(OR): 1.31, 95% confidence interval (CI): 1.03, 1.66). In exploratory analyses

unadjusted for multiple testing, higher proportions of CD8+CD57+ T cells were

associated with liver fat presence (OR: 1.21, 95% CI: 1.02, 1.44) and >30% liver fat

content (OR: 1.34, 95% CI: 1.07, 1.69).
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Conclusions: Higher circulating memory CD4+ T cells may reflect liver fat

severity. CD8+CD57+ cells were associated with liver fat presence and severity,

but replication of findings is required.
KEYWORDS

hepatic attenuation, liver-spleen index, metabolic dysfunction-associated fatty liver
disease, computed tomography, T cells, peripheral blood monocular cells
1 Introduction

Metabolic dysfunction-associated fatty liver disease (MAFLD)

is a common chronic hepatic disease, affecting an estimated 30% of

adults in the United States and 37% of the global population (1, 2).

MAFLD encompasses a spectrum of disease states from hepatic

steatosis to metabolic dysfunction-associated steatohepatitis

(MASH) and progression to fibrosis, cirrhosis, and hepatocellular

carcinoma (3). An estimated 20% of patients with MAFLD progress

to MASH, with approximately 20% of MASH patients progressing

to advanced fibrosis (4).

Several cardiometabolic conditions characterized by chronic

inflammation, such as obesity, dyslipidemia, insulin resistance, and

type 2 diabetes commonly coexist with MAFLD. In turn, MAFLD

increases the risk of many chronic inflammatory conditions including

insulin resistance, type 2 diabetes, atherosclerosis, and cardiovascular

diseases (CVD) (5–8). Lipotoxicity, oxidative stress, and

proinflammatory mediator release are important features driving

progression of hepatic steatosis to MASH (5, 9, 10).

Liver inflammation during MAFLD is initiated by hepatocytes,

liver sinusoidal endothelial cells, and Kupffer cells in response to

metabolic dysfunction (5). Activation of these cells during steatosis

results in cytokine and chemokine secretion, furthering tissue injury

and promoting recruitment of monocytes, lymphocytes, and T cells

to the liver. Immune cell infiltration exacerbates proinflammatory

mediator release, creating a feedback mechanism that promotes

further immune cell recruitment and drives lobular inflammation

characteristic of MASH.

Several lines of experimental evidence suggest involvement of

innate and adaptive immune cells in MAFLD pathogenesis and the

progression from hepatic steatosis to MASH (5, 9, 10). Monocytes

and CD4+ and CD8+ T cells are recruited to the liver during

steatohepatitis onset, and mice deficient in these cells are

protected against steatosis, parenchymal injury, and lobular

inflammation induced by a high-fat diet (11–14). Similarly, mice

deficient in IFN-g and IL-17A are protected against liver injury and

hepatic fibrosis in mouse models of MASH (15–17). These studies

demonstrate roles of immune cells in experimental MAFLD models

and suggest their involvement in MAFLD progression in humans.

Several studies have reported differences in the frequencies and

functions of innate and adaptive immune cells in liver biopsy and
02
peripheral blood samples of patients with MAFLD compared with

those without disease (18–23). Studies of patients with severe fatty

liver disease, however, may not be generalizable to asymptomatic

individuals with subclinical disease. There is currently a paucity of

data on the relationships between circulating immune cells and

hepatic steatosis from population-based cohorts. Investigation of

immune cell profiles in observational, community-based cohorts

may aid in the identification of biomarkers associated with the early

stages of MAFLD. In the present study, we evaluated the

associations of immune cell subsets in peripheral blood with

measures of liver fat assessed by computed tomography (CT)

scans in asymptomatic participants of the community-based,

Multi-Ethnic Study of Atherosclerosis (MESA).
2 Methods

2.1 Cohort

MESA is an epidemiological cohort study of 6,814 participants

recruited in 2000–2002, aged 45–84 years (24). Participants were

enrolled from six U.S. communities (Baltimore, MD; Chicago, IL;

Forsyth County, NC; Los Angeles, CA; Manhattan, NY; and St. Paul,

MN) and self-identified as either White, Black, Hispanic, or Chinese

American. Those with a self-reported medical history of CVD,

undergoing active treatments for cancer, pregnancy, or amputation

met exclusion criteria for the study. MESA’s study design and

procedure details are published (24). Participants answered

standardized questionnaires, underwent assessment for CVD risk

factors, completed CT imaging, and provided biospecimens.

The current study leverages data from a nested case–cohort

study designed to evaluate relationships of circulating immune cell

proportions with incident coronary heart disease (CHD) and heart

failure (HF) events (25, 26). The case–cohort study sampled all

participants with incident CHD and HF and a random cohort (n =

2,200). We leveraged this data for a secondary cross-sectional

analysis of liver fat.

All procedures were conducted under institutionally approved

protocols for human subjects research, and all participants provided

written informed consent for study participation.
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2.2 Cellular phenotyping

During the MESA baseline examination (2000–2002),

peripheral blood mononuclear cells (PBMCs) were isolated from

8-mL citrate CPT tubes according to the manufacturer’s

instructions (BD Biosciences) and cryopreserved at −135°C in

media containing 90% fetal bovine serum and 10% dimethyl

sulfoxide. Detailed methods, reagents, and flow cytometry gating

strategies used for immune cell phenotyping are published (25, 27).

All antibodies were fromMiltenyi Biotec and diluted according to

the manufacturer’s recommendations. Cells were thawed quickly at

37°C and immediately diluted by the slow addition of media. Cell

surface labeling was used to phenotype monocyte subsets, natural

killer cells, gd T cells, B cell subsets, and CD4+ and CD8+ naive,

memory, differentiated, and CD45RA+ reexpressing effector memory

cells (TEMRA). Surface labeling was performed by incubating cells

with antibodies in the dark for 15 min at room temperature. Cells

were centrifuged and washed with buffer, and the final pellet was

placed in 1% paraformaldehyde and stored at 4°C until flow

cytometry analysis. Monocytes were defined by surface labeling for

CD14. Classical monocytes were defined as CD14++CD16- and non-

classical monocytes as CD14+CD16++. T helper cells and cytotoxic T

cells were identified by surface labeling for CD4 and CD8,

respectively. Naive and memory CD4+/CD8+ T cells were defined

by cell surface staining of CD45RA+ and CD45RO+, respectively.

Phenotyping for Th1 (defined as CD4+IFN-g+), Th2 (CD4+IL-4+),
Th17 (CD4+IL-17A+), T cytotoxic type 1 (Tc1; defined asCD8+IFN-g+),
Tc2 (CD8+IL-4+), and Tc17 (CD8+IL-17A+) cells was performed

using intracellular cytokine staining as described in detail previously

(27). Cells were activated for 3 h at 37°C with phorbol myristate

acetate and ionomycin in the presence of Brefeldin A to inhibit

cytokine secretion. Cells were subsequently incubated with anti-CD4

and anti-CD8 antibodies for 15 min in the dark at room temperature.

Following a wash and fixation with 2% paraformaldehyde, cells

were permeabilized using 0.1% saponin and incubated in the dark

with anti-IFN-g, anti-IL-4, and anti-IL-17A antibodies for 15 min at

room temperature. Cells were washed, fixed in 2% paraformaldehyde,

and stored at 4°C in the dark until analysis.

Cell phenotyping was performed by flow cytometry analysis using

a MACSQuant 10 and MACSQuantify software (Miltenyi Biotec). An

average of 41,800 PBMCs were evaluated per participant. Single-color

controls were used for compensation and isotype controls for setting

negative gates (25). Cell phenotypes were expressed as proportions of

their parent populations (e.g., monocytes as a percentage of CD14+

cells, T helper cells as a percentage of CD4+, and cytotoxic T cells as a

percentage of CD8+ cells). All cell phenotypes included in the study, the

molecular markers used to define them, how they were expressed, and

their means and standard deviations are presented in Supplementary

Table 1 in the Supplementary Material.
2.3 Laboratory measurements
and definitions

Demographic and alcohol use information was obtained by

standardized questionnaire at the baseline study exam (24).
Frontiers in Immunology 03
Education was categorized as less than college degree or college

degree or above. Serum glucose was measured by the Vitros analyzer

(Johnson & Johnson Clinical Diagnostics, Inc.). Diabetes was defined

as a fasting blood glucose ≥126 mg/dL or use of insulin or oral

hypoglycemic medication. Waist circumference was measured at the

level of the umbilicus in cm. Lipid measurements were performed as

described (24). Cytomegalovirus (CMV) IgG antibodies were

measured in serum samples by enzyme immunoassay (Diamedix

Corp.) (coefficients of variation 5.1%–6.8%).
2.4 Liver fat measurements

Non-enhanced cardiac CT scans were performed at the MESA

baseline examination in all participants (28). CT scans were used to

assess for liver fat as described in detail (29).

Hepatic and splenic Hounsfield unit (HU) attenuation values were

measured using two regions of interest (ROI) greater than 100 mm2 in

the right liver lobe anterioposteriorly, one in the left liver lobe and one

ROI in the spleen. Attenuation measurements of both right and left liver

lobes were available in 6,464 scans. Spleen attenuation measurements

were available in 4,396 scans. Liver and spleen HU attenuation

measurements were highly reproducible with intra- and inter-reader

correlations of 0.96–0.99 (29). A liver/spleen attenuation (L/S) ratio was

calculated by dividing the mean HU measurements of both right liver

lobe ROIs by the spleenHUmeasurement. An L/S ratio <1.0 was used as

the diagnosis of the presence of liver fat (29). A liver attenuation <40 HU

was assessed as a cutoff of >30% liver fat content (14, 30).
2.5 Statistical analysis

All data used in the analyses were from the MESA baseline

exam (2000–2002). Analyses included all participants with at least

one immune cell phenotype and liver attenuation data (n = 2,133).

Participants with heavy alcohol use (n = 189), defined as >14 drinks

per week for men and >7 drinks per week for women, were excluded

from the study. Following exclusions, 1,944 participants were

included in the analysis; liver attenuation data were available in

1,944 participants, and L/S ratio data were available in 1,316

participants. Supplementary Table 1 presents the number of

participants with data for each of the immune cell assays. The

number of cellular phenotypes measured per participant varied due

to occasional poor sample quality or technical errors.

Informed by the literature (10, 12, 15, 18–21) and prior results

in MESA (31–33), we specified a priori hypotheses for six immune

cell subsets. We hypothesized that higher proportions of non-

classical monocytes (CD14+CD16++), Th1 (CD4+IFN-g+), Th17
(CD4+IL-17A+), and memory CD4+ (CD4+CD45RO+) cells, and

lower proportions of classical monocytes (CD14++CD16−) and

naive CD4+ cells (CD4+CD45RA+), would be associated with a

higher prevalence of liver fat. As exploratory analyses, we assessed

relationships of 19 additional immune cell subsets phenotyped in

the parent case–cohort study (25). The primary study outcome was

an L/S ratio <1/0. Liver attenuation <40 HU was assessed as a

secondary outcome.
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Logistic regression models were used to estimate cross-sectional

associations of immune cell subsets with liver fat parameters.

Immune cells were analyzed in separate models per 1-standard

deviation (SD) increment. Models included case–cohort weights

that accounted for the study design which oversampled CHD and

HF cases. Models were adjusted for demographic variables (age, sex,

race/ethnicity, education, and cell phenotyping analytical batch) and

subsequently for waist circumference, alcohol use, diabetes status,

systolic blood pressure, hypertensive medication use, HDL, LDL,

statin use, and triglycerides. Sensitivity analyses included additional

adjustment for CMV antibody titers due to the known influence of

CMV on T-cell immunity (34, 35). For the six a priori hypotheses, a

Bonferroni correction was used to account for multiple hypothesis

testing; statistical significance was defined as p < 0.008 (reflecting a

Bonferroni correction of 0.05/6). In exploratory analyses of additional

cell subsets, we used p <0.05 as the significance threshold.
3 Results

Descriptive characteristics of the study population are presented

in Table 1. Presence of liver fat, defined by an L/S ratio <1.0, was

present among 18.5% (n = 243) of the participants. Liver

attenuation <40 HU was observed in 130 participants (6.7%).
3.1 Associations of monocyte and T-cell
subsets specified as a priori hypotheses
with a liver-to-spleen ratio <1.0 and liver
attenuation <40 HU

Table 2 presents associations of the six cell subsets specified as a

priori hypotheses (classical monocytes, non-classical monocytes,

Th1, Th17, and memory and naive CD4+ T cells) with the presence

of liver fat (assessed by an L/S ratio <1.0). None of these six subsets

were associated with liver fat presence in either demographic or risk

factor adjusted models (p < 0.05). In analyses of the secondary

outcome, higher memory CD4+ cells (CD4+CD45RO+) were

associated with a higher odds of liver attenuation <40 HU

(indicating >30% liver fat content) in both models (odds ratio

(OR): 1.31, 95% confidence interval (CI): 1.03, 1.66; p = 0.03 in risk

factor-adjusted models), but this association did not meet the

significance threshold for testing multiple comparisons (p < 0.008).
3.2 Exploratory analyses of additional
immune cell subsets with hepatic
attenuation measurements

Table 3 presents exploratory analyses assessing relationships of

19 additional immune cell subsets assayed in the parent case–cohort

study with liver fat presence and >30% liver fat content. Adjusted

for risk factors, a 1-SD higher proportion of CD8+CD57+ T cells
Frontiers in Immunology 04
was associated with a higher odds of liver fat presence (OR: 1.21,

95% CI: 1.02, 1.44) and >30% liver fat content (OR: 1.34, 95% CI:

1.07, 1.69), as defined using a significance threshold of p < 0.05. The

association of CD8+CD57+ cells with >30% liver fat content was

supported by relationships of the highly correlated phenotypes

CD8+CD28- (OR: 1.35, 95% CI: 1.05, 1.74) and CD8+CD28-CD57+

cells (OR: 1.37, 95% CI: 1.07, 1.76) with liver attenuation <40

HU (Table 3).
TABLE 1 Descriptive characteristics of the study population stratified by
presence of liver fat as defined by a liver-to-spleen (L/S) ratio <1.0.

L/S ratio
>1.0 (n=1073)

L/S ratio
<1.0 (n=243)

Age, years (mean, SD) 64.4 (10.5) 62.6 (10.0)

Sex (n, %)

Male 491 (45.8%) 115 (47.3%)

Female 582 (54.2%) 128 (52.7%)

Race/Ethnicity (n, %)

White 401 (37.4%) 81 (33.3%)

Black 350 (32.6%) 52 (21.4%)

Hispanic 202 (18.8%) 74 (30.5%)

Chinese 120 (11.2%) 36 (14.8%)

College education or above
(n, %)

372 (34.8%) 78 (32.2%)

BMI, kg/m2 (mean, SD) 28.0 (5.3) 30.5 (5.2)

Waist circumference, cm
(mean, SD)

97.9 (14.1) 104.4 (13.2)

Systolic blood pressure, mm
Hg (mean, SD)

130 (23) 130 (22)

Hypertension medication use
(n, %)

449 (41.9%) 115 (47.3%)

Total Cholesterol, mg/dL
(mean, SD)

193 (34) 190 (37)

LDL cholesterol, mg/dL
(mean, SD)

117 (30) 111 (29)

HDL cholesterol, mg/dL
(mean, SD)

51 (15) 45 (12)

Triglycerides, mg/dL
(median, IQR)

105 (76, 153) 155 (110, 218)

Statin use (n, %) 183 (17.1%) 41 (16.9%)

C-reactive protein, mg/L
(median, IQR)

1.9 (0.9, 4.2) 2.5 (1.1, 6.1)

Cytomegalovirus, EU/mL
(median, IQR)

117 (41, 225) 122 (54, 258)

Fasting glucose, mg/dL
(median, IQR)

90 (83, 99) 98 (87, 113)

Diabetes (n, %) 153 (14.3%) 57 (23.5%)
BMI, body mass index; IQR, inter-quartile range; SD, standard deviation.
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3.3 Sensitivity analyses adjusting for
cytomegalovirus antibody titers

In sensitivity analyses that added CMV antibody titers as a

covariate in risk factor models, the association of memory CD4+

cells with >30% liver fat content was slightly attenuated (OR: 1.27,

95% CI: 1.00, 1.61; p = 0.05). The relationship of CD8+CD57+ cells

with liver fat presence was essentially the same following CMV

adjustment, whereas the association with >30% liver fat content

was accentuated (OR: 1.40, 95% CI: 1.11, 1.77; p = 0.005). The

associations of CD8+CD28− and CD8+CD28-CD57+ cells with >30%

liver fat content were also accentuated following CMV adjustment

(CD8+CD28− OR: 1.45, 95% CI: 1.11, 1.90), p = 0.006; CD8+CD28-

CD57+ OR: 1.47, 95% CI: 1.14, 1.90; p = 0.003). Interpretation of

results was unchanged for all other cell phenotypes (presented in

Supplementary Table 2). These results suggest the relationships of

CD57 expressing CD8+ cells with hepatic steatosis were not driven by

CMV infection.
4 Discussion

In this community-based study of asymptomatic adults,

peripheral blood monocyte and CD4+ T helper cell subsets were

not associated with the presence of liver fat as assessed using a liver/

spleen attenuation ratio <1.0 by CT imaging. As hypothesized, higher

memory CD4+ T cells were associated with a liver fat content >30%,

but the association did not withstand adjustment for multiple

hypothesis testing. In exploratory analyses, CD8+CD57+ T cells
Frontiers in Immunology 05
were associated with both the presence of liver fat and >30% liver

fat content when not accounting for multiple comparisons.

Accumulating evidence has implicated roles of monocytes and

lymphocytes in hepatic steatosis and the progression to MASH (9,

10, 36, 37). In animal models of diet-induced fatty liver disease,

monocytes, Th1, and Th17 cells are recruited to the liver (11, 12,

38–40). Pharmacological inhibition of monocyte recruitment and

genetic ablation of signature Th1- and Th17-associated cytokines

protect against steatohepatitis (11, 15–17, 40). Increased

intrahepatic and peripheral blood Th1 and Th17 cells have also

been reported in patients with MASH (18, 19). Higher circulating

levels of non-classical monocytes, and lower classical monocytes,

were reported in MAFLD patients compared with controls (20, 21).

To our knowledge, there are few studies investigating peripheral

blood immune cells and liver fat in large, population-based cohorts.

In the present study, no relationships were observed between

monocyte or T helper cell subsets with the presence of liver fat as

assessed using an L/S attenuation ratio <1.0 by CT scan (29). These

null results are consistent with some prior hepatology clinical

studies (18, 19, 41), but not all (37). Although not meeting a

priori significance thresholds, an association of higher memory

CD4+ T cells was observed with >30% liver fat content (defined by

liver attenuation <40 HU). This result is consistent with studies

reporting higher circulating proportions of memory and lower

proportions of naive CD4+ and CD8+ T cells in patients with

MASH and higher CD4+ memory cells with features of metabolic

syndrome in apparently healthy men (18, 42). Similarly, prior

results from MESA identified a pattern of higher memory and

lower naive CD4+ cells with type 2 diabetes and subclinical
TABLE 2 Cross-sectional associations of immune cell subsets specified as primary hypotheses with liver-to-spleen ratio <1.0 and liver attenuation
<40 HU.

Cell subset
(1-SD
value)

Liver-to-
Spleen Ratio

<1.0
(Model 1)

OR (95% CI)

P
value

Liver-to-
Spleen Ratio

<1.0
(Model 2)

OR (95% CI)

P
value

Liver
Attenuation
<40 HU
(Model 1)

OR (95% CI)

P
value

Liver
Attenuation
<40 HU
(Model 2)

OR (95% CI)

P
value

Classical Monocytes
(CD14++CD16-) (10.4%)

0.86
(0.72, 1.02)

0.08
0.85

(0.69, 1.04)
0.11

0.97
(0.78, 1.23)

0.86
0.98

(0.75, 1.28)
0.87

Non-Classical
Monocytes

(CD14+CD16++) (7.8%)

1.14
(0.97, 1.33)

0.11
1.11

(0.92, 1.33)
0.27

1.02
(0.83, 1.28)

0.79
1.03

(0.79, 1.33)
0.84

Naive CD4+

(CD4+CD45RA+)
(13.0%)

0.96
(0.81, 1.15)

0.69
0.99

(0.84, 1.19)
0.98

0.84
(0.68, 1.04)

0.11
0.81

(0.65, 1.01)
0.07

Memory CD4+

(CD4+CD45RO+)
(14.9%)

1.11
(0.92, 1.35)

0.27
1.06

(0.88, 1.29)
0.53

1.28
(1.02, 1.60)

0.03
1.31

(1.03, 1.66)
0.03

Th1
(CD4+IFN-g+) (7.9%)

1.04
(0.87, 1.24)

0.66
0.98

(0.81, 1.18)
0.80

0.97
(0.78, 1.20)

0.76
0.92

(0.73, 1.17)
0.52

Th17
(CD4+IL17-A+) (1.4%)

0.90
(0.73, 1.10)

0.30
0.88

(0.72, 1.07)
0.20

0.95
(0.76, 1.18)

0.62
1.01

(0.81, 1.25)
0.95
fron
Analyses are by logistic regression models and include sampling weights to account for the case-cohort study design. Cells were analyzed in separate models per 1-SD higher value (shown in
parentheses). An L/S ratio <1.0 was used as the diagnosis of the presence of liver fat. A liver attenuation <40 HU was assessed as a cutoff of >30% liver fat content.
Model 1: Age, sex, race/ethnicity, education, and analytical batch.
Model 2: Age, sex, race/ethnicity, education, analytical batch, waist circumference, alcohol use, diabetes status, statin use, hypertensive medication use, systolic blood pressure, HDL, LDL,
and triglycerides.
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TABLE 3 Odds ratios of immune cell subsets included in exploratory analyses with liver-to-spleen ratio <1.0 and liver attenuation <40 HU.

Cell subset
(1-SD value)

Liver-to-
Spleen Ratio

<1.0
(Model 1)

OR (95% CI)

P
value

Liver-to-
Spleen Ratio

<1.0
(Model 2)

OR (95% CI)

P
value

Liver
Attenuation
<40 HU
(Model 1)

OR (95% CI)

P
value

Liver
Attenuation
<40 HU
(Model 2)

OR (95% CI)

P
value

gd (5.6%)
0.85

(0.71, 1.01)
0.06

0.84
(0.69, 1.01)

0.06
1.09

(0.89, 1.32)
0.41

1.16
(0.93, 1.45)

0.18

Natural Killer (5.8%)
0.95

(0.79, 1.14)
0.58

0.92
(0.74, 1.13)

0.42
0.95

(0.76, 1.18)
0.63

0.95
(0.74, 1.21)

0.67

Intermediate monocyte
(CD14+CD16+) (7.4%)

1.09
(0.89, 1.35)

0.41
1.15

(0.90, 1.45)
0.26

0.99
(0.75, 1.33)

0.99
1.01

(0.73, 1.37)
0.98

Th2
(CD4+IL-4+) (1.8%)

0.92
(0.76, 1.12)

0.42
0.88

(0.71, 1.09)
0.27

1.12
(0.92, 1.37)

0.26
1.09

(0.88, 1.35)
0.44

Treg
(CD4+CD25+CD127-

) (2.2%)

0.81
(0.65, 1.01)

0.06
0.83

(0.65, 1.05)
0.12

1.13
(0.88, 1.44)

0.34
1.16

(0.87, 1.55)
0.31

CD4+CD25+ (12.6%)
1.09

(0.90, 1.32)
0.39

1.05
(0.85, 1.28)

0.67
1.13

(0.87, 1.46)
0.35

1.06
(0.81, 1.40)

0.67

CD4+CD28- (9.8%)
0.87

(0.72, 1.06)
0.17

0.83
(0.67, 1.04)

0.10
0.99

(0.79, 1.23)
0.90

1.00
(0.77, 1.30)

0.99

CD4+CD57+ (11.3%)
0.97

(0.80, 1.17)
0.76

0.89
(0.73, 1.08)

0.24
1.06

(0.83, 1.35)
0.65

0.97
(0.74, 1.26)

0.80

CD4+CD28-CD57+ (8.1%)
0.93

(0.78, 1.10)
0.40

0.87
(0.71, 1.06)

0.17
0.99

(0.80, 1.22)
0.91

0.98
(0.87, 1.25)

0.87

CD4+ TEMRA (4.9%)
0.96

(0.80, 1.15)
0.66

0.86
(0.68, 1.09)

0.20
1.08

(0.86, 1.35)
0.50

1.01
(0.77, 1.32)

0.94

Tc1
(CD8+IFN-g+) (17.7%)

0.98
(0.82, 1.17)

0.85
0.98

(0.79, 1.21)
0.87

0.90
(0.69, 1.17)

0.43
0.93

(0.68, 1.27)
0.66

Tc2
(CD8+IL-4+) (4.8%)

0.86
(0.69, 1.08)

0.18
0.83

(0.66, 1.05)
0.12

0.97
(0.74, 1.28)

0.85
1.00

(0.73, 1.39)
0.98

Tc17
(CD8+IL-17A+) (1.6%)

0.95
(0.79, 1.15)

0.59
0.93

(0.76, 1.14)
0.49

0.96
(0.73, 1.26)

0.77
1.00

(0.76, 1.31)
0.98

Naive CD8+

(CD8+CD45RA+) (15.6%)
1.01

(0.86, 1.19)
0.88

1.00
(0.84, 1.20)

0.96
1.08

(0.87, 1.34)
0.50

1.04
(0.81, 1.32)

0.77

Memory CD8+

(CD8+CD45RO+) (11.9%)
0.95

(0.81, 1.12)
0.57

0.94
(0.79, 1.11)

0.46
0.96

(0.78, 1.19)
0.71

0.98
(0.77, 1.25)

0.90

CD8+CD28- (16.0%)
1.00

(0.86, 1.17)
1.00

1.04
(0.88, 1.24)

0.62
1.19

(0.95, 1.50)
0.13

1.35
(1.05, 1.74)

0.02

CD8+CD57+ (16.6%)
1.21

(1.03, 1.41)
0.02

1.21
(1.02, 1.44)

0.03
1.25

(1.02, 1.54)
0.03

1.34
(1.07, 1.69)

0.01

CD8+CD28-CD57+ (16.1%)
1.11

(0.96, 1.31)
0.15

1.14
(0.96, 1.36)

0.14
1.25

(1.00, 1.56)
0.05

1.37
(1.07, 1.76)

0.01

CD8+ TEMRA (14.6%)
1.08

(0.92, 1.26)
0.36

1.07
(0.89, 1.28)

0.48
1.19

(0.95, 1.48)
0.12

1.20
(0.94, 1.52)

0.14
F
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 front
Analyses are by logistic regression models and include sampling weights. Cells were analyzed in separate models per 1-SD higher value (shown in parentheses). An L/S ratio <1.0 was used as the
diagnosis of the presence of liver fat. A liver attenuation <40 HU was assessed as a cutoff of >30% liver fat content. TEMRA, T effector memory RA+.
Model 1: Age, sex, race/ethnicity, education, and analytical batch.
Model 2: Age, sex, race/ethnicity, education, analytical batch, waist circumference, alcohol use, diabetes status, statin use, hypertensive medication use, systolic blood pressure, HDL, LDL,
and triglycerides.
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atherosclerosis (31, 32). Collectively, these results suggest that

chronic T-cell stimulation from intrahepatic antigens, or those

related to MAFLD comorbidities, promotes inflammation during

hepatic steatosis and the progression to steatohepatitis, consistent

with a role of chronic adaptive immune activation in MAFLD. The

associations observed in the present study, however, were weak, the

possibility of a type I error cannot be excluded, and results should

be interpreted cautiously. Studies evaluating the relationships of

activated, effector, and memory adaptive immune cell subsets across

different stages of MAFLD remain important.

In exploratory analyses, higher CD8+CD57+ T cells were

associated with both the presence of liver fat and with a liver fat

content >30% when using a more lenient significance threshold

criteria that did not correct for multiple comparisons. These results

were supported by associations of the highly correlated phenotypes

CD8+CD28− and CD8+CD28−CD57+ cells with >30% liver fat

content in models adjusted for MAFLD risk factors. CD57

expression on CD8+ T cells occurs in response to repeated

antigen stimulation, often with the concomitant loss of CD28

expression, and is a marker of differentiation and senescence (43).

CD8+CD57+ cells are implicated in autoimmunity, alcoholism, and

age-related diseases including cancer (43), and their involvement in

MAFLD was indicated in two prior seminal studies (44, 45).

In previous studies, elevated CD8+ T cells were reported in the

liver and peripheral blood of patients with MAFLD (18, 46) and

depletion of CD8+ T cells reduced progression of steatohepatitis in

mice fed an obesogenic diet (14). In obese mice administered

bromodichloromethane to induce oxidative stress, CD57 mRNA

expression was increased 80-fold in the liver and CD8+ T cells were

identified as the major subset expressing CD57. CD57 expression

on CD8+ cells was increased in a CYP2E1- and leptin-dependent

manner and accompanied by concomitant inflammatory cytokine

secretion, hepatic apoptosis, and fibrogenesis during the

progression of steatohepatitis (44). In a recent study by Sim at al.,

higher levels of CD8+CD28−CD57+ and CD4+CD28−CD57+ cells

were observed in the livers of patients with type 2 diabetes and

MASH or liver cirrhosis, compared with healthy controls, and

correlated with the severity of liver fibrosis (45). Our results

extend these prior findings to a large, population-based cohort

with subclinical disease and suggest higher frequencies of

CD8+CD57+ cells may reflect the early stages of MAFLD. The

associations of CD8+CD57+ cells observed in this study, however,

were from exploratory analyses and may reflect a type I error. These

exploratory analyses did not account for multiple comparisons, and

replication in other cohorts is required.

Limitations of the study include the case–cohort design which

sampled for incident CVD cases and not incident MAFLD. The

cross-sectional analyses cannot establish directionality, and we may

have been underpowered to detect small or moderate associations

with CT-assessed liver fat parameters. It is expected that a majority

of those with liver fat in this study had subclinical disease, which

may not be as strongly associated with peripheral immune cells

compared with more advanced clinical stages of disease or with

immune cells resident in hepatic tissue. Results from MESA

participants, with an expected overall low severity of MAFLD,

were not verified in clinical samples, which will be important to
Frontiers in Immunology 07
evaluate in future studies. MESA does not have biomarkers

commonly used in the evaluation of liver diseases, such as liver

enzymes or information on eating disorders, inborn impairment of

metabolism, or hepatitis C status. Furthermore, current guidelines

for MAFLD do not have CT criteria. Therefore, results from the

current study must be interpreted in the context of CT-based liver

fat assessment and cannot be generalized to current MAFLD

guidelines (47, 48). We also cannot distinguish hepatic steatosis

from steatohepatitis by CT imaging. Liver biopsy, however, is not

practical in large epidemiological cohort studies.

Strengths of the study include the large panel of immune cells

evaluated among a multiethnic, community-based cohort of

asymptomatic participants. The use of CT imaging, which can be used

to non-invasively assess liver fat in clinical and research settings, with

standardized protocols and a central reading center is another strength.

In conclusion, results from this study suggest that the

frequencies of monocyte and T helper cell subsets in peripheral

blood are not strongly related with liver fat as assessed by CT

imaging and may have limited utility as biomarkers of early-stage

fatty liver. Memory CD4+ T cells may reflect liver fat severity, and

CD8+CD57+ cells may be associated with the presence and severity

of liver fat, but these findings require confirmation in other cohorts.
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