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NK-lysin is a potent antimicrobial peptide (AMP) with antimicrobial activity against

bacteria, fungi, viruses, and parasites. NK-lysin is a type of granulysin, a member of

the saposin-like proteins family first isolated from a pig’s small intestine. In previous

work, for the first time, we identified four variants of nk-lysin from Atlantic salmon

(Salmo salar) using EST sequences. In the present study, we reported and

characterized two additional transcripts of NK-lysin from S. salar. Besides, we

evaluated the tissue distribution of three NK-lysins from S. salar and assessed the

antimicrobial, hemolytic, and immunomodulatory activities and signaling pathways

of three NK-lysin-derived peptides. The synthetic peptides displayed antimicrobial

activity against Piscirickettsia salmonis (LF-89) and Flavobacterium psychrophilum.

These peptides induced the expression of immune genes related to innate and

adaptive immune responses in vitro and in vivo. The immunomodulatory activity of

the peptides involves the mitogen-activated protein kinases-mediated signaling

pathway, including p38, extracellular signal-regulated kinase 1/2, and/or c-Jun N-

terminal kinases. Besides, the peptides modulated the immune response induced

by pathogen-associated molecular patterns (PAMPs). Our findings show that NK-

lysin could be a highly effective immunostimulant or vaccine adjuvant for use in

fish aquaculture.
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1 Introduction

Aquaculture is an important economic sector, but it is

constantly threatened by infectious diseases (1). Intensification of

aquaculture production increases fish’s susceptibility to infectious

diseases due to immunosuppression, increasing mortality.

Therefore, knowledge of the organization and function of the fish

immune system is essential to promote aquaculture as an

economic activity.

Antimicrobial peptides (AMP) are small, amphipathic molecules

that play a crucial role in innate immunity (2–4) and have been

isolated from insects (5), amphibians (6, 7), mammals (8), bacteria

(9), and fish (4). Most of these peptides show antibacterial, antiviral,

antifungal, and antitumor activity, in addition to immunomodulatory

functions. AMPs can connect innate and adaptive immunity,

impacting immune response quality, efficacy, and direction (9).

Regarding their immunomodulatory activity, these peptides induce

chemokine and cytokine production, pro/anti-inflammatory activity,

direct chemotaxis, wound healing, angiogenesis, apoptotic activity,

and adjuvant activity (10–12). AMPs include NK-lysin, which is a

type of granulysin first isolated from a pig small intestine and

identified as a peptide effector of cytotoxic T lymphocytes (CTL)

and natural killer (NK) cells with antimicrobial properties (13). It is

present on CD8+, CD2+, and CD4+ cells and is produced by CTLs and

NK cells after overstimulation with IL-2. These peptides have 74-78

amino acid residues and six conserved cysteine residues, forming

three disulfide bonds (13).

In teleosts, NK-lysin has been identified in Ictalurus punctatus

(14), Paralichthys olivaceus (15), Cynoglossus semilaevis (16),

Takifugu rubripes (GenBank Accession Number XP_003962755),

Salmo salar (17), Larimichthys crocea (18), Danio rerio (19),

Cyprinus carpio (20), Oreochromis niloticus (21), Oncorhynchus

mykiss (22), Trematomus bernacchii (23), Boleophthalmus

pectinirostris (24), Thamnaconus modestus (25), Hyporthodus

septemfasciatus (26), Dicentrarchus labrax (27), Trachinotus

ovatus (28), Nibea albiflora (29), Sebastes schlegelii (30), Takifugu

obscurus (31), and Scophthalmus maximus (GenBank Accession

Number KU705506.1), among others. Many studies focus on NK-

lysins gene expression in different tissues under normal conditions

and after exposure to a specific pathogen. These expression studies

suggest NK-lysin involvement in the host immune response during

bacterial and viral infection (14, 16). In addition, NK-lysins have

direct antimicrobial activity against viral and bacterial pathogens

and immunomodulatory functions, adding a new dimension to the

classical role of NK-lysin as an antimicrobial, mainly against

bacteria and parasites (16).

As mammalian, fish NK-lysins possess the conserved SapB

domain that adopts an a-helix structure. Several peptides derived

from the SapB domain of NK-lysin have been synthesized and

characterized. These synthetic peptides have shown antimicrobial

activity against several pathogens (15, 32, 33). Besides, it was

demonstrated that some of these peptides interact with target

bacterial cells, destroy cell membrane integrity, penetrate the

cytoplasm, and induce genomic DNA degradation (33).

The biological functions of NK-lysin, such as antibacterial (18,

20, 21, 24, 34–36), antiviral (16, 27, 30, 33, 37–39), and antiparasitic
Frontiers in Immunology 02
(40) activities, have been established in teleosts. However, in

salmonids, information on the immunomodulatory effect of NK-

lysin is scarce (41). Recently, a study characterized the expression of

6 NK-lysin variants in rainbow trout and observed modest up-

regulation (2-3-fold) of five (nkl 2-4 and rainbow trout nkl-like a &

b) of the six NK-lysins in trout fry exposed to Flavobacterium

psychrophilum infection at 5 days post-challenge (22). In addition,

we previously identified and characterized for the first time four

NK-lysin-like transcripts from Atlantic salmon (S. salar) based on

EST sequences (17). By alignment between the NK-lysin sequences

identified in S. salar and NKLP27, a peptide derived from C.

semilaevis NK-lysin (33), we designed and synthesized two 27-

amino acid peptides and evaluated whether these peptides modulate

the immune response in S. salar head kidney leukocytes. These

peptides induced the immune response in S. salar head kidney

leukocytes by increasing the expression of IL-1b and IL-8 at 4 h

post-treatment (17).

The purpose of the present study was to evaluate and

understand the signaling pathways and immunomodulatory

activity of NK-lysin-derived peptides in S. salar in vitro and in

vivo and determine the NK-lysin-derived peptides antibacterial

activity against P. salmonis (LF-89) and F. psychrophilum. Besides,

the hemolytic activity of these peptides was evaluated. On the other

hand, we reported and characterized two new transcripts of NK-

lysin from S. salar. In addition, the tissue distribution of three NK-

lysins was also established in S. salar. The results of this work could

provide new insights regarding the antimicrobial and

immunomodulatory activities of NK-lysin peptides in salmonids

and thus aid in developing a potential alternative for antibiotic use

in aquaculture.
2 Materials and methods

2.1 Sequence analyses

Previously, four putative novel NK-lysin-like peptides from S.

salar were identified based on the EST database. The four

transcripts identified were named SsNK-lysin 1 (GenBank

accession no.: NM_001141110.1), SsNK-lysin 2 (GenBank

accession no.: EG932844.1), SsNK-lysin 3 (GenBank accession no.:

EG810337.1) and SsNK-lysin 4 (GenBank accession no.:

EG819316.1). The present study searched Gene Databases in

GenBank (http://www.ncbi.nlm.nih.gov/) for additional putative

NK-lysin sequences. All gene and protein sequences were

obtained from the National Center for Biotechnology Information

(NCBI). The signal peptide cleavage site was predicted with SignalP

5.0 (http://www.cbs.dtu.dk/services/SignalP/). A multiple sequence

alignment was performed using the Clustal Omega tool (https://

www.ebi.ac.uk/Tools/msa/clustalo/) from the NK-lysin protein

sequences of O. mykiss and S. salar. Besides, another multiple

sequence alignment was performed using the ClustalW tool

(https://www.genome.jp/tools-bin/clustalw) from NK-lysin

protein sequences without signal peptides from mammals, avian,

and teleosts. With this last alignment, a phylogenetic tree was

constructed with the Molecular Evolutionary Genetic Analysis 11
frontiersin.org
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(MEGA11) program, using the Neighbor-Joining method and the

bootstrap test with 1000 replicates. In addition, all ambiguous

positions were removed for each pair of sequences (pairwise

deletion option), and the Poisson distance correction method was

used. The NK-lysin sequences used for phylogenetic analysis and

sequence alignment are listed in Table 1.
2.2 Structure analyses and disulfide
bonds prediction

SsNK-lysin sequences were modeled using the SWISS-MODEL

server (Swiss Bioinformatics Institute, Basel, Switzerland), available

at https://swissmodel.expasy.org/interactive (42). A search for

templates that could fit the target sequence was performed. From

a comprehensive list of more than 100 templates, a heuristic filter

was applied to select the 50 most promising models based on

coverage and sequence identity criteria. The resulting models were

obtained from a variety of sources, including the UniProt database

(European Bioinformatics Institute, Cambridge, UK) (43), the

Protein Data Bank (PBD) (44), and AlphaFold (DeepMind,

London, UK) (44, 45). Subsequently, the models generated for

each NK-lysin were subjected to a validation phase, in which

tools such as PROCHECK (Laboratory of Molecular Biology,

Medical Research Council, Norwich, United Kingdom) (46),

VERIFY3D (47), ERRAT (48) and QMEANDisCo (Institute of

Bioinformatics, University of Zurich, Zurich, Switzerland) (49)

were used. These steps were performed to ensure the integrity

and quality of the models obtained.

To predict disulfide bridge formation, the Disulfide by Design 2

server (Boston University School of Medicine, Boston, USA) was

used (50). Specific setup parameters included the definition of an

angle c3 with values of -87° or +97°, with a ±30 variation range, and

an angle Ca-Cb-Sg set at 114.6°, with a tolerance of ±10. The

various models generated from the SsNK-lysin sequences were

loaded, and the energetic parameters expressed in kcal/mol were

evaluated. It is relevant to note that a lower energy reflects a higher

probability of disulfide bridge formation. Subsequently, amino acid

positions with a higher likelihood of forming disulfide bonds were

identified using PyMOL 2.5.5 (DeLano Scientific LLC, San Carlos,

USA), and the presence of these bonds with the lowest energy in the

analyzed structure was confirmed.
2.3 Designing and synthesis of Salmo salar
NK-lysin-derived peptides

Because the increase in length makes it difficult to obtain NK-

lysin by chemical synthesis, short peptides derived from these

molecules have been designed and studied. We previously

designed and synthesized two small peptides, NK1 and NK2,

derived from SsNK-lysin 1 and SsNK-lysin 2, based on

alignments between NK-lysin sequences identified in S. salar

and NKLP27, a peptide derived from C. semilaevis NK-lysin (17).

NK1 and NK2 comprise 27 residues that form the H2 and H3 a-
helices of the SapB domain of SsNK-lysin 1 and SsNK-lysin 2,
Frontiers in Immunology 03
TABLE 1 GenBank accession numbers of the sequences used in the
Multiple amino acid alignment and phylogenetic analysis.

Species Gene name GenBank
No.

Salmo salar NK-lysin 1 NM_001141110.1

Salmo salar NK-lysin 2 XM_014130176.1

Salmo salar NK-lysin 3 EG810337.1

Salmo salar NK-lysin 4 EG819316.1

Salmo salar NK-lysin 5 XM_014125754.1

Salmo salar NK-lysin 6 XM_014129907.1

Oncorhynchus
mykiss

nkl1 (OmNK1) LOC110505297

Oncorhynchus
mykiss

nkl2 (OmNK2) LOC110498583

Oncorhynchus
mykiss

nkl3 (OmNK3) LOC110498133

Oncorhynchus
mykiss

nkl-like a (OmNKLa) LOC110498135

Oncorhynchus
mykiss

nkl-like b transcript variant X1
(OmNKLb X1)

LOC110498134

Oncorhynchus
mykiss

nkl-like b transcript variant X2
(OmNKLb X2)

XM_036955110.1

Oncorhynchus
mykiss

nkl-like b transcript variant X3
(OmNKLb X3)

XM_021574736.2

Oncorhynchus
mykiss

nkl-like b transcript variant X4
(OmNKLb X4)

XM_036955111.1

Larimichthys crocea NK-lysin-like protein (Lcrocea1) AIL25791.1

Larimichthys crocea NK-lysin-like type 2
protein (Lcrocea2)

ALH22547.1

Larimichthys crocea NK-lysin-like type 3
protein (Lcrocea3)

ALH22548.1

Danio rerio Nkla KP100115

Danio rerio Nklb KP100116

Danio rerio Nklc KP100117

Danio rerio Nkld KP100118

Paralichthys
olivaceus

NK-lysin Hirono et al.,
2007 [1]

Ictalurus punctatus NK-lysin type 1 (Ipunctatus1) NP_001187137

Ictalurus punctatus NK-lysin type 2 (Ipunctatus2) NP_001187147

Ictalurus punctatus NK-lysin type 3 (Ipunctatus3) NP_001187232

Scophthalmus
maximus

NK-lysin APD51552.1

Hyporthodus
septemfasciatus

NK-lysin ALT14560.1

Cynoglossus
semilaevis

NK-lysin AGM21637.1

Fundulus
heteroclitus

NK-lysin (Fheteroclitus1) JAR79304.1

(Continued)
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respectively (17). NK3, NK4, NK5, and NK6 derived from SsNK-

lysin 3, 4, 5, and 6 were designed based on sequence alignment

between NK-lysin sequences previously identified in S. salar. NK3

peptide resulted in 96% identical to NK2, and NK5 and NK6 were

identical to NK1. Therefore, we synthesized and characterized three

NK-lysin-derived peptides: NK1, NK2, and NK4. The

Hydrophobicity, Hydrophobic Moment, total net charge,

theoretical isolelectric point, and molecular weights of each

peptide were calculated using the Database of Antimicrobial

Activity and Structure of Peptides (https://dbaasp.org/home) and

Compute pI/Mw from ExPASy (http://web.expasy.org/

compute_pi/). The physicochemical properties of the three NK-

lysin-derived peptides selected are listed in (Supplementary

Material, Table 1).
Frontiers in Immunology 04
The peptides derived from SsNK-lysin 1, 2, and 4, NK1

(TLKQKLLSVCDKVGFLKSMCKGLMKKH), NK2 (EIKQKLLS

YCGKLPLVKSTCEDLVKKH), and NK4 (EIKQKLLSVCDKM

GLLKSLCKGMVKKH) were chemically synthesized by GenScript

Company (https://www.genscript.com/). Cysteines 10 and 20 were

linked by disulfide bonding in the three peptides. The peptides were

purified by high-performance liquid chromatography to 90% of

purity. Lyophilized peptides were stored at −20°C and dissolved in

DMSO before use.
2.4 Fish maintenance

Unvaccinated Atlantic salmon (Salmo salar) were obtained and

maintained in the Marine Biotechnology unit, Faculty of Natural

and Oceanography Science, University of Concepcion. The fish

occupied in the experiments were certified as free of the most

prevalent pathogens. The animals were maintained under a 12: 12 h

light: dark cycle and fed daily until satiety with a commercial diet

(Micro 200, EWOS).

All the animals used in this study were treated under the

Biosecurity Regulations and Ethical Protocols approved by the

University of Concepcion Ethics Committee, as required by

Chilean Regulatory Entities: National Research and Development

Agency (ANID) and National Fisheries and Aquaculture

Service (SERNAPESCA).
2.5 Antimicrobial assays

The minimal inhibitory concentration (MIC) of synthetic NK-

lysin-derived peptides (NK1, NK2, and NK4) was measured for P.

salmonis (LF89) and F. psychrophilum by a broth microdilution

method (51). The MIC is defined as the lowest concentration of an

antimicrobial agent at which bacterial growth is not detected. P.

salmonis was grown in Tryptic Soy Broth (TSB) (Merck, Darmstadt,

Germany) supplemented with NaCl 3 g/L, fetal bovine serum (FBS)

2.5%, L-cysteine 0.05%, and FeCl3 0.01 g/L (52) and F.

psychrophilum was grown in a broth containing Tryptone 4 g/L,

MgSO4 0.5 g/L, CaCl2 0.5 g/L, Yeast extracts 0.4 g/L, pH 7.2. Briefly,

logarithmic phase microorganism cultures were diluted in the broth

according to the microorganism to an optical density at 600 nm

(OD600) of 0.001, approximately equivalent to 105 cfu mL−1. Diluted

microorganisms (90 mL) were mixed with 10 mL of water (negative

control) or peptides in wells of polypropylene microtiter plates

(Greiner Bio-One, Germany). The peptides were two-fold serially

diluted. The growth was monitored by measuring the change in the

absorbance of the culture at 600 nm using a microplate reader after

2 and 5 incubation days at 18 °C for F. psychrophilum and P.

salmonis, respectively. The MIC was determined by visual

verification of microbial sedimentation and absorbance reading

(600 nm). In addition, the half maximal inhibitory concentration

(IC50) was determined, which is a measure of the efficacy of a

compound in inhibiting a biological or biochemical function and

indicates how much of a given drug or other substance (inhibitor) is
TABLE 1 Continued

Species Gene name GenBank
No.

Fundulus
heteroclitus

NK-lysin (Fheteroclitus2) JAR43863.1

Oreochromis
niloticus

NK-lysin XP_005477177.1

Takifugu flavidus NK-lysin-like XP_056867911.1

Takifugu rubripes NK-lysin-like XP_003962755.1

Dicentrarchus
labrax

NK-lysin tandem duplicate 4
isoform X1 (DlabraxX1)

XP_051246575.1

Dicentrarchus
labrax

NK-lysin tandem duplicate 4
isoform X3 (DlabraxX3)

XP_051246595.1

Lateolabrax
japonicus

NK-lysin ARS25035.1

Cyprinus carpio NK-lysin (Ccarpio1) XP_018970060.2

Cyprinus carpio NK-lysin (Ccarpio) ATD87498.1

Cyprinus carpio NK-lysin tandem duplicate 2
isoform X2 (CcarpioX2)

XP_042598991.1

Cyprinus carpio NK-lysin tandem duplicate 2
isoform X1 (CcarpioX1)

XP_018976518.2

Sparus aurata NK-lysin QIJ31327.1

Pangasianodon
hypophthalmus

NK-lysin UTE79735.1

Clarias gariepinus NK-lysin QBO59841.1

Oncorhynchus
kisutch

NK-lysin (Okisutch1) XP_020356451.1

Oncorhynchus
kisutch

NK-lysin (Okisutch2) XP_020343887.1

Oreochromis aureus NK-lysin XP_031614193.1

Hippoglossus
stenolepis

NK-lysin XP_035024225.2

Sus scrofa NK-lysin precursor NP_001265684.1

Gallus NK-lysin AMY26518.1

Homo sapiens Granulysin isoform 2 precursor NP_006424.2
Names in parentheses correspond to those used in phylogenetic analysis and
sequence alignment.
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needed to inhibit a given biological process by half. The IC50 for

each peptide was calculated from concentration-effect curves after

non-linear regression analysis using GraphPad prism10 software.

MIC and IC50 were expressed as the absolute value of the mean of

at least two determinations in triplicate.
2.6 Hemolytic assay

The hemolytic activity of NK-lysin-derived peptides (NK1,

NK2, and NK4) was determined using human and fish

erythrocytes. Briefly, fresh human or fish erythrocytes (5 mL)

were washed with PBS and resuspended in PBS (50 mL)

supplemented with glucose (0.2%, w/v). Synthetic peptides

(serially diluted in PBS) were added to 90 mL of 1% erythrocyte

suspension. Samples were incubated for 30 min at 37°C and

centrifuged for 10 min at 3500 rpm at room temperature. The

supernatants (70 mL) were transferred to a microtiter plate, and the

optical density was determined at 405 nm. The percentage of

hemolysis was defined relative to the hemolysis obtained with the

erythrocyte suspension treated with 0.1% SDS (100% hemolysis).

Two individual experiments were performed using duplicate

samples for each peptide.
2.7 Tissues collection

Five Salmo salar weighting 100-150 g were sacrificed by

overexposure to benzocaine (20%), and the gill, muscle, intestine,

liver, spleen, stomach, head kidney, heart, and skin were aseptically

removed for evaluation of constitutive expression of SsNK-lysin 1, 2

and 4 transcripts. The tissues were kept in RNAlater (Invitrogen) at

-80°C until use.

Salmo salar weighting 150-200 g were sacrificed by

overexposure to benzocaine (20%), and the head kidneys were

aseptically removed to isolate head-kidney leukocytes (HKL) for

in vitro assays.
2.8 Isolation of head kidney leukocytes

HKLs were isolated from S. salar following the method

previously described (53). The head kidney removed aseptically

was homogenized through a 40 mm nylon mesh using Leibovitz

medium (L-15, Gibco, USA) supplemented with 100 IU/mL

penicillin (Gibco, USA), 100 mg/mL streptomycin, 2% heparin

and 2% fetal bovine serum (FBS, Hyclone, USA). The resulting

cell suspension was placed onto Percoll gradients with a density of

51%/34% and then was centrifuged at 800 g for 40 min at 15°C. The

fraction corresponding to the leukocytes was collected, washed

twice, and centrifuged at 800 g for 5 min at 15°C in an L-15

medium supplemented with 10% FBS. Viable cell concentration was

determined by the Trypan blue exclusion method, and the cells were

resuspended in an L-15 medium supplemented with 10% FBS. For
Frontiers in Immunology 05
each experiment in which HKLs were used, each experimental

replicate corresponded to cells from different animals.
2.9 Cytotoxicity assay

96-well plates were seeded at a cell density of 500,000 cells per

well for HKLs. After 24 hours, the cells were incubated with 50 mM
of NK-lysin-derived peptides (NK1, NK2, and NK4) for 24 and 48

hours. After incubation, the cells were incubated with 1 mg/ml

MTT at 20°C for 6 hours. Finally, all MTT was removed, and the

formazan salts were resuspended in 100 ml isopropanol. Absorbance
was then read at 550 nm. Cells without peptides were used as

controls for 100% cell viability.
2.10 In vitro effects on
cytokines expression

S. salar HKLs were seeded into 24-well culture plates at a

concentration of 106 cells/well in L-15 medium with 10% FBS

and cultured at 18°C. The cells were incubated with culture media

containing 50 mM of the SsNK-lysin-derived peptides (NK1, NK2,

and NK4) or culture media alone as negative control. The cells were

harvested 6, 12, and 48 hours after the stimulation. For all

treatments, cells were kept in incubation at 18°C. Expression of

TNF-a, IL-1b, IL-8, IFN-g, IL-10, IL-18, Mx, and TGF-b was

determined by qRT-PCR.
2.11 Inhibitor assay

HKLs (4x106 cells/well) were pretreated for 2 hours with 10 mMof

SB202190 inhibitor (p38 inhibitor) (Sigma Aldrich), U0126 inhibitor

(mitogen-activated protein kinase 1/2 (MEK1/MEK2) inhibitor) or

SP600125 inhibitor (JNK inhibitor) (Abcam). As a negative control,

cells were incubated with 0.1% DMSO as a vehicle for 2 hours. Cells

were then incubated with 50 mM of NK1, NK2, NK4, or medium

(negative control) for 12 hours. For all treatments, cells were kept in

incubation at 18°C. Cell lysates were harvested, RNA was extracted,

and IL-1b relative expression was analyzed by qRT-PCR.
2.12 PAMP induced response

SHK-1 cells were seeded in L-15 medium (supplemented with

10% FBS) at 3x106 cells/well. After 24 hours, the cells were co-

stimulated with 50 mM of SsNK-lysin-derived peptides (NK1, NK2,

and NK4) and 1 µg/mL of lipopolysaccharide (LPS from E. coli,

0111:B4) (Sigma Aldrich) or 1 µg/mL of poly(I:C) (Sigma Aldrich)

for 6 and 12 hours. Besides, cells were treated only with LPS, poly(I:

C), or peptides. Negative control cells with culture media alone were

included. For all treatments, cells were kept in incubation at 18°C.

Expression of TNF-a, IL-1b, and IL-8 as an LPS-induced response

was determined by qRT-PCR. For poly(I:C), the expression of IFN-

1a and Mx involved in the antiviral response was determined by

qRT-PCR.
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2.13 In vivo effects on cytokines expression

Twenty-five S. salar per group of approximately 50 g of body

weight will be acclimatized for two weeks at 10-12°C. After this

period, animals were intraperitoneally injected with SsNK-lysin-

derived peptides (NK1, NK2, and NK4) (20 mg per fish). At 1-, 3-, 7-
, 14- and 21 days post-injection, fish (n = 5 per treatment group per

time point) were euthanized, and head kidneys were collected.

Immediately after tissue extraction, tissues were stored in

RNAlater (Thermo Fisher Scientific) at -80°C until use.

Expression of IL-1b, IL-8, IFN-g, Mx, IL-4/13 and IL-22 was

determined by qRT-PCR.
2.14 RNA extraction

RNA extraction from tissue samples, SHK-1 cells, and HKLs

was performed using TRIzol reagent (Thermo Fisher Scientific)

according to the manufacturer’s instructions. Tissue samples were

homogenized in TRIzol reagent before RNA extraction. For all

assays, RNA concentration, and purity were assessed using a

Sinergy® HTK Take3 microplate reader (BioTek, Agilent

Technologies), and RNA integrity was verified by 1% agarose gel

electrophoresis. RNA samples were stored at -80°C until use.
2.15 Reverse transcription

For the analysis of tissue expression of SsNK-lysin transcripts, a

pool was prepared from each tissue (5 samples each). The samples

were treated with DNAse I # M0303 (New England Bio Labs), using

2 mg of RNA in a final volume of 11 mL, according to the

manufacturer’s protocols. Reverse transcription was performed

using the RevertAid First Strand cDNA Synthesis Kit (Thermo

Fisher Scientific) according to the following protocol: 11 mL of

DNAse I treatment reaction, 1 mL of random hexamer primer, 4 mL
of 5X reaction buffer, 2 mL of dNTP mix (10 mM), 1 mL of Ribolock

RNase inhibitor (20 U/mL), 1 mL of RevertAid RT (200 U/ml) in a

final volume of 20 mL. The reactions were incubated in the

TProfessional Basic Thermocycler (Biometra) at 25°C for 5

minutes, then at 42°C for 60 minutes, and finally at 70°C for 5

minutes. A negative control without retrotranscriptase (No-RT

control) was performed for each tissue.
2.16 RT-qPCR protocols

The Primer-BLAST tool (https://www.ncbi.nlm.nih.gov/tools/

primer-blast/) was used for primer design. Specific oligonucleotides,

which did not amplify transcript variants and were aligned with an

exon-exon junction (not applicable for predicted sequences), were

selected for the desired products. Sequences and information for the

primers used in all RT-qPCR assays are shown in Table 2.

RT-qPCR reactions were performed with cDNA samples to

analyze the expression of SsNK-lysin 1, 2, and 4. The KAPA SYBR
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FAST One-Step qRT-PCRMaster Mix (Kapa Biosystems, USA) was

used according to the following protocol: 5 mL of qPCR Master Mix

(2X), 0.2 mL of forward primer (10 mM), 0.2 mL of reverse primer (10

mM), 1 mL of cDNA and 3.6 mL of water, in 10 mL final volume. The

thermal profile for all genes was as follows: 90°C for 3 minutes, 90°C

for 10 seconds (40 cycles), and 58°C for 20 seconds. A no reverse

transcriptase (No-RT) control was included for each tissue, and a

no cDNA control (No Template Control, NTC) was included for

each gene. Each sample measurement was repeated three times.

RT-qPCR reactions were performed on RNA samples for

inhibitor treatment, PAMPs-induced response, and in vitro and in

vivo stimulation with SsNK-lysin-derived peptides. In all cases, the

Brilliant II SYBR® Green qRT-PCR Master Mix, 1-Step kit (Agilent,

USA) was used according to the following protocol: 2 mL of RNA

(amounts described in Table 2), 0.4 mL of RT/RNase block enzyme

mixture, 5 mL of 2X Brilliant II SYBR Green qRT-PCR Master Mix,

2.36 mL of water, 0.24 mL of mix forward and reverse primers (2.5 mM
each) in 10 mL final volume. The cycling conditions for all genes and

assays were as follows: 50°C for 30 minutes (RT reaction), 95°C for 10

minutes, 95°C for 15 seconds, and 58°C for 30 seconds (40 cycles). No

RNA controls (NTC) were included for all genes and assays, and each

sample measurement was repeated three times.

The EF-1a reference gene was used as a normalizer for all RT-

qPCR assays. For the tissue SsNK-lysin expression assay, stomach

tissue was used as a control or calibrator. For the other assays,

untreated cells or tissues from untreated animals were used as

calibrators. The AriaMx real-time PCR system (Agilent, USA) was

used for all RT-qPCR reactions. In addition, to standardize and

validate the primers used and the reactions, dynamic ranges,

efficiency calculation, melting curve evaluation, and visualization

of amplicons in 1% agarose gel electrophoresis were performed. The

results were analyzed using the comparative Ct (2-DDCt) method

(54), and GraphPad Prism 10 software was used for graph

generation and statistical analysis. Specifically for constitutive

tissue expression, relative expression was determined according to

Paff’s mathematical model (2001) (55).
2.17 Phagocytosis assays

Phagocytic activity was analyzed by a microplate fluorometric

assay using pHrodoTM Green E. coli Bioparticles™ conjugate

(Molecular Probes/Thermo Fisher Scientific). Particles were

suspended in Live Cell Imaging Solution buffer (Molecular

Probes/Thermo Fisher Scientific) supplemented with 0.2% (w/v)

glucose (LCIS-glu) at a density of 1 mg/mL, vortexed for 2 minutes

and sonicated for 5 minutes at room temperature. HKLs were

seeded at 1x106 cells/well density in 96-well plates in L-15 medium

supplemented with 2% FBS and incubated at 18°C for 24 hours.

Cells were washed with HBSS, and the phagocyte-enriched

population was incubated for 30 minutes at 18°C with 50 mL of

LCIS-Glu and then with 50 mL of bioparticles. SsNK-lysin-derived

peptides (NK1, NK2, and NK4) were evaluated at 0, 10, and 50 mM.

Control wells without cells containing bioparticles were included in

each plate to allow subtraction of background fluorescence from the

particles at neutral pH. Cells plus peptide and bioparticles were
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incubated for 3 hours at 18°C. Fluorescence was recorded on the

Synergy HTX microplate reader (BioTek Instruments, USA) in well

area scanning mode, with excitation and emission wavelengths of

488 and 528 nm, respectively. Data were calculated as percentage

phagocytosis relative to control cell samples incubated with

bioparticles without stimuli after subtracting background particle

fluorescence (cell-free control). Each assay was performed in

triplicate and repeated with at least two independent samples.
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2.18 Statistical analysis

All data were assessed for homogeneity of variances and normal

distribution before data were analyzed by one-way ANOVA. The

Dunnett post hoc test compared means from experimental groups

against a control group mean. Šidák’s multiple comparisons test was

used to perform simultaneous joint pairwise comparisons for all

possible pairwise combinations of means. Statistical analysis was
TABLE 2 Primer sequences used in qRT-PCR assays.

Gene
name

Sequence 5’-3’
Amplicon
size (bp)

NCBI
access number

Amount of RNA/cDNA
(ng)*

SsNK-lysin 1
Forward ATTGCAGTACATTTTGTATCATCTCCAAATG

119 NM_001141110.1 100
Reverse TGAGCTTTATTTTTTAGCTAGCC

SsNK-lysin 2
Forward GTGTCAGTCTTAGTCTTAAACTG

144 XM_014130176.1 100
Reverse TACTATCAATTGAGGTTTATTTTTTGC

SsNK-lysin 4
Forward GTGTATAGTCATTCTTAAATTGCAGT

115 XM_014210204.2 100
Reverse TTCACACAAACATAAAACATTCG

SsIL-10
Forward CGCTATGGACAGCATCCTGAAGTTC

118 XM_014168417.1 20
Reverse GTGGAAGATGTTTCCGATGGAGTCG

OmIL-1b
Forward ACATTGCCAACCTCATCATCG

91 AJ223954 20
Reverse TTGAGCAGGTCCTTGTCCTTG

SsIL-8
Forward GGCCCTCCTGACCATTACT

102 NM_001140710 20
Reverse ATGAGTCTACCAATTCGTCTGC

SsIL-18
Forward AGCAGATGATTGCCGGTTCA

129 NM_001141408.1 200
Reverse TTCTTCTCGCAGCACACCAT

SsTGF-b
Forward GGCCATCCGTGGACAGATAC

92 XM_014196504.1 20
Reverse GGGAGGTTGGGACTTTCTCG

SsIFN-g
Forward CCGTACACCGATTGAGGACT

133 FJ263446.1 200
Reverse GCGGCATTACTCCATCCTAA

TNF-a1
Forward TGTGTGGCGTCCTCTTAGTAGCAGCTT

101 NM_001123589.1 200
Reverse CTCCATTTTGTCCTGCATCGTTGC

SsIL-4/13a
Forward ACCACCACAAAATGCAAGGAGT

70 NM_001204895.1 200
Reverse ACGTGGCATTTTTCACGGAG

OmIL-22
Forward ATCTGCTGCCTGCATGCTAA

151 NM_001164064.1 200
Reverse TAGCACAGCCGTGTTCCTTC

SsMx
Forward TCGGGAAATGGAAGGCACAA

99 XM_014133087.2 20
Reverse CCCTTCCACGGTACGTCTTC

SsIFN-1a
Forward CCTGCCATGAAACCTGAGAAGA

108 NM_001123710.1 20
Reverse TTTCCTGATGAGCTCCCATGC

SsEF-1a
Forward CACCACCGGCCATCTGATCTACAA

78 AF321836 20
Reverse TCAGCAGCCTCCTTCTCGAACTTC
Ss correspond to Salmo salar.
Om correspond to Oncorhynchus mykiss.
*Amount of RNA/cDNA that was used per RT-qPCR reaction.
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done using GraphPad PRISM version 10.00 (GraphPad Software,

San Diego, CA). p<0.05 was considered a significant difference.
3 Results

3.1 Sequence and structure analyses

Based on the Gene database, this study identified two additional

putative novel NK-lysin-like peptides from Salmo salar. The two

transcripts identified were named SsNK-lysin 5 (GenBank accession

nos.: XM_014125754.1) and Ss-NK-lysin 6 (GenBank accession

nos.: XM_014129907.1). Besides, we identified the genes for the

six SsNK-lysin-like peptides (Table 3). SsNK-lysin 1, 2, 3, 5, and 6

are located on chromosome 1, whereas the gene for SsNK-lysin 4 is

located on chromosome 9. Table 3 also shows the orientation of

these genes on chromosome arms 1q and 9q of the Salmo

salar genome.

The SsNK-lysin 5 open reading frames (ORF) consisted of 402

bp and encoded a protein of 133 amino acid residues. It contains an

N-terminal signal peptide (1–22 aa) and a SapB domain (49–123

aa). The theoretical molecular mass of the mature SsNK-lysin 5 is

12629.84 Da, and the isoelectric point (pI) is 8.18 (Table 3). The

SsNK-lysin 6 ORF consisted of 402 bp and encoded a protein of 133

amino acid residues. It contains an N-terminal signal peptide (1–22

aa) and a SapB domain (49–123 aa). The theoretical molecular mass

of the mature SsNK-lysin 6 is 12615.85 Da, and the pI is

8.14 (Table 3).

The SsNK-lysin 5 encoded protein sequence shared 84.3%,

74.2%, 75%, and 77.4% identity with the Ss-NK-lysin 1, 2, 3, and

4 (reported in 2019), respectively (17). The SsNK-lysin 6 encoded

protein sequence shared 86.6%, 71.9%, 72.7%, and 76.7% identity

with the Ss-NK-lysin 1, 2, 3 and 4, respectively (17). Besides, the

SsNK-lysin 5 and SsNK-lysin 6 encoded protein sequences shared

90.98% identity. On the other hand, the percent of the identity of
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SsNK-lysin peptides with NK-lysin (NKL) peptides from O. mykiss

(determined without signal peptide) ranged from 71% to 85% (22).

However, the percent of the identity of SsNK-lysin peptides with

Nkl-like a and four variants of Nkl-like b from O. mykiss ranged

from 27% to 31% (22) (Figure 1).

The inferred phylogenetic tree showed that the mammalian and

avian NK-lysin sequences cluster within the clade furthest from the

rest of the phylogenetic tree and are related to the NK-lysin

sequences of the L. crocea species and the evaluated sequences of

the Oreochromis genus. On the other hand, all S. salar sequences

and most NK-lysin sequences of other salmonids are grouped in the

same clade and subdivided into sub-branches. One sub-branch

groups the SsNK-lysin 4 sequence with those of other salmonids,

suggesting that this sequence may be less related to the other S. salar

sequences. On the other hand, SsNK-lysin 2 and SsNK-lysin 3

cluster in another sub-branch closer to OmNK2, while SsNK-lysin

1, SsNK-lysin 5 and SsNK-lysin 6 cluster together with OmNK3 in

another sub-branch of this clade. The rest of the salmonid NK-lysin

sequences, including the NK-lysin-like sequences from O. mykiss

and its variants, cluster in a distant clade, closer to sequences from

species such as C. carpio, L. crocea, O. niloticus, O. aureus, and avian

and mammalian sequences (Figure 2).

Multiple alignments revealed six cysteine residues in the two

SsNK-lysin mature peptides reported here that are highly conserved

among fish species. Nevertheless, all SsNK-lysins contain at least an

additional cysteine residue conserved among them (Figure 1).

SsNK-lysin 1 and SsNK-lysin 6 have eight cysteine residues in the

mature peptide conserved among them, and SsNK-lysin 5 possesses

eight cysteine residues; one of them is not conserved among SsNK-

lysin sequences.

To predict the structures and the formation of disulfide bridges,

we used the SWISS-MODEL server (Swiss Bioinformatics Institute,

Basel, Switzerland) (42) and the Disulfide by Design 2 server

(Boston University School of Medicine, Boston, USA) (50),

respectively. As a result, we found that three disulfide bridges are
TABLE 3 Characteristics of NK-lysin genes from Salmo salar.

Protein Genomic DNAa Location Orientation cDNAb Full
length
(aa)

Signal peptide/
mature

peptide (aa)

Theoretical pI/
Mwc of

mature peptide

SsNK-
lysin 1

AGKD04000266.1 1,375,167-
1,376,740

R NM_001141110.1 127 22/105 6.76/12041.04

SsNK-
lysin 2

AGKD04000266.1 1,558,970-
1,560,152

R XM_014130176.2 129 22/107 8.67/12200.33

SsNK-
lysin 3

JAIUJH010000113.1 7,028,490-
7,029,669

R EG810337.1 129 22/107 9.10/12208.42

SsNK-
lysin 4

CAKNVC010002408.1 15,493,260-
15,494,388

F XM_014210204.2 136 22/114 8.18/12992.35

SsNK-
lysin 5

CAJNNT020000177.1 34,778,852-
34,780,133

R XM_014125754.2 133 22/111 8.18/12629.84

SsNK-
lysin 6

CAKNVA020000301.1 34,368,232-
34,369,249

F XM_014129907.2 133 22/111 8.14/12615.85
aAccession number of whole-genome shotgun counting (wgs).
bAccession number of cDNA.
cTheoretical pI (isoelectric point) and Mw (molecular weight).
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predicted to be generated for all sequences, with one or two cysteine

residues not forming bridges. The positions of the bridging

cysteines are shown in Table 4. Figure 3 shows the structures

corresponding to the SsNK-lysin. Visualization of the protein

revealed a predominance of a-helices, which are extensively

distributed along the molecule. No folded b-sheets were detected

in the current protein conformation. Additionally, segments known

as loops or turns were identified. These segments could act as

flexible connections facilitating continuity between ordered

structures. Loops and unstructured areas indicate sites of

flexibility and movement capability within the protein.
3.2 Antimicrobial activity of NK-lysin-
derived peptides

The antimicrobial activity of peptides derived from SsNK-lysin

against P. salmonis and F. psychrophilum was determined. Bacteria
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were chosen to represent important fish pathogens. Results show that

NK1 and NK4 are active against P. salmonis. In contrast, the three

peptides were active against F. psychrophilum. SsNK-lysin-derived

peptides over a range of concentrations up to 200 mM displayed

variable degrees of antimicrobial activity against the microorganisms

tested (Table 5). NK1 and NK4 were the most active peptides against

these critical fish pathogens. In contrast, NK2 exhibited a more

limited spectrum of activity against these pathogens.
3.3 Hemolytic activity

Synthetic SsNK-lysin-derived peptides were assays for

hemolytic activity in human and fish red blood cells. NK2 and

NK4 were not hemolytic for fish red blood cells at concentrations

below 100 mM. In contrast, NK1 was hemolytic in fish erythrocytes,

reaching 50% of hemolysis at approximately 30 mM (Figure 4A). In

addition, hemolytic activity in human red blood cells was observed
FIGURE 1

Multiple alignment of salmonid NK-lysin sequences. Multiple alignment of NK-lysin sequences from S. salar and O. mykiss was performed with the
Clustal Omega tool. The sequences corresponding to the signal peptide predicted with SignalP 5.0 are framed. The physicochemical properties of
the amino acid residues are represented by different colors, blue: acidic; red: small ]small+ hydrophobic (incl.aromatic -Y)]; magenta: basic and
green: hydroxyl + sulfhydryl + amine + G. In addition, “*” indicates positions with a single fully conserved residue, “:” indicates conservation between
residues with highly similar properties, and “.” indicates conservation between residues with weakly similar properties. Cysteine residues are
highlighted in bold.
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for NK1 in a dose-dependent manner, reaching 50% of hemolysis at

25 mM approximately. On the other hand, NK4 reached 33% of

hemolysis at the highest concentration analyzed (Figure 4B). In

contrast, NK2 was not hemolytic for human erythrocytes at

concentrations below 100 mM (Figure 4B).
3.4 NK-lysins tissue-distribution pattern

We analyzed the constitutive expression of the three Salmo salar

NK-lysin transcripts, SsNK-lysin 1, SsNK-lysin 2, and SsNK-lysin 4.

The high sequence homology of the salmon NK-lysin transcripts

does not allow us to design specific oligonucleotides for NK-lysin

variants 3, 5, and 6.

When the constitutive expression of SsNK-lysin 1, 2, and 4 were

analyzed in different S. salar tissues, different expression levels were

observed for each transcript analyzed (Figure 5). SsNK-lysin 1 was

highly expressed in skin, head kidney, spleen, and gills, showing its

highest expression level in gills. Besides, SsNK-lysin 1 was also

expressed in muscle, intestine, liver, and heart; SsNK-lysin 2 was

expressed in all tissues analyzed but showed a lower expression level

than the other two transcripts analyzed. On the other hand, SsNK-

lysin 4 showed its highest expression level in the gills, spleen, and

head kidney. In addition, SsNK-lysin 4 was also expressed in muscle,

skin, liver, heart, and intestine. The intestine showed the lowest

expression level for all transcripts analyzed.
FIGURE 2

Phylogenetic analysis of NK-lysin amino acid sequences. A
phylogenetic tree was constructed using the Neighbor-joining
method. Numbers above the branches indicate frequencies per
1000 Bootstrap analysis. NK-lysin protein sequences without signal
peptides from mammals, birds, and teleosts were used for alignment
and phylogenetic tree construction. NCBI GenBank accession
numbers of sequences used are listed in Table 1.
TABLE 4 Salmo salar NK-lysins disulfide bridges predicted by Disulfide by Design 2 server.

ID Template (AlphaFold) Sequence identity (%) Specie Cys 1 Cys 2 Energy (kcal/mol)

SsNK-lysin 1 A0A060YEW6 78.10 Oncorhynchus mykiss

23 95 0.24

26 89 0.48

54 64 0.50

SsNK-lysin 2 A0A4W5LUK4 74.29 Hucho hucho

25 97 0.32

28 91 0.44

56 66 1.22

SsNK-lysin 3 A0A4W5LUK5 75.24 Hucho hucho

25 97 0.28

28 91 0.41

56 66 1.22

SsNK-Lysin 4 A0A060YEW6 77.48 Oncorhynchus mykiss

32 104 0.25

35 98 0.28

63 73 0.51

SsNK-lysin 5 A0A060YEW6 84.68 Oncorhynchus mykiss

29 101 0.24

60 70 0.49

32 95 0.53

SsNK-Lysin 6 A0A060YEW6 84.68 Oncorhynchus mykiss

29 101 0.21

60 70 0.48

32 95 0.57
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3.5 Cytotoxicity toward head
kidney leucocytes

The cytotoxicity of the NK-lysin-derived peptides on S. salar

HKLs was assessed by a standard MTT assay conventionally used to

measure cell viability. As shown in Figure 6, none of the peptides

were significantly toxic to S. salar HKLs at 50 mM, at 24 and 48

hours of treatment, with cell viability greater than 87% at

this concentration.
3.6 Cytokine expression induced by SsNK-
lysin-derived peptides in Salmo salar head
kidney leucocytes

The ability of SsNK-lysin-derived peptides (NK1, NK2, and

NK4) to induce cytokine expression in the S. salar HKL was

evaluated by RT-qPCR. The mRNA expression of IL-10, TGF-b,
TNF-a, IL-8, IL-1b, Mx-1, IFN-g and IL-18 was evaluated after 6,

12, and 48 h post-treatment with synthetic peptides. NK1 at 50 mM
induced a significant increase in the expression of pro-

inflammatory cytokines IL-1b (6- and 12-hours; 1.2- and 18.3-

fold change, respectively), IL-8 (12- and 48-hours; 35- and 2.4-fold

change, respectively), IL-18 (6- and 48-hours; 1.4- and 2.3-fold

change, respectively) and TNF-a (12 hours; 5.4 folds respect to

control). Besides, NK1 at 50 mM induced a significant increase in

the expression of TH1 cytokine IFN-g at 48 hours post-treatment,

reaching 9.6-fold concerning control. NK1 also induced a

significant increase in the expression of IFN-g inducible cytosolic

protein Mx-1 at 6 hours (3.4-fold change). Respect to anti-

inflammatory cytokines, NK1 at 12 hours post-treatment induced
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a significant increase in the expression of IL-10 (4.5-fold change)

and induced a significant increase in the expression of TGF-b at 12-

and 48-hours post-treatment (1.2- and 2.2- fold change,

respectively) (Figure 7).

On the other hand, NK2 at 50 mM induced a significant increase

in the expression of pro-inflammatory cytokines IL-8 (6- and 48-

hours; 2.3- and 1.6-fold change, respectively) and IL-18 (6-, 12- and

48-hours; 1.4-, 1.6- and 1.8-fold change, respectively) and TNF-a (6

hours; 2.5-folds respect to control) (Figure 7). Besides, NK2 at 50

mM induced a significant increase in the expression of IFN-g at 12-
and 48-hours post-treatment reaching 3- and 3.7-folds respect to

control, respectively. NK2 also induced a significant increase in the

expression of Mx-1 at 12 hours (1.9-fold change). Concerning anti-
FIGURE 3

Modeled structure of Salmo salar NK-lysin peptides (SWISS‐MODEL server). The region corresponding to the NK-lysin-derived peptides is indicated
in magenta. The cysteines involved in the disulfide bonds are also indicated.
TABLE 5 Antimicrobial spectrum of synthetic NK-lysin derived peptides
isolated from Salmo salar.

Peptide
name

Microorganisms MICa

(mM)
IC50b

(mM)

NK1

Pisciricketsia salmonis 6.25 1.3

Flavobacterium
psychrophilum

12.5 2.02

NK2

Pisciricketsia salmonis >200 µM _

Flavobacterium
psychrophilum

100 35

NK4

Pisciricketsia salmonis 12.5 5.03

Flavobacterium
psychrophilum

50 6.3
f

aMIC: Minimal inhibitory concentration.
bIC50: The half maximal inhibitory concentration.
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inflammatory cytokines, NK2 at 12- and 48-hours post-treatment

caused a significant increase in the expression of IL-10 (3.7- and

5.1-fold change, respectively) and TGF-b (1.7- and 2.9-fold change,

respectively) (Figure 7).

NK4 at a dose of 50 mM induced the expression of all cytokines

analyzed. At 6 hours post-treatment, NK4 induced the expression of

IL-8 and IL-10, reaching 1.9- and 1.3-fold concerning control,

respectively. The higher expression levels were observed for IFN-g at
12- and 48-hours, IL-1b at 12 hours, IL-8 at 12 hours, IL-10 at 12

hours, and TNF-a at 12 hours (4-, 9.5-, 4.5-, 7.1-, 5.6- and 9.8- fold

change, respectively). Besides, NK4 induced a significant increase in

the expression of IL-1b, IL-8, IL-10 and TGF-b at 48 hours post-

treatment (1.8-, 2.7-, 4.6- and 3.7- fold change, respectively) (Figure 7).
Frontiers in Immunology 12
3.7 Role of MAPK signaling pathways in the
IL-1b expression induced by SsNK-lysin-
derived peptides in SHK-1 cells

To investigate the relationship between the activation of the

MAPK pathways and IL-1b induction, specific inhibitors of the

MAPK pathways were used. The expression of IL-1b was

significantly abrogated when HKLs were treated with NK4 in the

presence of inhibitors, including SB202190, U0126, and SP600125

(p38, ERK1/2, and JNK inhibitors, respectively) (Figure 8). In

contrast, leukocytes treated with NK1 only in the presence of

SB202190 inhibitor significantly abolished the expression of IL-1b
(Figure 8). On the other hand, the expression of IL-1b was
B

A

FIGURE 4

Hemolytic activity of the three Salmo salar NK-lysin-derived peptides against fish (A) and human (B) erythrocytes. The percentage of hemolysis was
defined relative to the hemolysis obtained with the erythrocyte suspension treated with 0.1% SDS (100% hemolysis).
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significantly abrogated when HKLs were treated with NK2 in the

presence SB202190 and SP600125 inhibitors (Figure 8). The results

suggest that activation of the MAPK pathways is not only induced

by NK-lysin-derived but is also necessary for the peptides-induced

immune response.
3.8 SsNK-lysin-derived peptides regulate
PAMPs-induced cytokine expression

We evaluated the immunomodulatory properties of the SsNK-

lysin-derived peptides through their modulation of LPS and poly(I:

C)-induced response in the SHK-1 cell line. SHK-1 cells were

stimulated with LPS or poly(I:C) in the presence or absence of

NK1, NK2, or NK4. The effect of SsNK-lysin-derived peptides on

genes related to inflammatory and antiviral responses is shown in

Figure 9. We found that the LPS challenge significantly elevated the

expression levels of inflammatory cytokines such as the IL-1b, TNF-
a, and IL-8 in the SHK-1 cells at 6 and 12 hrs post-treatment.

However, co-treatment of LPS and NK-lysin-derived peptides

significantly decreased the IL-1b and TNF-a expression levels at

12 hrs post-treatment. At 12 hrs, only the co-treatment of LPS and

NK2 showed a significant decrease in the IL-8 expression level. NK1

and NK4 showed no significant change in the IL-8 expression level

in the presence of LPS. At 6 hrs, the co-treatment of LPS and NK-

lysin-derived peptides increased the IL-1b and IL-8 expression

levels compared to the group treated with LPS alone. The co-

treatment of NK1 or NK2 with LPS for 6 hrs didn’t show significant

differences in the TNF-a expression level. However, the co-

treatment of NK4 and LPS for 6 hrs significantly reduced the

TNF-a expression level compared with LPS alone.
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Besides, we determine if co-treatment with NK-lysin-derived

peptides modulated the antiviral immune response to poly(I:C), a

synthetic ligand of TLR3, and viral mimic in SHK-1 cells. The

expression levels of the IFN-a1 and Mx genes were analyzed at 6-

and 12 hours post-treatment. Poly(I:C) upregulated the expression

of IFN-a1 and Mx only at 6 hrs post-treatment (Figure 9). Co-

incubation with NK-lysin-derived peptides for 12 hrs significantly

increased the transcription of IFN-a1 and Mx compared to poly(I:

C) treated cells (Figure 9). At 6 hrs, the co-treatment of NK2 and

poly(I:C) significantly reduced the Mx expression level. NK1 and

NK4 didn’t affect the Mx expression level in the presence of poly(I:

C). In addition, NK1 and NK2 reduced the IFN-a1 transcription,
FIGURE 5

Relative SsNK-lysin 1, 2, and 4 mRNA expression profiles in nine uninfected Atlantic salmon (S. salar) tissues. The EF-1a reference gene was used as a
normalizer, and the stomach tissue was used as a control or calibrator. The relative expression was determined according to Paff’s mathematical
model (2001) (55). The data was shown as mean ± SD (n=5).
FIGURE 6

Effect of NK-lysin-derived peptides (NK1, NK2, and NK4) on cell
viability (MTT assay) in head kidney leucocytes from Salmo salar
after 24 and 48 hours of treatment with peptides at a concentration
of 50 mM. Values are expressed as means ± S.D. (n=6).
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while NK4 significantly increased this level in the presence of poly

(I:C).
3.9 Effects of SsNK-lysin-derived peptides
on phagocytic activity in Salmo salar head
kidney leucocytes

The phagocytic activity of the head kidney cells treated with

Salmo salar NK-lysin-derived peptides was investigated (Figure 10).

The phagocytosis rate of the head kidney cells treated with NK1 and

NK4 at 50 mM was significantly upregulated at 3 and 6 hrs post-

stimulation compared to that of the control (Figure 10). The NK1

showed the best results in the stimulation of phagocytic activity.
3.10 Cytokine expression profile in the
head kidney of Salmo salar injected with
SsNK-lysin derived peptides

In the in vivo experiment, the immunomodulatory effects of

synthetic NK-lysin-derived peptides were evaluated. To this end,
Frontiers in Immunology 14
Salmo salar (50 g) were ip injected with NK-lysins-derived peptides

(20 mg per fish). The control group was only injected with 100 mL
PBS. At 1-, 3-, 7-, 14- and 21 days post-injection, fish (n = 5 per

treatment group per time point) were euthanized, and head kidneys

were collected for analysis of immune responses by RT-qPCR. The

immune-related genes (IL-8, Mx, IL-4, IL-22, and IFN-g) were

upregulated in the head kidney of the NK1-injected group when

compared with the control one (Figure 11). IL-8 expression was

increased at day 1, 14 and 21 (2.7-, 1.9- and 1.6-fold change,

respectively). Mx expression was increased at day 3 (2.2-fold

change). IL-4 expression was increased at days 3 and 14 (3.4- and

2.4-fold change, respectively). IL-22 expression was increased at

days 3 and 14 (3.8- and 2.6-fold change, respectively). IFN-g
expression was increased at day 14 (2.2-fold change) (Figure 11).

When the fish were injected with NK2, the immune-related genes

(IL-1b, IL-8, IL-4, IL-22, and IFN-g) were upregulated in the head

kidney (Figure 11). IL-1b expression was increased only at day 1

(1.4-fold change). IL-8 expression was increased at days 7 and 21

(2.6- and 1.6-fold change, respectively). IL-4 expression was

increased at days 3 and 7 (1.5- and 1.8-fold change, respectively).

IL-22 expression was increased at day 14 (2.4-fold change). IFN-g
expression was increased at day 7 (2.6-fold change) (Figure 11). The
FIGURE 7

Relative expression of immune-related genes induced by SsNK-lysin-derived peptides in S. salar head kidney leucocytes. Cells were stimulated with
50 mM of the synthetic NK-lysin-derived peptides for 6, 12, and 48 h. Expression levels were analyzed by Real-time PCR. The expression of the
mRNA was analyzed as 2−DDCT relative quantification. The comparative threshold cycle values were normalized for EF-1a. The comparative threshold
cycle values were normalized for EF-1a. Data were expressed as the means ± S.D. of three independent experiments, each in triplicate. Data were
analyzed by ANOVA followed by Dunnett’s multiple comparisons test (* p<0.05; ** p<0.01; ***p < 0.001; **** p<0.0001). The Dunnett post hoc test
was used to compare means from experimental groups against a control group mean.
FIGURE 8

Activation of the MAPK signaling pathway by SsNK-lysin-derived peptides in S. salar HKLs. HKLs were pretreated for 2 hours with 10 mM of SB202190
inhibitor (p38 inhibitor), U0126 inhibitor (mitogen-activated protein kinase 1/2 (MEK1/MEK2) inhibitor) or SP600125 inhibitor (JNK inhibitor). As a
negative control, cells were incubated with 0.1% DMSO as a vehicle for 2 hours. Cells were then incubated with 50 mM of NK1, NK2, NK4, or medium
for 12 hours. The IL-1b relative expression was analyzed by qRT-PCR. The expression of the mRNA was analyzed as 2−DDCT relative quantification.
The comparative threshold cycle values were normalized for EF-1a. Data were expressed as the means ± S.D. of three independent experiments,
each in triplicate. Data were analyzed by ANOVA followed by Šidák’s multiple comparisons test (* p<0.05; ** p<0.01; ***p < 0.001; **** p<0.0001).
Šıd́ák method performs simultaneous joint pairwise comparisons for all possible pairwise combinations of means.
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immune-related genes (IL-1b, IL-8, Mx, IL-4, IL-22, and IFN-g)
were upregulated in the head kidney of NK4-injected group when

compared with the control one (Figure 11). IL-1b expression was

increased at days 14 and 21 (2.2- and 1.9-fold change, respectively).
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IL-8 expression was increased on days 1, 14, and 21 (1.4-, 2.4- and

1.6-fold change, respectively). Mx expression was increased at day

21 (1.9-fold change). IL-4 expression was increased at days 1 and 21

(2- and 3.4-fold change, respectively). IL-22 expression was
FIGURE 9

Modulation of LPS- or poly(I:C)-induced immune responses by co-administration of SsNK-lysin-derived peptides. SHK-1 cells were co-stimulated
with 50 mM of SsNK-lysin-derived peptides (NK1, NK2, and NK4) and 1 µg/mL lipopolysaccharide or 1 µg/mL poly(I:C) for 6 and 12 hours. In addition,
cells were treated with only LPS, poly(I:C), or peptides. Cells with culture medium alone were included as a negative control. The relative expressions
of TNF-a, IL-1b, and IL-8 as LPS-induced responses and of IFN-1a and Mx involved in the antiviral response induced by poly(I:C) were determined
by qRT-PCR. The expression of the mRNA was analyzed as 2−DDCT relative quantification. The comparative threshold cycle values were normalized
for EF-1a. Data were expressed by the means ± S.D. of three independent experiments, each analyzed in triplicate, and by ANOVA followed by
Šidák’s multiple comparisons test (* p<0.05; ** p<0.01; ***p < 0.001; **** p<0.0001). Šıd́ák method performs simultaneous joint pairwise
comparisons for all possible pairwise combinations of means.
FIGURE 10

Effects on phagocytic activity of S. salar head kidney leukocytes (HKL). HKLs were incubated with pHrodo Green-conjugated E. coli bioparticles in
the absence or presence of SsNK-lysin-derived peptides (NK1, NK2, and NK4) at 0, 10, and 50 mM. Phagocytosis in the absence of peptides was set
at 100%. Data were expressed as percentages relative to cells incubated with bioparticles alone. Data represent means ± S.D. of three independent
experiments performed in triplicate. Data were analyzed by ANOVA followed by Šidák’s multiple comparisons test. Asterisks indicate statistically
significant differences compared to phagocytosis in the absence of stimuli (** p<0.01; ***p < 0.001; **** p<0.0001). Šıd́ák method performs
simultaneous joint pairwise comparisons for all possible pairwise combinations of means.
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increased at day 21 (2.2-fold change). IFN-g expression was

increased at days 14 and 21 (1.5- and 1.3-fold change,

respectively) (Figure 11).
4 Discussion

Previously, we identified four putative novel NK-lysin-like

peptides from S. salar based on the EST database (17). We

searched the GenBank gene databases for additional putative NK-

lysin sequences in the present study. As a result, two additional NK-

lysin coding transcripts were identified in Atlantic salmon. Besides,

we identified the genes for the six NK-lysin-like peptides. The

results showed that NK-lysins 1, 2, 3, 5, and 6 are located in

contiguous regions on chromosome 1, whereas the gene for NK-

lysin 4 is on chromosome 9. Similar results were observed in studies

of NK-lysin sequences from C. carpio (20) and O. mykiss (22),

where five genes were identified as clustered on the same

chromosome, and a sixth gene was found on a different

chromosome. The genes located on a different chromosome are

also clustered on a more distant branch of the phylogenetic tree. At

the same time, the other sequences clustered on the same branch of

the tree are located on the same chromosome (22). This evidence

supports the hypothesis that sequences on the same chromosome

are duplicated genes derived from an ancestral gene, which is

associated with gene diversification at the functional and tissue

expression levels.

The two additional NK-lysin-coding transcripts reported here

have a conserved signal peptide, the Saposin domain, and the six

conserved cysteine residues. In addition, the six S. salar NK-lysins

contain at least an additional cysteine residue conserved among

them. SsNK-lysin-1 and SsNK-lysin-6 have eight cysteine residues

in the mature peptide; one is absent in the rest of the S. salar NK-

lysin sequences. On the other hand, SsNK-lysin-5 also has eight

cysteine residues in the mature peptide, but one is only present in

this sequence. The results obtained for S. salar are similar to what

happened in O. mykiss (22). Recently, six genes for rainbow trout

NK-lysin were identified. The rainbow trout nkl1-3 sequences have

seven cysteine residues conserved with S. salar. In addition, the

SsNK-lysin-4 and Omnkl1 sequences have, in the signal peptide, an

additional cysteine residue conserved between them. The presence
Frontiers in Immunology 16
of the conserved cysteine residues and the Saposin-B domain

suggests the existence of six NK-lysins in S. salar.

Although SsNK-lysins contain more than six cysteine residues,

by Disulfide by Design 2 server, these molecules were predicted to

form 3 conserved disulfide bonds. The parameter of main interest in

this analysis was the energy expressed in kcal/mol since lower

energy indicates a higher probability of disulfide bond formation.

This relationship is because lower energy suggests greater stability

in the conformation of disulfide bonds, which favors their

formation in the protein structure. Besides, the hypothetical 3D

structures revealed that the SsNK-lysin peptides possess the four/

five-helical-bundle structure observed in the family of saposin-like

proteins (19, 22).

The presence of more than one copy of NK-lysin in S. salar

agrees with that obtained in other fish species, such as O. mykiss

(22), D. rerio (19), I. punctatus (15), and C. carpio (20). However,

other teleosts and higher vertebrates possess only one NK-lysin/

granulysin (16). This diversity could indicate a specialization of

different proteins in different functions.

The phylogenetic study suggests that the sequences identified

from S. salar are more closely related to the nkl1, nkl2, and nkl3

sequences fromO. mykiss and are clustered in the same clade, which

is consistent with the results obtained by Ma. H et al., 2021 (22),

where the O. mykiss nkl1, nkl2, and nkl3 sequences are more closely

related. In agreement with their sequence homology, this

evolutionary closeness between S. salar NK-lysin orthologous

sequences could be related to whole genome duplication events

(56–59), where the sequences identified here could have originated

from a common ancestor. Therefore, multiple sequence alignment

and phylogenetic analyses suggest that the proteins described here

belong to the NK-lysin family.

NK-lysin are molecules of up to 100 amino acids, which makes

their chemical synthesis difficult. For this reason, short NK-lysin-

derived peptides with immunomodulatory and antimicrobial

activities have been studied. In a previous study, we designed two

27 amino acid peptides derived from SsNK-lysin 1 and SsNK-lysin

2. This design was based on sequence alignments between NK-lysin

identified in S. salar and NKLP27, a peptide derived from NK-lysin

of C. semilaevis (17). In the present study, NK4, derived from SsNK-

lysin 4, was designed based on S. salar NK1 and NK2. The

sequences of the designed peptides correspond to the a-helices
FIGURE 11

Relative transcriptional level of the immune-related gene in fish injected with Salmo salar NK-lysin-derived peptides at 1, 3-, 7-, 14- and 21 days
post-injection. mRNA expression in Atlantic salmon’s head kidney after intraperitoneal injection of NK-lysin-derived peptides. The graph shows the
cytokine fold induction compared to the control group, i.e., fish injected with phosphate-buffered saline. Data were expressed the means ± S.E. and
analyzed by ANOVA followed by Dunnett’s multiple comparisons test (* p<0.05; ** p<0.01; ***p < 0.001; **** p<0.0001) (n = 5). The Dunnett post
hoc test compared means from experimental groups against a control group mean.
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H2 and H3 of the NK-lysin SapB domain. This domain is essential

in the antibacterial activity of NK-lysins (15, 17, 24, 33, 60–62).

It has been demonstrated that NK-lysins from teleost fish

possess antimicrobial activities against various microorganisms

(16, 18, 24, 28, 32, 36, 63, 64). However, no studies show these

peptides’ antimicrobial effect against P. salmonis and F.

psychrophilum. These two critical pathogens cause substantial

economic losses in Chilean salmon aquaculture. Here, we

evaluated the antibacterial activities of Salmo salar NK-lysin-

derived peptides against P. salmonis and F. psychrophilum. NK1

and NK4 demonstrated antibacterial activity against the two Gram-

negative bacteria. However, NK2 was only active for F.

psychrophilum. These results suggested that these peptides could

be efficacious in eliminating such bacteria.

The ability of AMPs to lyse eukaryotic cells is one of the

significant obstacles to the use of AMPs. In the present work, we

evaluated the hemolytic activity of synthetic peptides derived from

NK-lysin. As a result, we obtained that NK1 was the most hemolytic

peptide in human and fish erythrocytes, compared to NK2 and

NK4. This peptide, compared to the other two, has the highest net

charge (+6) and hydrophobic moment (0.53) and an intermediate

value of hydrophobicity (0.07). Several studies show that the

hemolytic activity of a-helical AMP is related to the hydrophobic

characteristics of the peptide (65–67). Other studies have shown

that net charge modulates the specificity and efficacy of these

peptides’ antimicrobial and hemolytic activity (65, 68). In

addition, the increase in hydrophobic moment, representing a

quantitative measure of amphipathicity, increases hemolytic

activity (65, 69). However, it is essential to note that there is no

single factor that determines the antimicrobial and cytotoxic

activity of an AMP; somewhat, these activities are influenced by a

combination of factors such as sequence, net charge,

hydrophobicity, and position of cationic residues (70). There are

relatively few studies evaluating the hemolytic activity of NK-lysin-

derived peptides. Most of these studies show low hemolytic activity

for these peptides (15, 62, 71–75).

The most relevant immune tissues in teleost fish are the thymus,

head kidney, caudal kidney, skin, gills, liver, spleen, and gut. The

gills are mucosa-associated lymphoid tissues constituting an

essential physical barrier and constantly being exposed to

pathogens. Therefore, many immune-related molecules can be

detected in the gills. In addition, the head kidney, and spleen are

important sites of immune system activity and play a key role in

defense against pathogen invasion (18). The NK-lysin protein has

been extensively studied in mammals (76, 77). In addition, the most

abundant constitutive expression of NK-lysin was identified in

lymphoid tissues/cells in mammals (13, 76, 78, 79). In some

teleost fish, the higher expression of NK-lysins has been detected

in the gills, spleen, and/or head kidney (18, 20, 21, 80, 81). Under

normal physiological status, the S. salar NK-lysins 1, 2, and 4 exhibit

different expression patterns and abundances. However, the higher

expression of all SsNK-lysin analyzed had been detected in gills,

spleen, and/or head kidney. In rainbow trout, a salmonid species,

nkl1 and nkl3 transcripts were expressed in all tissues examined.

The nkl1 showed the highest expression levels in the gills and

spleen, whereas nkl3 showed higher expression levels in the gills
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(22). The distribution of nkl2 and nkl4 transcripts was mainly

restricted to the central nervous system (brain and pineal gland)

and oocytes, but expression levels were generally low (22). In

summary, S. salar NK-lysins 1, 2, and 4 are mainly expressed in

immune tissues, suggesting they play a role in host immune defense.

In the present study, we showed that S. salar NK-lysin-derived

peptides (NK1, NK2, and NK4) are potent stimulants of Salmo salar

head kidney leukocytes and can up-regulate many cytokines from the

innate and adaptive immune response. NK-lysin and their derived

peptides modulating gene expression have been investigated

previously in fish, but with only a limited number of cytokine

genes studied (17, 30, 82), and the studies of immunomodulatory

functions of NK-lysin in salmonids are scarce (17, 22). In our

research, NK-lysin-derived peptide treatments upregulated most

immune-related genes analyzed. NK1 and NK4 have the most

prominent effects in the induction of pro-inflammatory cytokines

(IL-1b, TNF-a and IL-8). Besides, these peptides increased the

expression of TH1 cytokine IFN-g and anti-inflammatory cytokine

IL-10 and TGF-b. Although NK2 induces the expression of most of

the genes analyzed, its effect is more modest compared to NK1 and

NK4. It has been demonstrated that in addition to NK-lysins direct

antimicrobial ability, these molecules may also have regulatory effects

on immune cells. One study showed that a chicken NK-lysin-derived

peptide (cNK-2) induced the expression of CCL4, CCL5, and IL-1b in
HD11 and CCL4 and CCL5 in primary chicken monocytes (83). In

addition, human granulysin increased the proinflammatory cytokines

IL-6, IL-8, TNF-a, and IL-12 in T helper cell populations (84). In

addition, we reported the effects of NK1 and NK2 on the expression

of IL-1b, IL-8, and IFN-g in head kidney leucocytes after 4 hours of

treatment (17). There are some differences between our previous

results and those obtained in the present work. These differences may

be due to the different treatment times used and the fact that the

assays were performed on primary cultures of the anterior kidney

from different fishes. Therefore, the immune responses may vary

according to genetic differences in the animals and differences in

intrinsic factors such as sex, age, and immunological history (85).

Mitogen-activated protein kinases (MAPKs) are serine/

threonine kinases conserved from yeast to mammals (86–88). In

vertebrates, MAPKs contain three subfamilies of protein kinases:

extracellular signal-regulated kinases (ERKs), c-Jun NH2-terminal

kinases (JNKs), and the p38 family (89, 90). The MAPK signaling

pathway is essential in innate and adaptive immunity and involves

various cellular functions such as inflammation, cell differentiation,

proliferation, and cell death (91). Besides, MAPK proteins induce

the transcription of cytokines and chemokines (90–92). Since the

MAPK pathway plays a central role in immunity and mediates the

production of chemokines and cytokines, we evaluated whether

NK-lysin-derived peptides induce IL-1b expression through this

signaling pathway in HKLs from S. salar. According to our results,

NK1 mediates the induction of IL-1b expression through the p38

MAPK pathway. NK4 induces IL-1b expression through p38,

ERK1/2, and JNK MAPKs, whereas NK2 does so through p38

and JNK MAPKs. Our results are consistent with previous studies

that reported the activation of MAPK signaling pathways by

antimicrobial peptides or host defense peptides (HDP). LL-37

signals through induction of phosphorylation of MAPK proteins,
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ERK1/2, and p38, in peripheral blood-derived monocytes and a

human bronchial epithelial cell line (HBE) (93). At least two of the

immunomodulatory properties of LL-37 increased IL-8 secretion

and transcription of the chemokine’s monocyte chemoattractant

protein 1 (MCP-1), MCP-3, and IL-8, are dependent on activation

of p38 and ERK1/2 kinases (93). Besides, Kim et al. (2017)

demonstrated that chicken NK lysin-derived cNK-2 stimulates the

MAPK pathway and induces the expression of proinflammatory

cytokines and chemokines (83). On the other hand, it was

demonstrated that chicken defensin (AvBD8) mediates the

immune response through the MAPK signaling pathway by

phosphorylating ERK1/2 and p38 signaling molecules (94). Our

work is the first study in fish to demonstrate that NK-lysin-derived

peptides modulate the immune response through activation of the

MAPK signaling pathway in the S. salar HKLs.

In the present work, we determined the effect of S. salar NK-

lysin-derived peptides on the response of SHK-1 cells to the

pathogen-associated molecular patterns (PAMPs), LPS, and poly

(I:C). We demonstrate that the peptides modulate the immune

response to LPS by inhibiting the expression of pro-inflammatory

cytokines such as IL-1b and TNF-a at 12 hours of stimulation. To

our knowledge, no studies in fish describe the regulation exerted by

NK-lysin on the immune response induced by PAMPs. The only

report that exists for NK-lysin is in chicken. Kim et al. (2017)

demonstrated that a chicken NK-lysin-derived peptide (cNK-2)

modulates the LPS-induced inflammatory response with reduced

expression of the proinflammatory cytokine IL-1b in HD11 cells

and monocytes (83). Numerous studies demonstrate that

antimicrobial peptides inhibit the proinflammatory responses

produced by various Toll-like receptor ligands, including LPS, by

reducing proinflammatory mediators (95–101).

On the other hand, we demonstrate that the peptides modulate

the immune response to poly(I:C) by enhancing the expression of

antiviral genes such as IFN-a1 and Mx at 12 hours of stimulation.

Studies describing the role of antimicrobial peptides in regulating the

poly(I:C)-induced immune response are more controversial. For

example, LL37 enhanced poly(I:C)-induced IL-6 and IFN-b levels

when compared to poly(I:C) alone in bronchial epithelial cells (102).

Besides, the treatment of human PBMCs with either LL37 or poly(I:

C) had modest effects on IL-1a, MCP-1, and IP-10 levels, but the

addition of LL37 and poly(I:C) increased the levels of IL-1a, MCP1,

and IP10 by at least ten-fold above the levels seen with either poly(I:

C) or LL37 alone (102). These results demonstrate that LL37 and poly

(I:C) combination enhances cytokine production in primary cells as

in immortalized cell lines. Another study evaluated the effect of poly

(I:C) in the RAW 264.7 cell line in the presence or absence of the

peptide BMAP-28 (Bovine Myeloid Antimicrobial Peptide of 28

predicted amino acid residues) (97). The poly(I:C) increased IFN-b
gene expression in cells stimulated for 3 h. BMAP-28 significantly

increased this response. Although poly(I:C) alone was a weak inducer

of IL-1b, TNF-a, and IL-6 genes compared with the effect produced

by LPS, its effect was detectably increased in the presence of BMAP-

28 (97). Another study determined the effect of the human defensin

hBD3 on the response of primary macrophages to poly(I:C). As a

result, they obtained that poly(I:C) in the presence of hBD3 has an

exacerbated IFN-b response and decreases CXCL10 production, in
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vitro and in vivo, both in mice and human primary cells (103). The

results of other studies contradict those described above (101, 104).

The effect of the antimicrobial peptide LL-37 on the proinflammatory

responses of human gingival fibroblasts (HGF) stimulated with

microbial Toll-like receptor (TLR)-stimulating compounds such as

poly(I:C) was evaluated. LL-37 suppressed poly(I:C)-induced IL-6,

IL-8 and CXCL10 expression (101). Another study showed that RAW

264.7 macrophages produced TNF-a, IL-6, and IL-1b after

stimulation with poly(I:C), and this stimulation was inhibited in a

dose-dependent manner by mCRAMP or LL37 peptides. This study

showed that TLR3 signaling was not enhanced but drastically

inhibited by LL37 or mouse cathelicidin-related antimicrobial

peptide (mCRAMP) in macrophages, microglial cells, and dendritic

cells and that the inhibition correlated with the formation of a strong

complex between antimicrobial peptides and poly(I:C), which

partially inhibited the binding of poly(I:C) to TLR3 (104).

Considering the above results, additional studies are required to

investigate further the effect of NK-lysin peptides on the PAMPs-

induced response and their mechanism of action. It is important to

note that the antiviral genes IFN1a and Mx were chosen as there are

studies, both in vitro and in vivo, demonstrating that poly(I:C)

induces the expression of these genes in several species (103, 105–

113). In most previous in vitro studies, they used a poly(I:C) dose of

10, 25, or 50 mg/ml (101, 103, 111–113). The effect of poly(I:C) when

using these doses is far superior to that obtained in the present work.

However, to better evaluate the immunoregulatory effects of peptides

on poly(I:C)-induced antiviral gene expression, we decided to use a

much smaller dose (1 mg/ml) in our assays. We suggest that the dose

is the fundamental reason why the effect of poly(I:C) is much lower

than reported in previous studies.

Phagocytosis in vertebrates has been recognized as a critical

component of innate and adaptive immune responses to pathogens

and is crucial for tissue homeostasis and remodeling (114). The cells

responsible for phagocytosis in teleost fish include neutrophils,

monocytes of the hemopoietic organs, and free and fixed

macrophages of the spleen and kidney. These cells achieve

pathogen clearance through respiratory burst and reactive oxygen

species production (115). In teleost fish, the cephalic kidney is an

essential lymphoid organ in the proliferation and differentiation of B

lymphocytes (116) and macrophage production (117). It acts as a site

for capturing and processing pathogens and foreign substances (118).

In the present work, we evaluated the effects of NK-lysin-derived

peptides over phagocytic activity in head kidney leukocytes from S.

salar. We obtained that the phagocytosis rate of the head kidney cells

treated with NK1 and NK4 at 50 mMwas significantly upregulated at

3 and 6 hrs post-stimulation compared to that of the control. The

previous results concerning the phagocytic activity of fish NK-lysin

peptides are controversial. A 2019 study investigated the effects of an

NK-lysin-derived peptide from Boleophthalmus pectinirostris

(BpNKLP40) on phagocytosis in monocytes/macrophage (MO/

MФ) of B. pectinirostris and observed that treatment with

BpNKLP40 had no significant effect on phagocytosis of FITC-E.

tarda by these cells (24). Another study in Nile tilapia (O. niloticus)

evaluated whether the phagocytic activities of MO/MФ from anterior

kidney leukocytes could be enhanced by stimulation with tilapia NK-

lysin protein. For this, cells were incubated with fluorescent
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1191966
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ortega et al. 10.3389/fimmu.2024.1191966
microspheres (0.5 and 1.0 mm microspheres) and bioparticles (S.

agalactiae and A. hydrophila) for analysis by flow cytometry. The

result suggests that NK-lysin protein enhances the phagocytic

activities of MO/MF. Moreover, this enhancement in phagocytosis

induced by NK-lysin protein was dose-dependent (82). In addition,

the phagocytic activity of leukocytes derived from the anterior kidney

and spleen of P. olivaceus exposed to rPoNKL was evaluated. As a

result, it was observed that this activity did not vary significantly

compared to untreated cells (119).

The antimicrobial peptides can be used as immunostimulants

or molecular adjuvants. However, to use an antimicrobial peptide as

an immunostimulant or a vaccine adjuvant in a fish species, it is

necessary first to understand the events of the host response, the

activation of inflammatory responses, and adaptative defense

mechanisms. Among the potential fish AMPs, NK-lysin-derived

peptides have shown direct or indirect antibacterial, antiviral, and

antiparasitic activities (15, 16, 19, 33, 40, 120–123). However, only a

few studies have evaluated the immunomodulatory activity of fish

NK-lysin in vivo (16, 27, 33, 124). We are unaware of any other

reports directly showing the effects of NK-lysin over cytokines from

the adaptive immune response. In the present study, we used a

targeted approach to determine the impact of Salmo salarNK-lysin-

derived peptides on selected immune-relevant genes to gain in-

depth information on these events in our model specie, the Atlantic

Salmon (Salmo salar). At varying degrees of intensity and at

different post-injection times, S. Salar NK-lysin-derived peptides

induce the expression of pro-inflammatory cytokine IL-1b, IL-8;
antiviral protein Mx; TH1 cytokine IFN-g (125); TH17 cytokine IL-

22 (125) and TH2 cytokine IL-4/13 (125).

Our results in Atlantic salmon show that innate and adaptive

immune responses are activated following NK-lysin-derived

peptides injection, activating multiple pathways. All these data

suggest that NK-lysin can be used as a potent immunostimulant

or a vaccine adjuvant in fish aquaculture.
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