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Single cell analysis via mass
cytometry of spontaneous
intestinal perforation reveals
alterations in small intestinal
innate and adaptive
mucosal immunity
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and Liza Konnikova1,2,3,4*

1Department of Pediatrics, Yale University, New Haven, CT, United States, 2Division of Neonatal and
Perinatal Medicine Yale University, New Haven, CT, United States, 3Department of Obstetrics,
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Introduction: Spontaneous intestinal perforation (SIP) is a poorly understood

severe gastrointestinal complications of prematurity which is poorly understood.

Extremely premature infants born prior to 28 weeks’ gestation develop a localized

perforation of the terminal ileum during the first week of life and therapy involves

surgery and cessation of enteral feeds. Little is known regardj g the impact of

mucosal immune dysfunction on disease pathogenesis.

Methods: We performed mass cytometry time of flight (CyTOF) of small intestinal

mucosa of patients with SIP (Gestational age (GA) 24 – 27 weeks, n=8) compared

to patients who had surgery for non-SIP conditions (neonatal (GA >36 weeks, n=5 )

and fetal intestine from elective terminations (GA 18-21 weeks, n=4). CyTOF

analysis after stimulation of T cells with PMA/Ionomycin was also performed.

Results: We noted changes in innate and adaptive mucosal immunity in SIP. SIP

mucosa had an expansion of ckit+ neutrophils, an influx of naïve CD4 and CD8 T

cells and a reduction of effector memory T cells. SIP T cells were characterized by

reduced CCR6 and CXCR3 expression and increased interferon gamma expression

after stimulation.

Discussion: These findings suggest that previously unrecognized immune

dysregulation is associated with SIP and should be explored in future studies.

KEYWORDS

neonate, spontaneous intestinal perforation, NEC, newborn, mucosal immunity,
T cells, neutrophils
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Introduction

In the U.S, 10% of pregnancies result in premature birth prior to

37 weeks’ gestation and complications of prematurity are a leading

cause of under-five years mortality (1). Spontaneous intestinal

perforation (SIP) and necrotizing enterocolitis (NEC) are

gastrointestinal complications of prematurity with high morbidity,

mortality and economic burden (2-5). The prevalence of SIP is

between 3–8% in extremely low birth weight (birthweight < 1000g)

infants in the United States (5). While the etiology of SIP remains

unclear, hypoxia during delivery, defects in the muscular layer of the

intestine, antenatal steroid exposure, chorioamnionitis, multiple

gestation, and early indomethacin use have all been implicated (6-

10). Studies on the pathogenesis of SIP are limited and have failed to

provide clear insights into preventive, diagnostic and therapeutic

strategies. Since the first reported case of SIP over 50 years ago, no

improvements have been made in the treatment of the disorder (11).

The diagnosis typically occurs in the first week of life when affected

infants present with abdominal distension, with or without clinical

instability, and free air in the abdomen (pneumoperitoneum) evident

on radiographs (12). The current standard of care is surgical

intervention (drain into abdomen or resection of compromised

tissue), cessation of enteral nutrition, and a course of antibiotics

(13, 14). This is the same treatment utilized when there is an intestinal

perforation in NEC. Given the limited understanding of disease

pathophysiology, there is a lack of specific strategies to improve

outcomes in at risk infants through either the treatment or

prevention of SIP.

To date, studies investigating the pathogenesis of SIP have been

limited. Markers of inflammation including galectin-4 (15) and pro-

inflammatory cytokines, specifically IL6, IL8, IL1b, TNFa showed

modest increase in infants with SIP (16). Additionally, the impact of

some pre- and postnatal exposures to indomethacin and

dexamethasone which are associated with the risk of developing SIP

has been evaluated in a murine model (10, 17, 18). Exposure to

indomethacin and dexamethasone impacts endothelial cells and

subsequent loss of smooth muscle integrity could contribute to SIP

susceptibility. However, no studies to date examine the mucosal

immune landscape at the time of intestinal injury in neonates

with SIP.

In the past decade our understanding of fetal and neonatal

immunity has evolved. Recent studies suggest that by mid-gestation,

human fetuses have complex and well-developed intestinal immune

systems (19–21). Consequently, defects in immune regulation or

development can potentially contribute to a range of intestinal

diseases in premature infants, including SIP, not thought to have

an immunological origin. We have previously reported on innate

immune differences in SIP affected mucosa when compared to fetal,

NEC, and neonatal intestine (22). In the current manuscript, we

describe innate and adaptive mucosal immune dysregulation in SIP,

with an influx of ckit+ neutrophils and naive CD4 and CD8 T cells, a

reduction in effector memory T cells and reduced expression of

CCR6 and CXCR3 in CD4 and CD8 T cells. This data suggests the

presence of altered innate and adaptive mucosal immunity in the

human intestine at the time of SIP occurrence. Thus, potentially

implicating altered mucosal immune function in the pathogenesis of

SIP in extremely premature neonates.
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Methods

Human small intestinal tissue acquisition
and processing

Small intestinal tissue samples from patients were obtained from

patients undergoing surgery for SIP, NEC and congenital anomalies

(neonatal) with institutional review board (IRB) approval (Table 1).
TABLE 1 Samples used in this study C- cytof, H- H- hematoxilin & eosin
staining, S- PMA/Ionomycin stimulation.

Condition

Gestatonal
age (GA,
weeks)

corrected GA
at surgery
(weeks) Sex Experiment

Fetal 21 n/a M C, H

Fetal 21 n/a M C, H

Fetal 18 n/a M C

Fetal 21 n/a n/a S

Neonatal 38 45 M C, H,S

Neonatal Term Term F C, H, S

Neonatal Term Term M C, S

Neonatal 37 37 F C, S

Neonatal 36 37 F H, S

SIP 24 25 F C, S,

SIP 24 34 F S

SIP 26 28 n/a C, S

SIP 25 26 M C

SIP 25 26 M C,S

SIP 25 26 M C

SIP 25 26 F C

SIP 24 26 F C

SIP 26 27 M H

SIP 27 27 F H

NEC 25 31 n/a C

NEC 24 29 M C

NEC 25 33 n/a C

NEC 23 29 F C

NEC 31 32 M C

NEC 23 29 F C

NEC 25 29 F C

NEC 32 33 M C

NEC 32 33 M C

NEC 39 40 F C

NEC 26 29 M C

NEC 28 32 F C

NEC 24 29 F C
frontiersin.org

https://doi.org/10.3389/fimmu.2023.995558
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Olaloye et al. 10.3389/fimmu.2023.995558
Deidentified tissue samples were obtained under a discarded

specimen protocol for non-human research after approval by the

University of Pittsburgh IRB (IRB# PRO17070226). Human fetal

small intestine (SI) from elective terminations without any known

genetic defects was obtained from the University of Pittsburgh

Biospecimen core after IRB approval (IRB# PRO18010491,

Table 1). Gestational age, sex, diagnosis, and anatomic location of

tissue sample were available for each sample (Table 1). All samples

from SIP cases were from the terminal ileum. Samples from NEC and

neonatal controls were included if obtained from terminal ileum or

ileum. Clinical characteristics and demographic data were not

available. Intestinal tissue samples were cryopreserved in 10%

dimethyl sulfoxide (DMSO) in fetal bovine serum (FBS) after they

were cut into small sub-centimeter pieces per our previously

published protocol (23). Samples were stored at -80°C in Mr. Frosty

for 24 hours then transferred into liquid nitrogen until the time

of analysis.
Tissue digestion

Samples were thawed and washed in RPMI Media 1640 1X

(Gibco) plus 10% FBS (Corning), 1X GlutaMax, 10mM HEPES, 1X

MEM NEAA, 1mM sodium pyruvate (Gibco), 100 I.U/mL penicillin

and 100 micrograms streptomycin. Tissue samples were incubated

overnight at 37°C in same media as well as 100µg/mL DNase1 and

100 mg/mL collagenase A. The next day, samples were dissociated on

the gentleMACS Octo Dissociator with heaters (Miltenyi Biotec,

Auburn, California, U.S) per the heated human tumor protocol 1.

The tissue was then filtered through a 70µM nylon mesh strainer

(Sigma). Single cell suspension was then made by washing with

Dulbeco’s Phosphate Buffered Solution (DPBS) without Ca2+ and

Mg2+ (Sigma).
CyTOF staining

Samples used for surface immunophenotyping with antibodies

(Table S1) were not stimulated while samples used to assess cytokine

production with cytokine panel (Table S2) were stimulated with 50

mg/mL phorbol 12-myristate 13-acetate (PMA) and 1 mg/mL

ionomycin at 37°C and 5% CO2 for 4h and incubated with

GolgiStop and GolgiPlug (BD Biosciences) according to the

manufacturer’s instructions. We stained with rhodium (Rh103,

Standard Biotools) for viability. The cells were washed with cell-

staining buffer (CSB) which consists of DPBS with 0.5% bovine serum

albumin (Sigma) and 0.02% sodium azide. A cocktail of antibodies

tagged to heavy metals (Table S1) was added to the suspension. For

the intracellular panel samples, the cells were washed with CSB after

surface staining, incubated in FOXP3 fixation and permeabilization

solution (Invitrogen). Next, cells were washed with 1X FOXP3 wash

buffer and incubated in intracellular antibody cocktail (Table S2).

Next samples were washed in CSB, fixed in 1.6% paraformaldehyde

(Sigma) and kept in CSB overnight at 4°C. The following day, samples

were labeled with 191Ir/193Ir DNA intercalator (Standard Biotools)

and shipped overnight to the Longwood Medical Area CyTOF Core

of the Dana-Farber Cancer Institute. Cells were washed in MiliQ
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water and beads added for normalization. Samples were analyzed on

Helios cytometer (Fluidigm) at an acquisition rate of 250 events/s.

Bead normalization was performed and fcs files were exported to dfci

pydio cloud.
CyTOF data analysis

Files were uploaded to Premium Cytobank® and then gating for

bead-, DNA+, Rh103- and single cells+ was performed. The files were

manually gated for CD45+ for all leukocytes (Figure S1A), CD3-

CD19-CD66b- for innate cells, CD3+ for T cells, and for intracellular

cytokine analysis CD45RA+CCR7+ (naïve) and CD45RA-CCR7-

(effector memory) populations were exported (Figures S2A, S3A).

Next, these populations were downloaded as events from Premium

Cytobank® and analyzed in cytofkit (24). Transformation in cytofkit

was done with cytofAsinh, merged with ceil, and dimensionality

reduction with t-Distributed Stochastic Neighbor Embedding

(tSNE). Automatic clustering was performed using Rphenograph

and k=30. The cluster abundances and mean metal intensity were

extracted for cytofkit data in excel spreadsheets, and plots generated

using GraphPad Prism®. For principal component analysis in

GraphPad Prism® 9, percentages from clusters of CD45 and (PCA)

were inputted as continuous variables and condition (fetal, neonatal,

SIP) as a categorical variable. PCA was performed using parallel

analysis with 1000 simulations and 2 components with highest

variance (PC1, PC2) were selected and are displayed in

Figures 1E, 2C.
Hematoxylin & eosin sections and imaging

Formalin fixed paraffin embedded sections were cut at 5 mm by

the Yale Histology core and stained with hematoxylin and eosin.

Slides were imaged on an Echo Revolve microscope (Echo) at 4X and

10X magnification and edited using Adobe® Illustrator.
Results

ckit+ neutrophils are present in
SIP-affected mucosa

Although SIP is currently thought to be multifactorial

(Figure 1A), the role of immune dysfunction has not been explored.

To characterize the mucosal immune landscape at the time of injury

in SIP, we reanalyzed mass cytometry data (22) from SI samples from

8 patients with SIP, 5 neonatal samples for patients who had surgery

not related to NEC or SIP, and fetal intestine from elective

terminations. To determine if differences noted in SIP could be due

to intestinal perforationand or inflammation from surgery, we

included analysis of tissue from 12 patients with NEC affecting the

ileum [Table 1, (22)]. First, to visualize the structure of the intestinal

mucosa in SIP, FFPE sections stained with H&E were imaged. In 2/3

of cases where formalin fixed paraffin embedded tissue was available,

intestinal tissue structure appeared to be grossly preserved. In one

case there was evidence of epithelial cell disruption (Figure S1A).
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Next, samples (Table S1 and Figure 1B) were analyzed using CyTOF

with a panel of surface antibodies and automated unbiased clustering

using RPhenograph (Table S1) to identify major populations including

T cells, B cells, monocytes/macrophages (Mf), neutrophils, natural killer
(NK) cells and innate lymphoid cells (ILCs, Figures 1C, S2A–C). The

immune landscape in SIP was distinct, with a trend towards an increase in

neutrophils (Figures 1D–F) without major differences in the abundance of
Frontiers in Immunology frontiersin.org04
most other cell types except for a relative reduction in non-monocyte/Mf
antigen presenting cells (APCs) as well as ILCs in SIP compared to fetal

and neonatal samples (Figure 1G). There were no differences in

population of monocytes/Mf in SIP compared to controls (Figure S2D).

To identify the phenotype of neutrophilic infiltrate in SIP, the

relative expression of canonical surface markers and chemokines was

used (Figure S2E). Notably, the abundance of cluster 9 (ckit+
A B

D

E F

G

C

FIGURE 1

Immune landscape in neonatal spontaneous intestinal perforation (A) Exposures that increase susceptibility to SIP. (B) Samples analyzed using suspension
mass cytometry (CyTOF) listed with gestational age (GA) detailed in Table 1. (C). t-stochastic neighborhood embedding (tSNE) of all leukocytes (CD45+)
exported from Premium Cytobank after manual gating (Figure S1A). Populations were defined using canonical markers outlined in Figure S1B. (D) Density
plots of samples in each group, fetal n=3, neonatal n=4, SIP n=8. (E) Principal component analysis plot based on CD45+ populations in C generated with
GraphPad® Prism 9 (Methods). (F) All, ckit+, HLADR/CD11c+ neutrophils expressed as a percentage of all CD45+ cells. (G) Non-mono/MfAPCs and ILCs
expressed as a percentage of innate cells (CD3-CD19-). Each dot represents 1 case (fetal n=3, neonatal n=4, SIP n=7). Non-Mf APCS – non-macrophage
antigen presenting cells. NK/ILCs – natural killer/innate lymphoid cells. p-value, K-W Kruskal-Wallis test.
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neutrophils) was significantly increased in SIP over both fetal and

neonatal samples with a non-significant trend towards an increase in

HLADR/CD11c+ neutrophils also in SIP. Ckit is a marker of

immature oxidative neutrophils (Figure S2F). HLADR and CD11c

expression on neutrophils in cluster 21, suggests that these represent a

population of neutrophil/dendritic cell (DC) hybrids. Interestingly,

these populations were specific to SIP and underrepresented in

neonates with intestinal perforation secondary to NEC (Figure S2E).
Influx of naïve and concomitant reduction in
effector memory T cells in SIP

To determine if there were differences in the adaptive immunity in

SIP, we explored the phenotype of the T cells present in SIP-affected

mucosa. CD3+CD19- cells were analyzed using RPhenograph clustering

with identification of 29 distinct populations (Figures 2A, S3A, B).

Although, we did not find abundance differences in major T cell
Frontiers in Immunology 05
subtypes between SIP, fetal, and neonatal tissues (Figures S3C, D), we

again noted a unique T cell landscape in SIP compared to neonatal and

fetal samples (Figures 2B, C). There was a significant increase in naïve

(CD45RA+CCR7+) CD4+ T cells and a decrease effector memory (EM,

CD45RA-CCR7-) CD4+ T cells in SIP compared to fetal and neonatal SI

(Figures 2D, E). Similarly, naïve CD8+ T cells were increased and EM

CD8+ T cells were reduced in SIP compared to fetal and neonatal SI

(Figure 2F). To ensure that this phenotype is specific to SIP, we

compared them to NEC samples and again noted that influx of naïve

CD4+ and CD8+ T cells with a reduction in effector memory CD4+ T

cells was unique to SIP (Figures S4A, B).

Tissue resident memory (TRM) T cells are a population of T cells

that are present in specific tissue sites and confer local and immediate

responses to infection and have been implicated in the pathogenesis

of various inflammatory diseases (25–28) that are present in human

fetal intestine (19–21). In SIP-affected mucosa, we identified a trend

towards reduction of both CD4+ and CD8+ TRMs (CD69+CD45RA-

CCR7-) compared to fetal SI (Figures 2E, F), suggesting that defects in
A B

D

E

F

C

FIGURE 2

Influx of naïve CD4+ and CD8+ T cells in SIP-affected mucosa. (A) t-stochastic neighborhood embedding (tSNE) of all CD3+CD19- cells. (B) Density plots
by group fetal n=3, neonatal n=4, SIP n=7 of CD3+CD19- cells. (C) Principal component analysis of CD3+ clusters (Figures 2A, S2A) generated in
GraphPad Prism © 9 (see methods). (D) T cell populations are defined by CD45RA, CCR7, CD69 expression. (E, F). Naïve (CD45RA+CCR7+), central
memory (CM, CD45RA-CCR7+), effector/TEMRA (effector memory (CD45RA-CCR7-), and tissue resident memory (TRM, CD69+CD45RA-CCR7-)
expressed as a percentage of CD4+ T cells (E) and CD8+ T cells (F). Each dot represents 1 case (fetal n=3, neonatal n=4, SIP n=7). p-value, K-W Kruskal-
Wallis test.
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memory T cell generation could contribute to the pathogenesis of SIP.

We noted a decrease in NKT cells (Figure S5A) and a trend towards

fewer regulatory T cells (Tregs), particularly of the CD8 phenotype in

SIP mucosa (Figure S5B).
Altered expression of chemokines CCR6 and
CXCR3 in SIP T cells

We then sought to evaluate the expression of chemokines

involved in activation and migration on the T cells present in SIP-
Frontiers in Immunology 06
affected mucosa. CCR6 and CXCR3 expression can also be used to

differentiate between different subtypes (Th1, Th2, Th17, Th1/17) of

effector, antigen experienced, CD4+ T lymphocytes. We noted a

reduction in CXCR3+CCR6- (Th1-like) and CXCR3+CCR6+ (Th1/

17-like) with an increase in CXCR3-CCR6- (Th2-like) CD4+ T cells in

SIP (Figure 3A) which has been described in peripheral blood of

neonates (29). Likewise, overall CCR6 and CXCR3 MMI (mean metal

intensity) was globally reduced on SIP CD4 T cells though a reduction

in CCR6 and CXCR3 expression was noted only on naïve CD8 T cells

(Figures S5C, D). To determine which cell subsets had altered CCR6

and CXCR3 expression we evaluated the mean metal intensity (MMI)
A

B D E

F G IH

J

C

FIGURE 3

CCR6 and CXCR3 expression on T cells in SIP mucosa. (A) CCR6-CXCR3+, CCR6-CXCR3-, CCR6+CXCR3+ cells expressed as a percentage of CD4+ T
cells. B-E. MMI of CCR6 expression on Naïve CD4+ (B), EM CD4+ (C), Naïve CD8+ (D), EM CD8+ (E) T cells. (F-I). MMI of CXCR3 expression on Naïve
CD4+ (F) EM CD4+ (G), Naïve CD8+ (H), EM CD8+ (I) T cells. (J) MMI of HLADR and CD27 on Naïve CD4+ T cells. In A, each dot represents 1 case. B–I:
Each dot represents the median expression of CCR6 on that population of cells in each case (methods, fetal n=3, neonatal n=4, SIP n=7). EM, effector
memory; MMI, mean metal intensity, p-value; K-W, Kruskal-Wallis test.
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for each individual T cell subset. We noted a significant reduction in

the expression of CCR6 on naïve CD4, EM CD4 and naïve CD8 T

cells in SIP compared to fetal and neonatal samples (Figures 3B–E).

Similarly, the expression of CXCR3 was reduced in SIP compared to

fetal and neonatal samples on naïve CD4, EM CD4 and naïve CD8 T

cells (Figures 3F–I). CCR6 but not CXCR3 expression was reduced on

CD4 T regs in SIP. Expression of CCR6 and CXCR3 were not altered

on CD8 T regs in SIP (Figures S5E, F).
Frontiers in Immunology 07
As both CXCR3 and CCR6 can be upregulated on activated T

cells, we examined markers of T cell activation such as HLADR, CD27

and CD38 on SIP associated T cells. There were no changes in global

expression of HLADR or CD38 on CD4 or CD8 T cells (Figures S5C,

D). However, HLADR was significantly reduced on naïve CD4 T cells

in SIP compared to both fetal and neonatal cases (Figure 3J).

Meanwhile, CD27 expression was increased in SIP cases (Figure 3J).

There was also a trend towards increased expression of other
A B

D E

C

FIGURE 4

Interferon gamma (IFNg) expression is increased in T cells in SIP. (A) t-SNE of naïve (CD45RA+CCR7+) CD4+ T cells after stimulation with PMA/Ionomycin
exported from Premium Cytobank®. (B) MMI expression of IFNg on all, CCR6+, CXCR3+, FOXP3+ naïve CD4+ T cells after stimulation. (C) MMI of IL8 on
naïve T regs. (D) t-SNE of naïve (CD45RA+CCR7+) CD8+ T cells after stimulation. (E) MMI expression of IFNg on all, CCR6+, CXCR3+, naïve CD8+ T cells
after stimulation. (B, C, E): Each dot represents the median expression of CCR6 on that population of cells in each case (methods, fetal n=4, neonatal
n=5, SIP 4). MMI – mean metal intensity, p-value, K-W Kruskal-Wallis test.
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chemokines including CCR7 and CXCR5 on CD4 and CD8 cells

(Figures S5C, D) Overall, this suggests a potential role of altered T cell

migration and activation in the pathogenesis of SIP.
Expression of IFN g is increased in naïve T
cells in SIP

To determine if cytokine expression was altered in T cells in SIP,

we stimulated cells from a subset of samples (Table 1) with PMA/

Ionomycin for non-specific T cell activation. The mean metal

intensity (MMI) expression of helper T cell specific cytokines IL13,

IL17A, IL21, IL22 did not differ on naïve CD4 T cells between SIP,

neonatal, and fetal samples after stimulation (Figures S6A–C).

Similarly, there was no difference in TNFa and IL1b expression

among the groups. However, interferon gamma (IFNg) expression

was increased on naïve CD4+ and CD8+ T cells (Figures 4A–E).

However, we did not see any difference in IFNg production in EM

CD4 and CD8T cells (data not shown). Additionally, IL8 expression

was increased in naïve T regs in SIP compared to fetal and neonatal

samples (Figure 4C). This data suggests a potential role of naïve T

cells in promoting inflammation in the pathogenesis of SIP.
Discussion

Spontaneous intestinal perforation is a gastrointestinal

complication that affects 3-8% of extremely low birth weight infants

and increases the incidence of impaired development and mortality in

those affected (2, 30). Though numerous risk factors have been

identified in clinical studies, mechanism specific studies of disease

progression are lacking. Here, we evaluate the intestinal immune

landscape in SIP-affected mucosa compared to second trimester fetal

tissue, full-term neonates with congenital anomalies, and with

necrotizing enterocolitis as a control with intestinal peroration. Our

data reveals alterations in innate and adaptive immunity are present

at the time of surgery in patients with SIP.

Neutrophils play an important role in maintaining intestinal

homeostasis and are recruited to sites of active inflammation (31).

They have both pro- and anti-inflammatory effects in the intestinal

mucosa and are essential in the early phase of pathogen encounter

and recruit other immune cells to the site of inflammation (32).

Neutrophil migration to colon has been described in inflammatory

bowel diseases and correlates to disease severity (33). In neonates and

in animal models of necrotizing enterocolitis (NEC), neutrophils are

abundant in inflamed mucosa and can exacerbate disease (22, 34–36).

In SIP, we report the presence of ckit+ neutrophils with an immature

phenotype that are essential for tissue repair (37). These could

represent an early, localized response to pathogens associated with

premature delivery. Neutrophilic expansion in SIP may lead to an

uncontrolled inflammatory reaction due to unrestricted activation.

The presence of a distinct subset of neutrophils in SIP could represent

disease-specific response to local/systemic cues, activation state or

acquisition of membrane proteins after immune cell interaction.

Memory T cells are the prevalent T cell subset in fetal intestine

(19–21). In contrast, SIP intestine was characterized by more than

50% naïve T cells with a reduction in EM T cells, suggesting decreased
Frontiers in Immunology 08
memory generation in utero or postnatal influx of naïve T cells. Naïve

T cells in SIP could be new thymic emigrants that rapidly proliferate

to reconstitute the T cell pool (38). Alternatively, they could be

previously accumulated naïve T cells that failed to undergo in utero

priming. Interestingly, CD4 T cells in SIP had reduced expression of

CXCR3. This is in direct contrast to the CD4 T cell profile in utero

(20) and in newborn (21, 39) SI tissue which contains primarily

CXCR3+ CD4 T cells. CXCR3 is a chemokine receptor that is induced

on naïve T cells after activation, remains highly expressed on effector

cells, plays a role in T cell migration, and facilitates the interaction of

T cells with antigen presenting cells (40, 41). Decreased expression of

CXCR3 suggests that there might be a defect in APC/T cell

interactions that result in increased number of naïve T cells or

altered migration chemokine profile of SIP associated T cells that

should be further studied.

Similarly, CCR6 is crucial in the migration of T cells to the sites of

inflammation (42–44) and was globally reduced in SIP associated T

cells. Reduction of CCR6 and CXCR3 in SIP T cells is in contrast to

increased expression of these migration chemokines that has been

reported in inflammatory bowel disease (44, 45). CCR6 and its ligand

CCL20 are abundantly expressed on T cells and play a chemotactic

immune-modulatory role with alterations in this axis being

implicated in IBD (46). CCR6 deficiency in a murine model altered

the innate response via attenuating inflammatory response during

peritonitis with lower NO production in macrophages after LPS

stimulation (47). In a murine model of SIP, Gordon et al. highlight

the role of nitric oxide (NO) in neonatal intestinal function (17).

Exposure of deficient mice to dexamethasone and indomethacin

resulted in the depletion of endothelial or inducible NOS suggesting

a loss of S-nitrosylation species in smooth muscle (17). While this

study highlighted a potential pathway for SIP occurrence in ELBW

infants exposed to indomethacin and dexamethasone, no studies have

examined this pathway in vivo. Depleted NO on endothelial cells and

smooth muscle could contribute to SIP susceptibility. Furthermore,

NO is crucial in mucosal immunity, is a known regulator of T cell

differentiation (48, 49) and has been implicated in the pathogenesis of

inflammatory bowel disease (50, 51). Reduction of NO isoforms in

murine model of SIP combined with our report of CCR6 reduction in

human SIP T cells could highlight a potential pathway for

further study.

In intestinal immunity against intracellular pathogens, interferon

gamma (IFNg) is an essential cytokine involved in type II IFN responses

(52). CD4 T lymphocytes express IFNg typically after differentiation

into T helper (Th1) (53). IFNg-induction can result in improved

immune surveillance and function in response to inflammation (52)

or can lead to a pro-inflammatory state which is reported in IBD (54).

IFNg secretion in response to lipopolysaccharide stimulation in

peripheral blood mononuclear cells is increased in neonates (55). In

SIP-affected mucosa, we report increased IFNg expression in naïve

CD4+ and CD8+ T cells after stimulation with PMA/Ionomycin

compared to fetal and neonatal intestine. Naïve T cells could be

hyperresponsive to stimulation in SIP which could lead to a pro-

inflammatory state.

This study has some limitations. Our cohort is small and available

clinical data is limited to gestational age and sex. Data on antenatal

and postnatal exposures that could alter intestinal immunity are

lacking as patient samples were obtained in a de-identified manner.
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Additionally, adequately age-matched control tissue was difficult to

acquire because healthy premature infants do not require surgery. An

ideal control would require obtaining small intestinal tissue samples

from healthy premature infants in the first week of life. However, we

included samples from fetuses, neonates with congenital intestinal

anomalies, and patients with NEC as controls. Furthermore, SIP

typically occurs in the terminal ileum and only some of the control

samples included were specifically from the terminal ileum. Another

limitation is determining if changes in mucosal immunity in SIP are

due to alterations in the microbiome including exposure to

antibiotics. We included NEC patients who have been exposed to

antibiotics and have an intestinal perforation, fetal intestine with low

microbial burden and no antibiotic exposure, and neonatal intestines

with exposure to microbes. Finally, CyTOF does not provide spatial

information on immune cells in situ. Additional studies utilizing

techniques like imaging mass cytometry would provide information

about the location and cellular interactions contributing to

SIP pathogenesis.

In summary, we observed the presence of ckit+ neutrophils and the

expansion of naive T cells that produce IFNg in infants with SIP. This

could potentially be due to a compensatory mechanism of the intestinal

mucosa to maintain homeostasis in the setting of premature delivery.

On the contrary, reduced CCR6 and CXCR3 expression could suggest

altered T cell migration or an inability to generate effector memory T

cells that increase susceptibility to inflammation and subsequent

intestinal perforation. Increased IFNg production by naïve T cells in

SIP, suggests a TCR independent cytokine production that would be

interesting to evaluate in future studies. Our data provide insight into

the mucosal immune landscape in neonates with SIP as well as insights

into cell populations for future study into disease pathogenesis.
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SUPPLEMENTARY TABLE 2

Antibody cocktail for PMA/Ionomycin stimulation CyTOF experiment.

SUPPLEMENTARY FIGURE 1

(A). Hematoxylin and eosin staining of Fetal (top), neonatal (middle) and SIP

samples. Black bar 110 mm.

SUPPLEMENTARY FIGURE 2

(A). Method for gating leukocytes (CD45+) in Premium Cytobank®. (B).
Clustergrammer (56) used to identify populations in . (C). Innate cells, T cells, as a
percentageof all CD45+cells. (D).Monocytes/Mf, CD16lo, CD16hi, IgG+CD16hi, CD16hi

monocytes expressed as a percentage of all CD45+ cells. (E). Heatmap of selected

antibodies used to classify neutrophil populations. (F). Neutrophil clusters increased in
SIP with NEC samples from (22) included for comparison. Each dot represents 1 case

(fetal n=3, neonatal n=4, NEC =12, SIP n=7, ). p-value, K-W Kruskal-Wallis test.

SUPPLEMENTARY FIGURE 3

(A). Manual gating strategy used to identify T cells (CD3+CD19-), naïve, effector

memory CD4+ and CD8+ T cells exported from Premium Cytobank and used

for automated clustering in cytofkit (Methods). (B). Clustergrammer (56) used to
identify populations in . C-D. CD4+, CD8+ (C), DNT (CD4-CD8-), DPT

(CD4+CD8+) (D), expressed as a percentage of all T cells. Each dot represents
1 case (fetal n=3, neonatal n=4, SIP n=7). p-value, K-W Kruskal-Wallis test.
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SUPPLEMENTARY FIGURE 4

(A). Naïve CD45RA+CCR7+), effector memory (CD45RA-CCR7-), CCR6-

CXCR3+ (Th1-like), CCR6-CXCR3-(Th2-like) expressed as a percentage of

CD4+ T cells, (B). Naïve CD45RA+CCR7+), effector memory (CD45RA-CCR7-)
expressed as a percentage of CD8+ T cells, samples from patients with NEC

included for comparison, ) included for comparison. Each dot represents 1

case (fetal n=3, neonatal n=4, NEC n=12, SIP n=7). p-value, K-W Kruskal-
Wallis test.

SUPPLEMENTARY FIGURE 5

(A). NK cells expressed as a percentage of all T cells. (B). Regulatory T cells
(Tregs) expressed as a percentage of all T cells (left), CD4 T regs (middle), CD8

T regs (right). (C, D). MMI of CCR6, CCR7, CXCR3, CXCR5, HLADR, and CD38
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on CD4 T cells (C) and CD8 T cells (D). (E-F). MMI of CCR6, CXCR3 on CD4+ T
regs (E) and CXCR3 (F). Each dot Each dot represents 1 case (fetal n=3,

neonatal n=4, SIP 8). MMI- mean metal intensity. p-value, K-W Kruskal-
Wallis test.

SUPPLEMENTARY FIGURE 6

(A). Clustergrammer (56) with surface markers used to identify populations in .
(B, C) MMI expression of TNFa, IL1b (B) and IL6, IL8, IL13, IL17a, IL21, IL22 (C) on
naïve CD4+ T cells after stimulation with PMA/Ionomycin for 4 hours. (D).
Clustergrammer (56) with surfacemarkers used to identify populations in . (E, F).
MMI expression of TNFa, IL1b (E) and IL6, IL8, IL13, IL17a, IL21, IL22 (F) on naïve

CD8+ T cells after stimulation with PMA/Ionomycin for 4 hours. MMI- mean
metal intensity. p-value, K-W Kruskal-Wallis test.
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