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An exosome-derived lncRNA
signature identified by
machine learning associated
with prognosis and biomarkers
for immunotherapy in
ovarian cancer
Yongjia Cui1†, Weixuan Zhang1†, Wenping Lu1*, Yaogong Feng2,
Xiaoqing Wu1, Zhili Zhuo1, Dongni Zhang1 and Yichi Zhang1

1Guang Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China, 2School of
Computer and Information Technology, Beijing Jiaotong University, Beijing, China
Background: Ovarian cancer (OC) has the highest mortality rate among

gynecological malignancies. Current treatment options are limited and

ineffective, prompting the discovery of reliable biomarkers. Exosome lncRNAs,

carrying genetic information, are promising new markers. Previous studies only

focused on exosome-related genes and employed the Lasso algorithm to

construct prediction models, which are not robust.

Methods: 420OC patients from the TCGA datasets were divided into training and

validation datasets. The GSE102037 dataset was used for external validation.

LncRNAs associated with exosome-related genes were selected using Pearson

analysis. Univariate COX regression analysis was used to filter prognosis-related

lncRNAs. The overlapping lncRNAs were identified as candidate lncRNAs for

machine learning. Based on 10 machine learning algorithms and 117 algorithm

combinations, the optimal predictor combinations were selected according to

the C index. The exosome-related LncRNA Signature (ERLS) model was

constructed using multivariate COX regression. Based on the median risk score

of the training datasets, the patients were divided into high- and low-risk groups.

Kaplan-Meier survival analysis, the time-dependent ROC, immune cell

infiltration, immunotherapy response, and immune checkpoints were analyzed.

Results: 64 lncRNAs were subjected to a machine-learning process. Based on

the stepCox (forward) combined Ridge algorithm, 20 lncRNA were selected to

construct the ERLS model. Kaplan-Meier survival analysis showed that the high-

risk group had a lower survival rate. The area under the curve (AUC) in predicting

OS at 1, 3, and 5 years were 0.758, 0.816, and 0.827 in the entire TCGA cohort.

xCell and ssGSEA analysis showed that the low-risk group had higher immune

cell infiltration, which may contribute to the activation of cytolytic activity,

inflammation promotion, and T-cell co-stimulation pathways. The low-risk

group had higher expression levels of PDL1, CTLA4, and higher TMB. The ERLS

model can predict response to anti-PD1 and anti-CTLA4 therapy. Patients with

low expression of PDL1 or high expression of CTLA4 and low ERLS exhibited
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significantly better survival prospects, whereas patients with high ERLS and low

levels of PDL1 or CTLA4 exhibited the poorest outcomes.

Conclusion: Our study constructed an ERLS model that can predict prognostic

risk and immunotherapy response, optimizing clinical management for

OC patients.
KEYWORDS

exosome-related lncRNA, ovarian cancer, machine learning, prognosis model,
immunotherapy response
Introduction

Global Cancer Statistics reports that ovarian cancer (OC)

caused the death of 207,252 individuals worldwide in 2020 (1).

OC has the highest mortality rate among gynecological

malignancies (2). Aggressive first-line treatment with surgery and

adjuvant chemotherapy is the main treatment for advanced OC, but

within 2-3 years after diagnosis, 70% of patients with advanced-

stage OC still have a relapse (3, 4). The introduction of anti-VEGF

and PARP inhibitors as treatment modalities has significantly

increased the duration of progression-free survival (PFS) for

recurrent OC patients, although progression remains unavoidable

in most cases of OC patients. In the last decade, accumulating

studies have revealed that immune checkpoint inhibitors (ICIs)

have revolutionized the treatment of multiple cancers. However, the

effect of immunotherapy on the clinical treatment of OC is not

satisfactory (5–7), only 8 to 9.6% of OC patients benefit from ICI

therapy (8), especially in patients with PD-1, PD-L1, or CTLA4

negative patients. The limited benefit of immunotherapy has led

researchers to develop new biomarkers to predict the efficacy of OC

immunotherapy to improve prognosis.

The tumor immune microenvironment (TIME) is considered a

critical factor in the efficacy of immune therapy against cancer (9).

The TIME refers to the immune infiltrating microenvironment,

which consists of a large number of immune cells gathered in and

around the tumor (10). Immune cells in the TIME, including T

cells, B cells, natural killer cells, macrophages, etc., participate in

immune surveillance and anti-tumor responses through various

mechanisms such as releasing cytotoxic molecules, producing

cytokines, and regulating immune responses. Nevertheless, tumor

cells can escape immune cell attack by activating immune

checkpoints. Immune checkpoints include PD-L1, CTLA-4, and

others. Tumor cells release exosomes that serve as mediators for

immune escape and influence the efficacy of immune therapy

(11–13).

Exosomes, small membrane vesicles ranging in size from 30 to

150 nm, are produced by various cells. They play a crucial role in

mediating intercellular communication and transporting cargo

molecules, including proteins, DNA, RNA, microRNA, and
02
lncRNA. This has garnered significant interest among researchers

(14). A substantial quantity of exosomes can be found in the blood

and ascites of OC patients. These exosomes have been associated

with OC progression and its treatment, spanning various aspects

(15–20) including immunotherapy (21, 22), angiogenesis (14, 23),

chemotherapy resistance (24, 25), and tumor metastasis (26, 27).

They hold promise as potential diagnostic and prognostic

biomarkers. Long non-coding RNA (lncRNA) is characterized as

non-coding RNA with a length exceeding 200 nucleotides,

constituting approximately 3% of the total RNA content within

exosomes (28). Furthermore, increasing evidence suggests that

epigenetic regulation of lncRNA plays a significant role in

reprogramming the phenotype of immune cells in TIME,

particularly in OC. For example, SNHG12 enhances immune

escape by promoting the IL-6/miR-21 crosstalk between OC cells

and M2 macrophages, leading to increased expression of PD-L1

(29). LncRNA PVT1 combined with PD-1 inhibitors can inhibit the

progression of OC in treatment (30). Accumulating evidence

suggests that epigenetic regulation of exosome-derived lncRNA

plays an important role in OC by reprogramming the phenotype

of immune cells in TIME (31). However, previous studies only

evaluated the prognosis of OC based on exosome-related genes

prediction models (32) and did not integrate the necessary

information about exosome lncRNA. Previous studies have

demonstrated the effectiveness of exosome-related lncRNA

prognostic models in breast cancer (33), esophageal squamous

cell carcinoma (34), and hepatocellular carcinoma (35, 36).

However, their applicability in OC remains uncertain. At present,

machine learning is widely used in constructing predictive models

for tumor prognosis, treatment, and diagnosis (37–40). However,

the prediction model of exosome-related genes is based only on the

Lasso algorithm (32), which is not robust.

In our paper, taking into account the complex role of exosomes,

we aimed to integrate and develop the exosome-related lncRNA

signature (ERLS) to improve outcomes for OC patients. Specifically,

we construct a more robust ERLS model by using 10 machine

learning algorithms and their 117 combinations, which were trained

based on the 10-fold cross-validation framework. Subsequently, OC

patients were divided into high- and low-risk groups based on their
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ERLS risk scores, and the characteristics of immune cell infiltration,

immunotherapy response, and immune checkpoint were also

identified. This work may help optimize immune therapy and

further improve clinical outcomes in patients with OC.
Materials and methods

Data downing and processing

RNA sequencing expression data for tumor tissues from 420

patients with OC and their corresponding clinical information,

were obtained from The Cancer Genome Atlas (TCGA). (https://

portal.gdc.cancer.gov/projects/TCGA-OV). The RNA seq

transcripts per kilobase million (TPM) including the expression

of 16901 lncRNA and 19962 protein-coding genes were downed

and further log-2 transformed. However, complete clinical data

(including age, stage, grade, and tumor_residual) were available for

369 patients (Table 1). Due to missing values in the clinical

information, 51 patients were excluded from the time-dependent

ROC analysis. For other analyses, we used the RNA sequencing

expression data of 420 patients. The GSE102073 dataset was

downloaded from GEO (https://www.ncbi.nlm.nih.gov/geo/) as an

external validation of the accuracy of the ERLS model. In addition,

121 exosome-related genes were obtained from the ExoBCD

database (https://exobcd.liumwei.org/), which were summarized

in Supplementary Data 1. The expression data of lncRNA in

normal ovarian tissue were obtained from the GTEx database
Frontiers in Immunology 03
(h t tp s : / /www.g t expor t a l . o rg /home/down loads / adu l t -

gtex#bulk_tissue_expression).
Screening of candidate exosome-
related lncRNAs

The rcorr function in the Hmisc package of R calculated the

Pearson correlation coefficients to determine the correlation

between exosome-related genes expression and the corresponding

lncRNAs. Subsequently, exosome-related lncRNAs were selected

according to the criteria of p< 0.05 and |Cor|> 0.4. Meanwhile, the

survfit function in the survival package of R was used to perform a

univariate Cox regression to identify prognostic lncRNAs with a

significant p threshold of 0.05. Finally, lncRNAs that overlap with

exosome-related lncRNAs and prognostic lncRNAs were selected as

candidate lncRNAs for the machine learning process.
Identification of exosome-related lncRNA
signature (ERLS) based on
machine learning

The 420 OC patients from the TCGA cohort were divided in a

7:3 ratio into training and validation datasets using the

createDataPartition function in the caret package. To identify

potential biomarkers for OC, candidate lncRNAs were further

screened using 10 machine learning algorithms and 117 algorithm

combinations. In the training datasets, 10 machine learning

algorithms and 117 algorithm combinations were employed to

identify the optimal algorithm combinations based on a 10-fold

cross-validation, which was verified in the verification data set. The

selection of the best algorithm combinations was based on Harrell’s

consistency index (C index) in the validation datasets. 10 machine

learning algorithms include Random Survival Forest (RSF), Lasso,

Elastic Net (Enet), Ridge, Generalized Boosted Regression (GBM),

Stepwise Cox, CoxBoost, Cox Partial Least Squares Regression

(plsRcox), Supervised Principal Components (SuperPC), and

survival support vector machine (survival-SVM). Subsequently,

the selection of important variables based on the optimal

algorithm combinations was achieved using the stepAIC function

in the MASS package. The Akaike Information Criterion (AIC) is

used to compare models, which takes into account the statistical fit

of the models and the number of variables used for the fit. The

regression model with a small AIC value should be selected first,

which shows that the model has obtained a sufficient fitting degree

with few parameters. See the Methods Supplement for more details.

Finally, we constructed the ERLS model using a multivariate COX

regression, and the risk score was constructed with the following

formula: Risk score =on
i=1(coefi * Expi), Expi indicated the

expression level for each exosome-related lncRNA, and Coei

indicated the corresponding Cox regression coefficient.

Afterward, we proceeded to validate the prognostic value of the

ERLS model across multiple datasets, including the validation datasets,

the entire TCGA cohort, and the GSE102073 dataset. Initially, patients

were divided into high- and low-risk groups based on the median risk
TABLE 1 Summary of clinical information for patients with OC.

Train
datasets (n=263)

validation
datasets (n=106)

Age(year) 59.80 ± 11.55 59.65 ± 11.31

Stage

I 0 0

II 14 5

III 208 85

IV 41 16

Grade

1 0 0

2 26 16

3 236 90

4 1 0

Tumor_residual

No
macroscopic disease

49 26

1-10 mm 142 52

11-20 mm 19 7

>20 mm 53 21
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score of the training datasets. This same risk stratification was applied

to the validation datasets, the entire TCGA cohort, and the GSE102073

dataset. Subsequently, survival analysis and time-dependent ROC

curves were conducted to evaluate the predictive accuracy of the

ERLS model in these datasets. Additionally, univariate and

multivariate COX regression analyses were performed to assess the

prognostic impact of the ERLS compared to other clinical factors in

OC patients.
Evaluating the immune cell infiltration in
OC patients

Infiltration levels of 28 types of immune cells were calculated

using the R package ssGSEA (33, 34). The set of genes for the 28

immune cell markers was downloaded from the TISIDB database

(http://cis.hku.hk/TISIDB/) (41). Additionally, we also used the R

package xCell to analyze and evaluate the infiltration ratios of 64 cell

types in the high-risk and low-risk groups. The xCell R package,

which is based on the ssGSEA method, can perform an immune

infiltration analysis based on the gene expression data for 64 immune

and stromal cells (42). Finally, we used the limma package to analyze

differential gene expression between the high-risk and low-risk

groups. Subsequently, the GSEA package performed an enrichment

analysis of differential immune genes to investigate the difference in

the immune function in the high-risk and low-risk groups. The R

package “clusterProfiler” was used to conduct Gene Ontology (GO),

Kyoto Encyclopedia of Genes and Genomes (KEGG) on the different

genes in the high-risk and low-risk groups.
Predicting immunotherapy response based
on the ERLS model

The ERLS model can identify different survival risks and immune

microenvironmental characteristics in OC patients. Next, we focused

on the ability of the ERLS model to discriminate response to

immunotherapy. We evaluated immunotherapy response based on

The Tumor Immune Dysfunction and Exclusion (TIDE) (http://

tide.dfci.harvard.edu/), The Cancer Immunome Atlas (TCIA)

(https://tcia.at/home), Tumor Mutation Burden (TMB), and the

expression of immune checkpoint in high-risk and low-risk groups.

The TIDE Tool was used to assess the potential for tumor immune

escape of tumor samples with gene expression profiles and predict

response rate to immune checkpoint blockade (ICB) (43). The

effectiveness of immunotherapy was lower with higher TIDE scores.

The immunophenoscore (IPS) was obtained from the TCIA database

to evaluate the benefit of anti-PD1 and anti-CTLA4 immunotherapy

(44). The higher the IPS score, the more sensitive the response to

immunotherapy. TMB is an indicator for evaluating the frequency of

gene mutations. The more tumor gene mutations, the higher the

number of antigens on the cell surface, and the greater the benefit of

immunotherapy. The expression of immune checkpoints including

PD1, PDL1, and CTLA4, was significantly correlated with the efficacy

of immunotherapy. Therefore, we focused on differences in the

expression of immune checkpoints in the two groups.
Frontiers in Immunology 04
Exosome isolation and real-time
quantitative PCR

We used the limma package to compare the expression of

lncRNA in normal ovarian tissue and OC tissue. We found that the

expression of lncRNAs showed differential patterns (Supplementary

Figure 1). Next, we detected the expression of some lncRNAs in

exosomes from SKOV3 cells, IOSE80 cells, and OVCAR8 cells.

SKOV3 cells, IOSE80 cells, and OVCAR8 cells were obtained from

Procell Life Science & Technology Co. Ltd. (Wuhan, China). Firstly,

SKOV3 cells were cultured in McCoy’s 5A medium with 10% fetal

bovine serum (FBS, Gibco, 10099141) and 1% penicillin-

streptomycin (Gibco, 10378016) at 37 °c and 5% CO2. IOSE80

cells and OVCAR8 cells were cultured in RPMI-1640 medium with

10% FBS and 1% penicillin-streptomycin at 37 °c and 5% CO2.

Secondly, when cell fusion reached 70%-80%, washing with

phosphate-buffered saline (PBS) 3 times, they were cultured in

the basic medium. After 48 h culture, the conditioned media were

collected. Exosomes were extracted from the conditioned media of

SKOV3 cells , IOSE80 cells , and OVCAR8 cells using

ultracentrifugation. We used three methods to identify exosomes,

including the transmission electron microscope (TEM), the

nanoparticle tracking analysis (NTA), and Western blot (WB).

Subsequently, we performed real-time quantitative PCR detection

of lncRNA in exosomes. We isolated RNA using TRIZOL

(Invitrogen, 10296028). RNA was reversed to cDNA using

SuperScript™ III First-Strand Synthesis SuperMix for qRT-PCR

(Invitrogen, 11752050). Then, according to the manufacturer’s

instructions, we performed RT-qPCR using SYBR™ Select mix

(ABI-invitrogen, 4472920). The AC134312.1 primers used were

TCTTCACCCATGTCCTGTGC (forward primer) and CAGGGG

TCCTTCTGTTCGTC (reverse primer). The PCOLCE.AS1 primers

used were TTGGCCACTGTGACCTGTTC (forward primer) and

CTGAGCTAGAACCCAGGAGC (reverse primer) . The

LEMD1.AS1 primers used were CCACTGGTAACTTGCCGTCT

(forward primer) and AAATGCCCTTCTCCTGTCGG (reverse

primer). The LINC00892 primers used were GGATGTTCTTTG

CTGGGCTG (forward primer) and ATCAAGCTGCCTC

TCGGAAG (reverse primer). The AC010834.3 primers used were

GCCTGTTCACACATTGCTGG (forward primer) and CCTTGG

GCTCACCCATGATT (reverse primer). The AL138820.1 primers

used were GTTATTGGGCTTGCTGCTGG (forward primer) and

TTCAGGGAAGAGGTGCCATC (reverse primer). The relative

expression levels were calculated using the 2-DDCt method. The

RT-PCR and WB experiments were independently repeated three

times, with three replicate wells for each independent repetition.
Data analysis

Data processing and statistical analysis were performed with R

software (version 4.2.2) (https://cran.r-project.org/). Pearson

correlation coefficients were calculated using the Hmisc package.

Kaplan–Meier (KM) survival analysis, univariate and multivariate

Cox regression analyses were performed using the survival package.
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Machine learning was carried out using the glmnet ,

randomForestSRC, CoxBoost, plsRcox, superpc, gbm, survivalsvm,

and MASS packages. The time-dependent ROC curves were

generated using the timeROC package. Violin plots were generated

using the VioPlot package. Immune cell infiltration analysis was

carried out with the ssGSEA and xCell package. Differential gene

expression analysis was performed using the limma package. The

GSEA package conducted an enrichment analysis of differential gene

expression. The “clusterProfiler” package was utilized for Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analyses. PCR results were drawn using GraphPad Prism.

*P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001.
Results

Workflow

As shown in Figure 1, we constructed the ERLS model

according to the following process.
Frontiers in Immunology 05
Screening of candidate exosome-
related lncRNAs

According to the setting |Cor|≥0.4 and P<0.05, a total of 2712

exosome-related lncRNAs were found (Figure 2A), and the specific

correspondences between lncRNAs and mRNAs were shown in

Supplementary Data 2. In addition, the 840 lncRNAs were

identified as having significant prognostic values with univariate

COX regression analysis (Figure 2B), the detailed information on

lncRNAs was illustrated in Supplementary Data 3. Finally, a set of

64 lncRNAs was subjected to a subsequent machine learning

process to construct an exosome-related lncRNA signature

(ERLS) (Figure 2C).
Establishment of exosome-related lncRNA
signature (ERLS) based on
machine learning

To establish an exosome-related lncRNA signature (ERLS)

based on machine learning, the RNA sequencing expression data
FIGURE 1

Workflow for constructing the ERLS model.
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of 420 patients with OC were randomly divided into training

datasets and validation datasets according to the 7:3 ratio. The

training datasets included 296 patients, and the validation datasets

included 124 patients. In the training datasets, we integrated 10

machine learning algorithms and 117 algorithm combinations

based on the 10-fold cross-validation framework to select

important lncRNA and calculate the C-index of each model in

the validation datasets. The stepCox (forward) algorithm combined

with the Ridge algorithm showed the highest C-index (0.7192),

which was determined as the optimal model (Figure 3A), see

Supplementary Data 4 for details. With the stepCOX (forward)

combined with Ridge algorithm analysis, based on the smallest AIC

area, we identified 36 important lncRNAs (Figure 3B). We used

multivariate Cox regression analysis to select 20 exosome-related

lncRNAs that were independently associated with overall survival

(OS) (Figure 3C; Table 2). These 20 lncRNAs were used to develop

an ERLS model that evaluated the prognostic risk of OC patients.

The ERLS model was constructed using the following formula:

(-0.5161*the expression of TYMSOS)+(1.1441*the expression of

AC134312.1)+(-0.9014*the expression of PCOLCE.AS1)

+(-0.456*the expression of LEMD1.AS1)+(-1.1728*the expression

of LINC00892)+(-1.1375*the expression of LINC00702)

+(-0.6047*the expression of TRBV11.2)+(1.0543*the expression of

LINC02362)+(-2.1089*the expression of AC106801.1)+(1.0632*the

expression of AC010834.3)+(-0.5132*the expression of WAC.AS1)

+(0.9141*the expression of AL391832.3)+(-0.9446*the expression

of AL133467.1)+(1.6647*the expression of AC073389.2)
Frontiers in Immunology 06
+(1.9116*the expression of AL138820.1)+(2.5106*the expression

of BX324167.2)+(-0.6528*the expression of AL390719.3)

+(-1.8016*the expression of AC009244.1)+(-0.7968*the expression

of AL138824.1)+(0.5713*the expression of AC007877.1).

Next, a risk score was calculated using the predict function

within R software in the training datasets. Patients were divided into

high- and low-risk groups based on the median risk scores in the

training datasets. The threshold was then extended to the validation

datasets. Subsequently, Kaplan-Meier survival analysis was

employed to evaluate the differences in OS between the high-risk

and low-risk groups, with the results indicating a significant

reduction in OS for patients in the high-risk group (Figures 3D–

F). The figures of the risk score curve and the survival state heat

map for the training and validation datasets were shown in

Figures 3G–I. Furthermore, we performed a univariate COX

regression analysis on the risk score, stage, grade, age, and

tumor_residual. Finally, the risk score, age, stage, age, and

tumor_residual were selected for multivariate Cox regression

analysis, which revealed that the risk score and stage were

independent prognostic factors for OC (Figures 3J, K).

The area under the curve (AUC) of the time-dependent ROC

analysis for 1-year, 3-year, and 5-year was 0.758, 0.816, and 0.827 for

patients in the entire TCGA cohort, respectively, indicating that the

ERLS model has a certain accuracy in predicting OS in OC patients

(Figures 4A–C). We incorporated the clinical characteristics of age,

stage, age, tumor residual, and the ERLS into the time-dependent

ROC analysis and found that the AUC of the ERLS remained always
B

C

A

FIGURE 2

64 candidate exosome-related lncRNAs. (A) A total of 2712 exosome-related lncRNAs (|Cor|≥0.4 and P<0.05). (B) 30 randomly selected lncRNAs
were visualized in 840 lncRNAs. (C) 64 lncRNAs were incorporated into subsequent machine learning.
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larger than other clinical characteristics, which was 0.809, 0.651, and

0.758, respectively (Figures 4D–F). Furthermore, external validation

was performed using the GSE102073 datasets, in which only 11

lncRNAs (PCOLCE-AS, TYMSOS, LEMD1-AS1, LINC00892,

LINC00702, LINC02362, AC010834.3, WAC-AS1, AL391832.3,
Frontiers in Immunology 07
AC073389.2, and AC009244.1) were covered in the ERLS. Based

on the median risk score derived from the training datasets, the

patients were divided into high- and low-risk groups. The ERLS

showed a significant discriminatory ability in predicting the

prognosis of the two groups (Figure 4G). The AUC of the time-
B C

D E F

G(a)

H(b)

I(a)

A

G(b)

H(a)

I(b)

J K

FIGURE 3

An ERLS was identified based on 10 machine learning algorithms and its clinical prognostic value. (A) A total of 117 algorithm combinations based on
10-fold cross-validation, the C-index of each model was calculated in the validation datasets. (B) 36 lncRNAs and their coefficients were identified
based on the stepCOX (forward) combined with the Ridge algorithm. (C) Multivariate Cox regression analysis screened out 20 exosome-related
lncRNAs that were independently associated with OS. (D–F). Kaplan-Meier survival analysis in the training datasets, validation datasets, and the entire
TCGA cohort. (G–I) The risk score curve and the survival state heat map in the training datasets, validation datasets, and the entire TCGA cohort. (J)
Univariate COX regression analysis of clinical factors and the ERLS for OS. (K) Multivariate COX regression analysis of clinical factors and the ERLS
for OS.
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dependent ROC values for 1-year, 3-year, and 5-year survival was

0.536, 0.548, and 0.722, respectively (Figure 4H).

We also compared the AUC values of the ERLS at 1-year, 3-year,

and 5-year in the entire TCGA cohort with 21 other previously

published prognostic features for OC patients (see Supplementary

Data 5). These 21 prognostic features are related to N6-

methyladenosine, cell apoptosis, autophagy, immunity, mitochondria,

and others. The results showed that the ERLS is competitive among

these models (Figure 4I).
Assessing the immune cell infiltration
based on the ERLS model

To better understand the characteristics of the immune

microenvironment between the high-risk group and the low-risk

group, the xCell and ssGSEA packages were employed to investigate

the proportion of immune cells. Using the xCell R package, we

found that the low-risk group demonstrated higher levels of aDC,

CD4 memory T cells, CD8 T cells, DC, M1 macrophages, mast cells,

pDC, skeletal muscle, and Th2 cells (Figure 5A). Subsequently, the

ssGSEA analysis further confirmed that the low-risk group was
Frontiers in Immunology 08
associated with higher infiltration of activated CD4 T cell, activated

CD8 T cell, effector memory CD8 T cell, immature B cell, gamma

delta T cell, natural killer cell, natural killer T cell, plasmacytoid

dendritic cell, Type 2 T helper cell, in addition to immature

dendritic cell (Figure 5B). The proportion of immune cells in

each OC patient is shown in Figure 5C. The observed differences

in immune cell infiltration between the high-risk and the low-risk

groups may be contributed to cytolytic activity, inflammation

promoting, and T-cell co-stimulation pathways (Figure 5D).

In order to understand the different immune functions of the

high-risk group and the low-risk group, we performed a Gene

ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis. GO results showed that different

expressed genes were mainly involved in the biological process

(BP) of positive regulation of cellular component biogenesis,

embryonic organ development, and axonogenesis. In cellular

components (CC), they were related to the cellular mitochondrial

matrix and cell-substrate junction, while molecular functions (MF)

mainly regulate GTPase regulator activity. The results of the KEGG

analysis showed that the different expressed genes were mainly

involved in the MAPK signaling pathway and the PI3K-Akt

signaling pathway (Figures 6A, B).
TABLE 2 20 exosome-related lncRNA signature in the ERLS.

coef HR 95%CI P-value

TYMSOS -0.5161 0.5968 (0.41389,0.8607) 0.005721

AC134312.1 1.1441 3.1398 (1.48162,6.6536) 0.002827

PCOLCE.AS1 -0.9014 0.406 (0.16866,0.9773) 0.044301

LEMD1.AS1 -0.456 0.6338 (0.46622,0.8617) 0.003616

LINC00892 -1.1728 0.3095 (0.09693,0.9883) 0.047717

LINC00702 -1.1375 0.3206 (0.13159,0.7812) 0.012302

TRBV11.2 -0.6047 0.5463 (0.40245,0.7414) 0.000105

LINC02362 1.0543 2.8699 (1.24144,6.6344) 0.013671

AC106801.1 -2.1089 0.1214 (0.02922,0.5042) 0.003702

AC010834.3 1.0632 2.8958 (1.94921,4.3019) 1.4E-07

WAC.AS1 -0.5132 0.5986 (0.42082,0.8515) 0.004313

AL391832.3 0.9141 2.4946 (1.07567,5.7855) 0.033179

AL133467.1 -0.9446 0.3888 (0.16891,0.8951) 0.026388

AC073389.2 1.6647 5.2842 (2.10093,13.2907) 0.000404

AL138820.1 1.9116 6.7636 (1.63566,27.9681) 0.008307

BX324167.2 2.5106 12.3125 (2.91812,51.9504) 0.000631

AL390719.3 -0.6528 0.5206 (0.3306,0.8198) 0.00484

AC009244.1 -1.8016 0.165 (0.03143,0.8665) 0.033233

AL138824.1 -0.7968 0.4508 (0.21586,0.9414) 0.033954

AC007877.1 0.5713 1.7705 (1.13104,2.7716) 0.012471
HR hazard ratio, CI confidence interval.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1228235
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cui et al. 10.3389/fimmu.2024.1228235
The immunotherapy response on
different groups

Differences in immune cell infiltration can lead to differences in

response to immunotherapy. Therefore, we explored the value of

the ERLS in immunotherapy. A significant difference in the

Exclusion score was found between the high-risk and low-risk

groups, but not in the TIDE score, the dysfunction score, and the

MSI score. Notably, a trend toward higher TIDE scores and lower

MSI scores was observed in the high-risk group compared to the

low-risk group (Figure 7A). In addition, we observed an inverse

association between tumor mutational burden (TMB) and the ERLS

risk score, which may suggest that the high-risk group has less

benefit from immunotherapy (Figure 7B). The potential of the ERLS

model to respond to anti-PD1 and anti-CTLA4 immunotherapy

was further assessed in the TICA database. As shown in Figures 7C,

D, the ERLS model could identify the response to anti-PD1, anti-

CTLA4, or their combination. Furthermore, we found that the low-

risk group had higher expression of PDL1 or CTLA4 (Figure 7E).
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The risk score of the ERLS was negatively correlated with CTLA4

expression, and no significant association was found between the

expression of PDL1 and the risk score (Figures 7F, G). These

findings provided some evidence for the predictive ability of the

ERLS model to identify responses to immunotherapy.

However, we have observed that the gene expression of PDL1

and CTLA4 did not seem to distinguish the prognosis risk between

the high-risk group and the low-risk group. The two groups were

divided according to the median expression of PDL1 and CTLA4 in

the training datasets (Figures 8A, B). Subsequently, a survival

comparison was performed among four groups of OC patients

who were identified based on combined ERLS with PDL1 or

CTLA4. The results of this comparison revealed that the ERLS

was able to differentiate the outcomes of patients with similar PDL1

or CTLA4 levels. Patients with low expression of PDL1 or high

expression of CTLA4 and low ERLS exhibited significantly better

survival prospects compared to the other three groups, whereas

patients with high ERLS and low levels of PDL1 or CTLA4 exhibited

the poorest results relative to the other groups (Figures 8C, D).
B C

D E F

G H I

A

FIGURE 4

The AUC and validation of the ERLS in OC patients. (A–C) The AUC of the ERLS in the training datasets, validation datasets, and the entire TCGA
cohort. (D–F) The AUC of the ERLS and clinical characteristics in the training datasets, validation datasets, and the entire TCGA cohort. (G) Kaplan-
Meier survival analysis in the GSE102073 dataset (log-rank test: P=0.0014). (H) The AUC of the ERLS in the GSE102073 dataset. (I) Comparison of
AUC on the ERLS with other models in the entire TCGA cohort.
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Exosome isolation and real-time
quantitative PCR

We used ultracentrifugation to purify exosomes from the

supernatants of SKOV3 cells, IOSE80 cells, and OVCAR8 cells

and identified the exosomes. TEM analysis revealed that the

exosomes are microvesicles with a diameter range of 30 to 150

nm, which are globular and have a typical cup shape (Figure 9A).

NTA showed that the diameter of exosomes concentrated at 100 nm

(Figure 9B). The biomarkers of exosomes (CD81, CD63) were

detected by Western blotting (Figure 9C). Real-time quantitative
Frontiers in Immunology 10
PCR results showed the different expression of lncRNA in exosomes

from normal ovarian epithelial cells and OC cells (Figures 9D–I).
Discussion

Exosomes, derived from malignant tumor cells, serve as

communicators for intercel lular communication (45).

Identification of genetic material signatures in exosomes is

expected to be a potential marker to improve the clinical

prognosis of OC patients (46, 47). In our paper, we integrated
B

C D

A

FIGURE 5

Evaluation of immune cell infiltration in high-risk and low-risk groups using xCell and ssGSEA. (A) The proportion of 64 cells in the high-risk group
compared to the low-risk group was based on the xCell packages. (B) The proportion of immune cells in the high-risk group compared to the low-
risk group based on the ssGSEA packages. (C) The proportion of immune cells in each OC patient. (D) The differential immune functions in the high-
risk and low-risk groups. *P<0.05; **P<0.01; ***P<0.001.
BA

FIGURE 6

GO and KEGG enrichment analyses of different expressed genes in high- and low-risk groups. (A) GO results. (B) KEGG results.
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B C D

E F G

A

FIGURE 7

Evaluation of the immunotherapy response based on the ERLS model. (A) The TIDE score, the Exclusion score, the MSI, and the Dysfunction score.
(B) Pearson’s correlation analysis between TMB and risk score. (C, D) The immunotherapy response for PD1 or CTLA4 between the high-risk group
and the low-risk group. (E) The different expressions of PDL1, PD1, and CTLA4 between the high-risk group and the low-risk group. (F, G) Pearson’s
correlation analysis between the expression of PDL1 or CTLA4 and the risk score. “ns” represents “not significant”. *P < 0.05, **P < 0.01.
B

C D

A

FIGURE 8

The comparison of Kaplan-Meier survival analysis based on combined ERLS with PDL1 or CTLA4. (A, B) The Survival analysis for the expression of
PDL1 or CTLA4. (C, D) The survival analysis was based on combined ERLS with PDL1 or CTLA4.
Frontiers in Immunology frontiersin.org11

https://doi.org/10.3389/fimmu.2024.1228235
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cui et al. 10.3389/fimmu.2024.1228235
exosome-related lncRNA to construct ERLS aiming to evaluate the

prognosis and immunotherapy response of OC patients. The risk

score for ERLS was calculated by multiplying the expression levels

of 20 lncRNAs by the corresponding coefficients. Based on the

ERLS risk score, OC patients were divided into high- and low-risk

groups. Compared to the low-risk group, the high-risk group has a

worse prognosis. Multivariate COX regression analysis showed that

the ERLS was an independent risk factor for prognosis. With
Frontiers in Immunology 12
regards to predicting immunotherapy response, the ERLS was

able to distinguish the benefit of anti-PD1 or anti-CTLA4

immunotherapy. The ERLS combined with the expression of

PDL1 or CTLA4 can more accurately predict the prognostic risk

of OC patients. Patients with low expression of PDL1 or high

expression of CTLA4 and low ERLS risk score had the best

prognosis, while those with low PDL1 or CTLA4 expression and

high ERLS risk score had the worst prognosis.
B

C

D E F

G H I

A

FIGURE 9

The detection of exosomes characteristics and lncRNA expression in exosomes from IOSE80 cells, SKOV3 cells, and OVCAR8 cells. (A) The results of
TEM for exosomes. (B) The results of NTA for exosomes. (C) The expression of CD63 and CD81 in exosomes was detected using WB. (D–I) The
expression of lncRNA in exosomes was measured using RT-PCR. The RT-PCR and WB experiments were independently repeated three times, with
three replicate wells for each independent repetition. *P < 0.05, ****P < 0.0001.
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Exosome-related lncRNA and prognostic lncRNA were used to

identify candidate lncRNAs. Subsequently, a total of 36 significant

lncRNAs were screened using a combination of the stepCox(forward)

and Ridge arithmetic. A multivariate Cox regression model was

employed to construct the ERLS model, which includes 20

lncRNAs. Research indicates that these lncRNAs have also been

utilized in prognostic models for ovarian cancer (48–52). Compared

to other models (53, 54), we used more machine learning algorithms

to make our model more robust. Survival analysis showed a worse

prognosis in the high ERLS group. Furthermore, multivariate COX

regression analysis showed that the ERLS was an independent

prognostic factor for patients with OC. The ROC areas for 1-, 3-,

and 5-years were 0.758, 0.816, and 0.827 in the entire TCGA datasets,

respectively. The results of external validation showed that the AUC

values of 1-, 3-, and 5-years were 0.536, 0.548, and 0.722, respectively.

In particular, it has more advantages in long-term survival prediction.

In addition, compared to other models in the entire TCGA database,

the ERLS is competitive. These results suggest that the ERLS can

identify prognostic risk in OC patients, indicating that the ERLS has

great potential for clinical application.

Exosome-related lncRNA are key messenger molecules that

regulate immune responses in the tumor microenvironment (55).

In the tumor microenvironment, information continues to flow

between immune cells and cancer cells through these RNAs, and

inhibition of immune cell function induces the formation of an

immunosuppressive tumor microenvironment, which affects the

response to immunotherapy (56). Therefore, we investigated

immune cell infiltration in high- and low-risk groups based on

the xCell and ssGSEA packages.

The results showed that higher levels of DC, M1 macrophages,

CD8 T cells, CD4memory T cells, and Th2 cells were in the low-risk

group, and this result was further verified in the ssGSEA package.

The analysis of immune function differences between the high-risk

group and the low-risk group showed that different levels of

immune cell infiltration promoted the activation of the cytolytic

activity, inflammation-promoting, T cell co-stimulation pathway,

indicating that the low-risk group had a higher level of anti-

inflammatory tumor activity. We performed GO and KEGG

analysis on the genes that were different between the two groups.

The results of the KEGG analysis showed that the differentially

expressed genes were mainly involved in the MAPK signaling

pathway and the PI3K-Akt signaling pathway. As reported in the

literature, the abnormality of the MAPK signaling pathway or the

PI3K-Akt signaling pathway can cause cancer, which in turn affects

the function of immune cells (57).

The ratio of infiltration of immune cells in the tumor

microenvironment will limit the effectiveness of immunotherapy.

PD1, PDL1, and CTLA4 are commonly used immune checkpoints,

but the overall response rate to immune checkpoint inhibitors is not

high (58). Therefore, we assessed the potential of the ERLS to predict

response to immunotherapy. The TIDE tool was used to assess the

potential for tumor immune escape and predict the immunotherapy

response in OC patients. Our results showed that there were no

differences in the TIDE scores between the two groups, but the TIDE

tended to be higher in the high-risk group, suggesting that the high-

risk group may have less benefit from immunotherapy. Furthermore,
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we verified the ability of the ERLS model to predict the response to

immunotherapy through the expression of IPS in the TICA database,

TMB, and immune checkpoints. The results showed that the low-risk

group may benefit more from immunotherapy, suggesting that the

ERLS model has the potential to predict response to immunotherapy.

Subsequently, we found that the expression of the PDL1 or

CTLA4 genes could not effectively assess the prognostic risk in the

entire TCGA cohort which had been divided into high- and low-

risk groups based on the median expression of PDL1 or CTLA4 in

the training set. This is not consistent with other studies (59–62)

andmay be attributed to variations in the thresholds set for PDL1 or

CTLA4 expression. It should be noted that the use of the median

division threshold in this study was necessary to maintain

consistency with the ERLS threshold division method.

Nonetheless, in cases where there is a similar expression of PDL1

or CTLA4, the prognostic risk of OC patients cannot be well

differentiated. Therefore, we implemented a combination of PDL1

or CTLA4 expression and the ERLS score to evaluate the prognosis.

It was found that the ERLS model had a good ability to discriminate

a prognosis in the case of similar expression of PDL1 or CTLA4.

Notably, patients with low expression of PDL1 or CTLA4 and high

ERLS had the worst survival. Patients with low expression of PDL1

or high expression of CTLA4 and low ERLS have the best prognosis.

This suggests that the combination of PDL1 or CTLA4 and ERLS

differentiates prognosis and optimizes clinical management of OC.

In addition, we detected the expression of some lncRNAs in

exosomes derived from IOSE80, SKOV3, and OVCAR8 cells. The

results showed that compared to IOSE80 cells, exosomes from

SKOV3 and OVCAR8 cells had higher expression of AC134312.1,

AC010834.3, LEMD1.AS1, PCOLCE.AS1, LINC00892, and

AL138820.1. Research has shown that high expression of lncRNA

is associated with the proliferation of ovarian cancer cells, activation

of the PI3K-AKT pathway, T cell activation, and immune

infiltration in the tumor microenvironment (63–66). However,

this trend was not observed in OC tissues from the TCGA

datasets except LINC00892. We speculate that this trend may be

due to more lncRNAs being encapsulated in exosomes and secreted

into the extracellular environment, leading to lower expression in

OC tissues. Unfortunately, research on this phenomenon has not

yet been explained. Additionally, these lncRNAs were employed to

structure OV prognostic models. AC134312.1 is related to the Wnt

signaling pathway and T cell receptor pathway (49). LINC00892, as

one of the immune-related lncRNAs, has been used in OV

prognostic models (51). PCOLCE.AS1 has been confirmed to be

related to prognosis in breast cancer (67), but its role in ovarian

cancer has not yet been determined. AC010834.3 and AL138820.1

lncRNAs have not yet been studied in the context of OV. Our initial

findings of these lncRNAs being highly expressed in ovarian cancer-

derived exosomes provide direction for future research.

In a word, considering the importance of exosome-related

lncRNAs in the progression of OC, we integrated bioinformatics

and machine learning algorithms to identify exosome-related

lncRNA signatures (ERLS) to assess the prognosis, immune cell

infiltration, and response to immunotherapy. The ERLS model is a

promising tool to optimize decision-making and monitoring

regimens in individual OC patients. However, our research still has
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certain deficiencies. This article only constructs the ERLS model from

the perspective of genetic data to evaluate the prognosis, immune

microenvironment, and immunotherapy response of OC patients

and has not been validated using cell lines and patient samples.
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