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Glioblastoma (GBM) is themost common and lethal malignant tumor of the central

nervous system in adults. Conventional therapies, including surgery, radiotherapy,

and chemotherapy, have limited success in ameliorating patient survival. The

immunosuppressive tumor microenvironment, which is infiltrated by a variety of

myeloid cells, has been considered a crucial obstacle to current treatment.

Recently, immunotherapy, which has achieved great success in hematological

malignancies and some solid cancers, has garnered extensive attention for the

treatment of GBM. In this review, we will present evidence on the features and

functions of different populations of myeloid cells, and on current clinical advances

in immunotherapies for glioblastoma.
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1 Introduction

Glioblastoma (GBM), accounting for more than 50% of diagnosed intracranial glioma

and approximately 12% of all brain tumors, is the most common and lethal malignant tumor

of the central nervous system (CNS) in adults (1–3). GBM is of a highly aggressive nature,

with fast tumor growth, diffuse tumor invasiveness, and high levels of resistance to

conventional therapies (4). It occurs frequently in people aged 50– 60 years and is more

prevalent in men (1). GBM is traditionally classified into two groups: primary GBM arising de

novo, of which 90% have a wild-type isocitrate dehydrogenase (IDH) profile, and secondary

GBM, which develops from low-grade glioma (5). On the basis of a genomic profile, primary

GBM can be further categorized into three subgroups: classical (CL) GBM, with abnormal
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expression of epidermal growth factor receptor (EGFR) and

homozygous deletion of cyclin-dependent kinase inhibitor 2A

(CDKN2A); proneural (PN) GBM, which is characterized by the

amplification of platelet-derived growth factor receptor alpha

(PDGFRa) and a tumor protein p53 (TP53) mutation; and

mesenchymal (MES) GBM featuring co-mutated phosphatase and

tensin homolog (PTEN) and TP53 tumor suppressor genes and the

lack of the neurofibromatosis type 1 (NF1) gene function (5–8). It has

been demonstrated that the MES subgroup showed the shortest

median survival of 11.5 months, compared with 17 months for the

PN subgroup and 14.7 months for the CL subgroup (6). Secondary

GBM harbors IDH1 and IDH2 mutations, which can convert a-
ketoglutarate (a-KG) to the oncometabolite 2-hydroxyglutarate (2-

HG) to initiate tumorigenesis (6).

The current standard treatment for GBM, comprising a

combination of maximal surgical resection, radiation, and

chemotherapy, has limited success in improving the prognosis of

patients, who are given only 15 months of median survival and a 5-

year survival rate of less than 5% (9–11). Thus, opportunities and

challenges remain in finding more efficient treatments for GBM.

Currently, immunotherapy, which has obtained great success in

treating hematopoietic malignancies, malignant melanoma, and

some solid tumors, has garnered extensive attention for treating

GBM (12). Current immunotherapy mainly focuses on the

investigation of vaccine therapy, adoptive T-cell therapy, immune

checkpoint inhibitors (ICIs) therapy, and oncolytic virus therapy.

Unfortunately, immunotherapeutic successes in GBM are still lacking

(13). Multifarious factors have attenuated the immunotherapeutic

efficiency for GBM. It has been long recognized that the brain is an

immune-privileged organ based on the restriction from the brain–

blood barrier (BBB) (14). However, this concept has been challenged

by the existence of functional lymphatic vessels and varied types of

leukocytes in the CNS. Today, the brain is considered

immunologically “distinct” rather than “privileged” (15). Moreover,

a consensus has been reached on the idea that the immunosuppressive

tumor microenvironment (TME) of GBM plays a crucial role in the

resistance to current treatment. The GBM microenvironment is

intensively infiltrated with a variety of myeloid cells, including bone

marrow-derived macrophages (BMDMs), microglia, myeloid-derived

suppressor cells (MDSCs), and neutrophils. Recent flow cytometric

and single-cell analyses have revealed that glioma cells (40.5%) and

myeloid cells (45%) constitute the tumor mass, both of which can

secrete cytokines and metabolites to suppress tumor-infiltrating

lymphocyte (TIL) function (16, 17). Thus, the lack of TILs and

abundant immunosuppressive myeloid cells constitute a significant

barrier against immunotherapy efficacy in GBM. A recent study that

combined single-cell analysis and spatial transcriptomics identified

reactive-hypoxia and reactive-immune regions in the GBM TME.

These regions were found to be enriched with memory and exhausted

T cells as well as myeloid cells, suggesting a local enhanced

immunosuppression (18). Moreover, through analysis of cell-to-cell

interactions among different cancer and immune cells, researchers

found that bidirectional signaling between glioma cells and myeloid

cells, and myeloid cells and T cells is much more abundant than

signaling between T cells and glioma cells, indicating that the myeloid

cells are major conduits of cell-to-cell interaction in the GBM

microenvironment (19). Accordingly, investigating the features and
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functions of these myeloid cells as well as their interplay with

cytotoxic lymphocytes could provide insight into the establishment

of the TME, which could be applied to the development of

immunotherapies against GBM. In this review, we will present

evidence on the features and functions of different populations of

myeloid cells, including those of BMDMs, microglia, MDSCs, and

neutrophils. Moreover, we will also present evidence of current

advances in immunotherapies for GBM, including vaccine therapy,

adoptive T-cell therapy, ICIs therapy, and oncolytic virus therapy.
2 Myeloid cells in GBM

2.1 Microglia and macrophages in GBM

Tumor-associated macrophages (TAMs), which originate from

bone marrow-derived monocytes, represent one of the most

prominent populations in the tumor stroma. In GBM, the TAMs,

also called glioma-associated macrophages/microglia (GAM), are

composed of BMDMs and microglia, which constitute the majority

of tumor-invading myeloid cells and approximately 30% of the tumor

mass (20–22). Whereas microglia, derived from yolk sac progenitors,

mainly reside in peritumoral regions in GBM, BMDMs, derived from

hematopoietic stem cells (HSCs), are preferentially located in

perivascular regions in GBM (23–25). Traditionally, microglia and

BMDMs share the same marker of CD11b; however, microglia are

distinguished by low levels of expression of CD45. Considering the

phenomenon that activates microglia can rapidly up-regulate CD45

expression, two new markers are proposed to distinguish microglia

from macrophages: the transmembrane protein 119 (TMEM119) and

purinergic receptor P2RY12 (26–28). Typically, microglia and

macrophages can be stimulated into two different polarizations in

vitro: the pro-inflammatory M1 phenotype and the anti-

inflammatory M2 phenotype. In cancer, this M1/M2 classification

has also been used for decades to evaluate whether microglia and

macrophages have anti-tumor (M1) or tumor-promoting (M2)

characteristics (29, 30). However, compelling evidence suggests that

this categorization does not apply to in vivo conditions because it only

describes the extremes of a broader spectrum of functional states (31).

This is supported by microarray analysis of GAMs isolated from

GL261-implanted C57BL/6 mouse brains, which showed a different

profile from the M1 and M2 phenotypes, including a mixture of M1-

and M2-specific genes (32). Moreover, genetic analysis of TAMs from

GBM patients demonstrated that these cells exhibited diverse

immunological functions as a non-polarized M0 phenotype (33).

However, a recent study has argued that GAM subtypes in vivo are

not directly equivalent to in vitro-defined M0-, M1-, or M2-like

macrophages (34). Recently, a single-cell analysis of GBM

multiregionally and multidimensionally identified four molecular

subtypes of microglia: MC1 (i-Mic), with high levels of expression

of activated microglia markers and TNF, IL1B, and NFKBIZ; MC2 (h-

Mic), with the highest level of expression of the homeostatic microglia

marker CST3; MC6 (AP-Mic), with expression of both microglia and

macrophage markers; and MC7 (a-Mic), identified by differential

levels of expression of SPRY1, PYRY13, and microglia activation

markers (19). Moreover, a further investigation of the relationship

between the gene signature and patient survival showed that MC2 and
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MC7 were related to better survival, indicating an anti-tumorigenic

role in the TME. Accordingly, a comprehensive and functional

classification system is still needed to describe the diverse states of

GAMs in GBM.

In the TME, the GAMs predominantly exhibit an anti-

inflammatory M2 polarization and reduced phagocytic activity (35,

36). GAMs can be driven to the TME by a variety of chemokines,

including CXCL12, CCL2, CX3CL1, MCP-1, MCP-3, glial cell-

derived neurotrophic factor (GDNF), and osteopontin released by

neoplastic cells (36–41). Moreover, GBM cells can induce GAM

invasion by expressing the macrophage-stimulating factor CSF-1,

which regulates macrophage proliferation and differentiation, and

guides the macrophages to polarize toward the protumorigenic M2

phenotype (42). Recently, the secretion of periostin from glioma stem

cells (GSCs) has also been demonstrated to support macrophage

recruitment and transition into an M2 phenotype, and the deletion of

POSTN in GSCs resulted in a dramatic reduction of GAM density and

GBM growth, as well as an increased survival rate of mice bearing

GSC-derived xenografts (43). Once infiltrated into the TME and

induced by GBM into a protumoral phenotype, GAMs can promote

the tumor cells’ growth and invasion through multifarious pathways.

The GBM-associated microglia can secrete epidermal growth factor

(EGF) to facilitate GBM cell migration and invasion through binding

to the epidermal growth factor receptor (EGFR) on GBM cells (42).

Moreover, the GAMs can release the tumor growth factor beta (TGF-

b) 1 to bind the TGF-b receptor (TGFBR) 2 (TGFBR2) on GBM cells,

which can promote tumor invasion (44). Furthermore, GBM-

associated microglia can up-regulate matrix metallopeptidase

(MMP14), which can cleave into an inactive form of MMP2 and

thus facilitate the invasion of glioma cells into the brain parenchyma

by metalloproteinase-mediated degradation of the extracellular

matrix (45). Although microglia are the most powerful phagocytes

in the TME, their phagocytic function is impaired by GBM cells

through rendering microglia as an anti-inflammatory, antiphagocytic

M2 phenotype (46). For example, GBM cells can secrete molecules,

such as CSF1 and CSF2, to induce the shift of GAMs toward a

protumoral phenotype and thus create a favorable TME for GBM

growth (42, 46). Moreover, GBM cells can also inhibit microglial

phagocytosis by overexpressing sialic acid-rich glycoproteins and up-

regulating CD47, which often acts as an antiphagocytic protein in

cancer cells (47–49).

Taken together, GAMs are plastic and heterogeneous in their

profiles and functions. The recruitment of GAMs is regulated by

multiple factors. Induced into a protumoral phenotype in the TME,

GAMs play a critical role in promoting the proliferation, invasion,

and function of GBM cells.
2.2 Myeloid-derived suppressor cells in GBM

Myeloid-derived suppressor cells (MDSCs), presenting at very

low frequencies of peripheral blood mononuclear cells, are a

heterogeneous cluster of immature myeloid cells (IMCs) that can be

differentiated into macrophages, dendritic cells (DCs), and

granulocytes under physiological conditions (31, 50, 51). In

pathological conditions such as GBM, the IMCs are driven to

differentiate into MDSCs not only in the tumor bed but also in the
Frontiers in Immunology 03
peripheral blood (51). Human MDSCs are generally characterized by

co-expressions of the myeloid differentiation markers, CD33 and

CD11b, and with negative expression of markers of mature lymphoid

and myeloid cells, such as human leukocyte antigen DR(HLA-DR)

and major histocompatibility complex (MHC) class II molecule (52).

In the human body, there are three major groups of MDSCs: early-

stage MDSCs (eMDSCs), characterized by CD33+ and Lin–;

granulocytic or polymorphonuclear MDSCs (PMN-MDSCs),

defined as CD11b+Ly6G+Ly6Clow and CD33+CD15+CD14–HLA-

DRlow/– ; and monocytic MDSCs (M-MDSCs), featuring

CD11b+CD33+CD14+ Ly6Chigh and Ly6G–D15–HLA-DRlow/–.

Although PMN-MDSCs are morphologically and phenotypically

analogous to neutrophils, M-MDSCs are similar to monocytes

(52–54).

Increasing evidence demonstrates that MDSCs are elevated in the

peripheral blood of GBM patients (55). In GBM patients, elevated

MDSC accumulation at the time of recurrence predicts poor

prognosis, whereas the reduction of MDSCs is correlated with

extended survival (55). With respect to the subgroups of MDSCs,

although both PMN- and M-MDSCs were found to be increased in

the peripheral blood of GBM patients, only PMN-MDSCs were found

to be increased in the TME of GBM patients (56). Moreover, the two

subsets of MDSCs were found to expand and thus drive immune

suppression in a sex-specific manner (57). For example, the

proliferation of M-MDSCs was predominant in tumors from male

GBM patients, whereas PMN-MDSCs were enriched in female GBM

patients’ blood, with significant relation to poor prognosis (57). In

addition, M-MDSCs have also been claimed to constitute the major

population of MDSCs within the glioma microenvironment. In

accordance with these findings, the improvement in survival

induced by the depletion of M- and PMN- MDSCs in GBM mouse

models was also displayed in a sex-specific manner (57).

In GBM, MDSCs play critical roles in the sustenance of tumor

growth, invasion, vascularization, and immunosuppression (58).

Several mechanisms have been demonstrated to affect the

accumulation of MDSCs in the GBM TME and the promotion of

their immunostimulatory phenotype, which enables them to exert

their immunosuppressive effects. GBM cells can recruit MDSCs from

the bone marrow through up-regulation of indoleamine 2,3-

dioxygenase (IDO1) and CD200, as well as secretion of macrophage

migration inhibitory factor (MIF) and CCL20 (59–61). Moreover,

they can also overexpress hypoxia-inducible factor 1 alpha (HIF1a)
and vascular endothelial growth factor (VEGF) to promote the

recruitment of MDSCs by converting extracellular ATP to 50-AMP

(62). After accumulation in the TME, the proliferation and functions

of MDSCs are controlled by various factors, such as CCR2, IL-6, IL-

10, IL-8, IL-12, TGF-b, M-CSF, galectin-1,GM-CSF, and INF-g,
which can stimulate JAK, STAT1, STAT3, STAT6, CCAAT/

enhancer-binding protein (C/EBPs), S100A8, S100A9, and

prostaglandin E2 (PGE2) in MDSCs to promote their proliferation

(63–65).

MDSCs can contribute to immunosuppression by suppressing the

anti-tumor activity of cytotoxic T cells, inhibiting the functions of

natural killer (NK) cells, macrophages, and DCs, and introducing the

accumulation of regulatory T cells (Tregs) and immune-suppressive

regulatory B cells (Bregs) (66–69). In glioma rat models, MDSCs can

produce NO, iNOS, ARG1, IDO, ROS, and peroxynitrite (PNT), and
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secrete anti-inflammatory cytokines such as IL-10 and TGF-b to

suppress T-cell proliferation, induce T-cell apoptosis, and attenuate

T-cell cytotoxic function (70–73). In addition, MDSCs can

overexpress ICIs such as the program death 1 ligand (PD-L1),

which binds to its receptor PD1 to cause T-cell exhaustion (74). In

accordance with T cells, MDSCs can also inhibit the cytotoxicity of

NK cells. For example, the TGF-b1 on MDSCs can attenuate

cytotoxicity of NK cells by down-regulating the expression of INFg
and activating the receptor NKGD. Moreover, a subset of MDSCs in

mice were found capable of suppressing perforin production of NK

cells by regulating the Janus Kinase-Signal transducers and activators

of transcription (JAK-STAT) pathway (67, 75). With respect to DCs,

MDSCs-derived NO can suppress the antigen presentation from DCs

to CD4+ T cells, which can be abrogated by treatment of MDSC with

iNOS inhibitors (76). In addition, MDSC can suppress TLR-ligand-

induced IL-12 production of DCs via IL-10 secretion and inhibit the

T-cell stimulatory function of DCs (77).

Apart from the inhibition of T cells, NK cells, and DCs, MDSCs

can also exert an immunosuppressive function by recruitment and

regulation of Tregs, Bregs, and M2 macrophages. MDSCs can release

cytokines such as IL-10, INFb, and TGF-b to drive naive T cells to

differentiate into Tregs, and chemokines such as CCL3, CCL4, and

CCL5 through CCR5 to recruit Tregs into the TME (78, 79). In

return, Tregs can affect the survival and/or the proliferation of

MDSCs and their direct interactions can suppress the functions and

promote the apoptosis of CD8+ T cells (80). In addition, MDSCs can

recruit Bregs, which account for approximately 40% of the immune-

infiltrating cells in GBMs, into the TME to exert their

immunosuppressive functions. Bregs can inhibit CD8+T-cell

cytotoxic functions by overexpressing PD-L1 through the uptake of
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MDSC-derived microvesicles containing PD-L1. In addition, Bregs

can a l so up- regu l a t e CD155 expre s s ion and sec r e t e

immunosuppressive cytokines IL-10 and TGF-b to suppress CD8+

T-cell cytotoxicity (81). With respect to macrophages, the presence of

MDSCs in tumors is correlated with a declined level of the anti-

inflammatory M1 macrophages and an elevated level of pro-tumor

M2 macrophages (77). In addition, MDSC-derived IL-10 can inhibit

macrophages from secreting IL-6 and TNF-a (82, 83). Furthermore,

MDSCs can down-regulate the MHC class II expression on

macrophages to suppress their antigen presentation functions (82,

83). Lastly, it was demonstrated that MDSCs themselves can

differentiate into TAMs when faced with hypoxic conditions in the

TME (84).

In summary, MDSCs play a crucial role in sustaining

immunosuppression in the TME and their recruitment into the

TME is regulated by GBM cells and other factors. MDSCs

contribute to the immunosuppressive TME not only by suppressing

the maturation, stimulation, and cytotoxic functions of T cells, DCs,

and NK cells, but also by supporting the recruitment and inhibitory

functions of Tregs, Bregs, and M2 macrophages. Further

investigations will be carried out to explore the detailed

mechanisms (Figure 1).
2.3 Neutrophils in GBM

Neutrophils, as the first respondent against pathogens, are the

most abundant circulating leukocytes in humans, with multiple

functions including phagocytosis, secretion of reactive oxygen

species and granules, and formation of neutrophil extracellular
FIGURE 1

The role played by myeloid-derived suppressor cell (MDSC) glioblastoma (GBM). MDSCs can not only inhibit the cytotoxic effect and antigen
presentation functions of T cells, natural killer (NK) cells, and dendritic cells (DCs), but also promote the recruitment and stimulation of immune-
suppressive M2 macrophages, regulatory T cells (Tregs), and regulatory B cells (Bregs).
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traps (85). Tumor-associated neutrophils (TANs) display two typical

phenotypes of polarization, which can switch into one another during

tumor progression: the anti-tumoral N1 polarization elicited mainly

by IFN-b and the protumoral N2 polarization induced by G-CSF,

TGF-b1, and IL-6 (86). The number of circulating and tumor-

infiltrating neutrophils is correlated with glioma grade (87–89). In

GBM, clinical data suggests that an elevated level of neutrophils is

negatively correlated with patients’ prognosis (90, 91). It was found

that the stimulation of neutrophils was correlated with elevated levels

of IL-12 in GBM patients, which was considered an early sign of

tumor progression (87). Moreover, GBM patients with high levels of

stimulated neutrophils were found to have a worse prognosis than

those with low levels (91). Accordingly, the stimulation of neutrophils

also has a negative prognostic value for GBM patients. In addition, the

neutrophil-to-lymphocyte ratio (NLR) in blood is positively related to

glioma grade, and elevated baseline NLRs predict poor prognosis in

GBM patients (88, 92–94).

Neutrophils can be recruited into the TME by various cytokines,

such as IL8, MIF, and CXCL8, which in turn leads to aggressive tumor

growth and therapeutic resistance in GBM (95–97). Once infiltrated

into the TME, neutrophils can secrete elastase, which further

facilitates neutrophil infiltration and promotes GBM cell invasion.

For example, neutrophil infiltration can increase the expression of

S100A4, which mediates the tumor progression with mesenchymal

characteristics, favoring glioma invasion and resistance to anti-VEGF

therapies (98). In addition to this, neutrophils can form neutrophil

extracellular traps (NETs) to protect glioma cells and facilitate tumor

progression (99). A recent study showed that radiation-induced

senescence in GBM cells promoted the recruitment of Ly6G+

(TANs) through NFkB signaling (100, 101). However, these

infiltrated Ly6G+ cells can in return support the conversion of

GBM cells to glioma stem cells (GSCs) through dedifferentiation
Frontiers in Immunology 05
and nitrosative stress signaling (102). This mechanism was confirmed

by the fact that Ly6G-neutralizing antibodies and NFkB inhibitors

reduced GSCs and prolonged the survival of GBM-bearing mice

(101). In addition, neutrophils can mediate tumor cell ferroptosis

by inducing iron-dependent accumulation of lipid peroxides through

transferring myeloperoxidase-containing granules into tumor cells.

This ferroptosis induced by neutrophils was identified as a pro-

tumorigenic role in GBM because of its promotion of tumor

necrosis (103). Recently, results from CIBERSORT analyzing

immune cell fractions among the molecular subtypes of GBM

showed that mesenchymal GBM had a significantly elevated level of

TANs compared with other subtypes, implying a potential role in the

extreme immunosuppression of the TME and plausibly mediating

immunotherapy resistance (104).

Taken together, circulating neutrophils and TANs are generally

related to invasive tumor proliferation, tumor immunosuppression,

and the poor prognosis of GBM. Further investigations are needed to

explore the detailed mechanisms and establish a therapeutic strategy

based on the neutrophils (Figure 2).
3 Current immunotherapy against GBM

The goal of immunotherapy is to harness the hosts’ innate and

adaptive immune system by enhancing or suppressing immune

responses to promote cancer eradication and overcome cancer’s

immune resistance. Recently, immunotherapy has obtained great

achievements in melanoma, renal cell carcinoma, Hodgkin’s

lymphoma, and non-small cell lung cancer (NSCLC), in which

conventional therapies have gained limited success (105–108). With

the 2018 Nobel Prize in Medicine awarded to Tasuku Honjo and

James Allison for their discovery of the inhibition of negative immune
FIGURE 2

Interactions between glioblastoma (GBM) cells and myeloid cells, including microglia, GBM-associated microglia, bone marrow-derived macrophages
(BMDMs), myeloid-derived suppressor cells (MDSCs), T cells, natural killer (NK) cells, and regulatory T cells (Tregs).
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regulation in cancer therapy, immunotherapy has now taken the

leading position in cancer therapies (12). In GBM, several

immunotherapies including vaccine therapies, ICIs therapies,

oncolytic virus therapy, and adoptive T-cell therapy have been

investigated alone or combined with standard treatment in

preclinical and clinical research.
3.1 Vaccine therapy

The vaccine therapy, which aims to enhance the adoptive immune

response in the brain against GBM cells, generally involves two forms

of therapies: peptide vaccines and DC vaccines. Peptide vaccines are

generally designed to encompass tumor-specific antigens (TSAs) or

tumor-associated antigens (TAAs) to induce a potent immunity.

Currently, peptide vaccines that target a single GBM antigen

include EGFRvIII, IDH1R132H, Wilms’ tumor 1 (WT1), and

survivin. Results from phase II clinical trials have demonstrated

that rindopepimut, an EGFRvIII-based vaccine, has a beneficial role

in improving progression-free survival (PFS) and median overall

survival (OS) in both primary and recurrent GBM patients (109,

110). However, no such therapeutic benefit of rindopepimut was

observed in a randomized phase III clinical trial among newly

diagnosed GBM (ndGBM) patients (111). Similar to EGFRvIII, the

WT1-based vaccine has also shown benefits in improving GBM

patients’ survival in a non-randomized trial (112). Recently, a novel

vaccine named IMA950 that contains nine synthetic tumor-

associated HLA-A2-restricted peptides (TUMAP), and thus can

trigger the TUMAP-specific cytotoxic T cells, has shown

therapeutic effect in improving the PFS and OS of ndGBM patients

in phase I/II clinical trials (113, 114). Further evidence from phase III

clinical trials is still lacking. GBM is notorious for its high

heterogeneity and low mutational burden (115); thus, vaccines that

target a single tumor antigen may theoretically lead to antigen escape.

This was confirmed by the phenomenon in the EGFRvIII vaccine

research, in which most patients experiencing recurrence had lost

EGFRvIII expression (116). Therefore, alternative vaccine strategies

that target multiple tumor neoantigens are needed. Heat shock

protein (HSP) peptide complex 96 (HSPPC-96), a primary resident

chaperone of the endoplasmic reticulum that can be internalized into

antigen presenting cells (APCs) for efficient class I and II MHC-

mediated presentation of tumor peptides, is a solution to this

problem. In phase I and II clinical trials, HSSPC-96 vaccination

showed a therapeutic effect in improving the OS in high-grade glioma

and GBM patients (117). More evidence from phase III clinical trials

is needed.

Dendritic cell (DC) vaccines are typically produced through the

ex vivo generation of DCs harvested from patients and stimulated

with either tumor antigens or mRNA-expressing MHC molecules,

before being administered back to patients (118, 119). Similar to the

peptide vaccine, the DC vaccines can also be loaded with a single

tumor antigen or multiple tumor antigens. A WT1- and

cytomegalovirus phosphoprotein 65 RNA (CMV pp65)-based DC

vaccine is generated from a single tumor antigen, both of which have

demonstrated efficiency in improving the PFS and OS of GBM

patients in phase I clinical trials (120–123). On the other hand, DC

vaccines loaded with multiple tumor antigens are, in theory, thought
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to induce more robust immune responses. ICT-107 is a DC vaccine

loaded with class I peptides from a TAA highly expressed on gliomas

and glioma stem cells (GSCs). It presented a survival benefit in a

phase I clinical trial of 15 GBM patients, among whom six patients

showed no evidence of tumor recurrence at a follow-up of over 40

months (124). Another a-type 1 polarized DC vaccine loaded with

EphA2, IL13Ra2, YKL-40, and gp100 also showed survival benefits for

recurrent glioma patients, with one patient achieving a sustained

complete response (125). In addition, a novel DC vaccine named

DCVax-L, which is loaded with tumor lysates, has shown survival

benefits for GBM patients in a phase I/II clinical trial. Phase III

clinical trial of DCVax-L in GBM patients is ongoing, and preliminary

results indicate that it may improve patients’ OS (126).
3.2 Adoptive T-cell therapy

The primary forms of adoptive T-cell therapy can be generally

classified as T-cell receptor (TCR) treatment, tumor-infiltrating

lymphocytes (TILs), and chimeric antigen receptor T (CAR-T)

cells. TCR treatment is the first successful application of an

adoptive T-cell therapy, which utilizes autologous T cells

transduced with human TCR to target a melanoma antigen

recognized by T cells 1 (MART-1) in order to treat metastatic

melanoma patients (127). However, no achievement has been

obtained in clinical trials based on TCR-T cell treatment. In

addition, the administration of autologous TILs has induced

regressions in metastatic melanoma patients (128); however, such

powerful cytotoxicity was not seen in GBM patients (129). In fact, the

application of TILs requires highly accessible and immunogenic

tumor cells. Melanoma can meet sufficient isolation and expansion

of TILs from their respective tumor samples, but cannot (128) when it

comes to GBM characterized by a high heterogeneity and a low

mutational burden. The limited progress made in TCR and TILs

against GBM has necessitated the development of CAR-T

cell therapy.

Genetically engineered T cells express chimeric antigen receptors

(CARs), which consist of an intracellular T-cell signaling domain with

one or more single-chain variable fragments (scFvs) and an

extracellular antigen recognition domain to target specific

neoplastic cells (130, 131). The advantages of CAR-T cells lie in not

only the recognition of specific antigens and stimulation without

MHC limitation, but also their capability of generating an anti-tumor

immune microenvironment featuring decreased levels of anti-

inflammatory factors and increased levels of pro-inflammatory

factors (132, 133). Recently, CD19-specific CAR-T cell therapy has

shown excellent therapeutic safety and efficacy in hematological

malignancies and solid cancers, and is therefore preferred in clinical

treatment (134–139). Owing to these advances in other kinds of

malignancies, CAR-T cell therapy is of extreme interest in GBM

treatment and can be applied intravenously, intracranially, or

intralesionally (140). So far, results from clinical trials of GBM

patients are available for CAR-T cells targeting three antigens:

EGFRvIII, IL-13 receptor alpha 2(IL-13Ra2), and human epidermal

growth factor receptor 2 (HER2) (141–144). EGFRvIII is supposed to

enhance GBM proliferation, angiogenesis, and invasiveness (145),

and IL-13Ra2 is associated with GBM invasiveness and poor
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prognosis; both are GBM-specific antigens (146, 147). HER2 is a

GBM-associated antigen that has been identified as an

independent unfavorable

prognostic indicator for GBM patients (148). CAR-T cells that

target these three antigens showed feasibility, safety, and potential

efficiency in early clinical trials against GBM (141–144). However,

CAR-T cell therapy is still faced with several intractable obstacles to

the treatment of GBM. First, the non-uniform antigen expression

resulting from the high heterogeneity of GBM will lead to antigen

escape and tumor recurrence. For example, a recurrent GBM (rGBM)

patient obtained tumor intracranial and spinal regression after

intracranial administration of IL-13Ra2-targeted CAR-T cells, but IL-

13Ra2-negative tumors resulted in a subsequent relapse (147). Second,

CAR-T cell proliferation and persistence in vitro and CAR-T exhaustion

in the TME is also an intractable problem that requires maximal

sustenance of CAR-T cells. Last, the CAR-T cells’ administration may

trigger some resistant mechanisms, including up-regulation of

immunosuppressive factors (e.g., IDO1, PD-L1) and recruitment of

immunosuppressive cells (e.g., Tregs, MDSCs) (140, 149). These

obstacles require CAR-T cell therapy to target multiple antigens or to

be combined with other therapies. Hegde et al. successfully created

bivalent CAR-T cells (targeting HER2 and IL-13Ra2) and trivalent

CAR-T cells (targeting HER2, IL-13Ra2, and EphA2), both of which

showed more efficacy in preclinical studies than monovalent CAR-T

cells (150–152). Notably, trivalent CAR-T cells can capture nearly 100%

of tumor cells and exhibit superior anti-tumor efficacy in a murine

model (151). That is, to deal with the immunosuppressive TME,

researchers have exploited the advantages of an oncolytic virus that

has been demonstrated to enhance anti-tumor immunity and regulate

the TME to improve CAR-T cells for solid tumor therapy (152, 153).

Recently, researchers have successfully promoted de novo CD19-CAR-T

cells to target solid tumor cells by tumor-selective delivery of oncolytic

viruses encoded a truncated CD19 protein (154).
3.3 Immune checkpoint inhibitors therapy

Immune checkpoint inhibitors (ICIs) are antibodies that block the

endogenous negative regulatory pathways mediated by immune

checkpoints to reduce their inhibiting effects on T-cell stimulation,

proliferation, and function. Currently, ICIs that target cytotoxic T

lymphocyte-associated antigen 4 (CTLA4) or programmed cell death

protein 1 and its ligand (PD-1 and PD-L1) have been approved by the

US Food and Drug Administration (FDA) for clinical application

owing to their notable successes against melanoma and other solid

malignancies (155–159). For the treatment of GBM, results from

preclinical studies are encouraging; however, clinical success is still

lacking (160–162). Recently, three phase III clinical trials (CheckMate

143, 498, and 548) investigated nivolumab, a PD-1 monoclonal

antibody, alone or combined with another therapy for the

treatment of rGBM or ndGBM patients. All these trials have

declared a failure to meet the primary end point of OS, although

some results await publication (163, 164).

Multifarious factors attenuate the efficiency of the PD-1 inhibitor

in treating GBM patients, including extensive tumor heterogeneity,

low tumor mutation burden (TMB), T-cell dysfunction and

exhaustion, and DNA mismatch repair (dMMR) system status
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(165–167). The extensive tumor heterogeneity will lead to a

heterogeneous expression of PD-1 in GBM, which is negatively

correlated with patient prognosis (168). Recent studies show that

tumors with high TMB are more responsive to ICIs (169, 170). In

GBM, high TMB usually arises late after the extended application of

chemotherapy. This suggests that patients with recurrent

malignancies who have accepted chemotherapy may be more

responsive to ICIs, and TMB should be regarded as a biomarker to

select patients who are more likely to benefit from ICIs. Accordingly,

the FDA has identified a high level of TMB [≥ 10 mutations per

megabase (mut/mb)] as one of the inclusion criteria for choosing

patients with malignancies for ICIs therapy, including those with

gliomas (171). Clinical data show that only a subgroup of GBM

patients has benefited from ICIs therapy and obtained prolonged

survival (172). For example, in a phase II clinical trial, 35 rGBM

patients accepted pembrolizumab (PD-1 monoclonal antibody) as

neoadjuvant or adjuvant-only therapy. Patients accepting

neoadjuvant pembrolizumab showed a statistically significant

increase in OS and PFS compared with those in the adjuvant

group. It was also demonstrated that neoadjuvant ICIs therapy was

related to a tumor-specific up-regulation of the IFN-g-responsive

gene signature and a declined cell cycle-related gene signature in the

tumor (173). Moreover, another factor that limits the efficacy of ICIs

therapy is T-cell dysfunction and exhaustion, which has long been

identified as a hallmark of GBM (174–176). Apart from the PD-1/PD-

L1 pathway, GBM is characterized by the up-regulation of multiple

alternative immune checkpoints such as T-cell immunoglobulin and

mucin domain 3 (TIM-3), B7 homolog 3 (B7-H3), indoleamine 2,3-

dioxygenase-1 (IDO1), and lymphocyte activation gene 3 (LAG3),

which usually mediate T transition into a dysfunctional, exhausted

status (177–179). From this perspective, multitargeted inhibitors or

combined ICIs therapies may theoretically be more likely to avoid T-

cell dysfunction and exhaustion. Recently, a preclinical study has

highlighted a possible combination of PD1, LAG3, and TIM3

blockade in a glioma murine model (180). Furthermore, antibodies

targeting TIM-3 and LAG3 either alone or combined with anti-PD1

blockade are being tested among GBM patients clinically

(NCT02658981, NCT02817633). In addition, the DNA mismatch

repair (dMMR) system status, which is responsible for correcting

DNA mismatches during replication to maintain DNA stability, is

also associated with the efficacy of ICIs therapy (181). It has been

demonstrated that GBM with dMMR deficiency is correlated with

high TMB and overexpressed neoantigens, which are usually

identified as “immunoresponsive” (182). Clinically, high-grade

glioma patients without dMMR expression showed statistically

longer OS and PFS after pembrolizumab administration than those

with weak dMMR expression, indicating that patients without dMMR

expression may benefit from pembrolizumab monotherapy

(183) (Table 1).
3.4 Oncolytic virotherapy

Oncolytic virus (OV) therapy is a novel and promising

therapeutic remedy in

the treatment of various solid tumors, including GBM. It can be

divided into two broad categories: replication-competent viruses,
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TABLE 1 Ongoing clinical trials involving immune checkpoint inhibitors (ICIs), vaccines, and adaptive T cells. .

Status/
Phase

Study Title Details NCT
Number

ICIs therapy

I/II Radiation Therapy with TMZ and Pembrolizumab in Treating Patients with Newly
Diagnosed GBM

Radiation therapy, TMZ, pembrolizumab NCT02530502

1/II Pharmacodynamic Study of Pembrolizumab in Patients with Recurrent GBM Pembrolizumab NCT02337686

II Pembrolizumab +/- Bevacizumab for Recurrent GBM Pembrolizumab, bevacizumab NCT02337491

1/I Parameters For The PD-1 Checkpoint Inhibitor, Pembrolizumab (MK-3475), in
Patients with Surgically Accessible Recurrent/Progressive Glioblastoma

Pembrolizumab NCT02852655

1/I Avelumab in Patients with Newly Diagnosed Glioblastoma Multiforme Avelumab NCT03047473

1/II Avelumab With Hypofractionated Radiation Therapy in Adults with Isocitrate
Dehydrogenase (IDH) Mutant Glioblastoma

Avelumab, radiotherapy NCT02968940

1/II Tremelimumab and Durvalumab in Combination or Alone in Treating Patients with
Recurrent Malignant Glioma

Durvalumab, tremelimumab NCT02794883

1/II Combination Adenovirus + Pembrolizumab to Trigger Immune Virus Effects Pembrolizumab, oncolytic virus NCT02798406

1/II Tremelimumab and Durvalumab in Combination or Alone in Treating Patients with
Recurrent Malignant Glioma

Durvalumab + tremelimumab NCT02794883

2/II Phase 2 Study of Durvalumab (MEDI4736) in Patients with Glioblastoma Durvalumab, TMZ, bevacizumab, radiotherapy NCT02336165

4/I Pembrolizumab and Vorinostat Combined with Temozolomide for Newly Diagnosed
Glioblastoma

Pembrolizumab, vorinostat, TMZ, radiotherapy NCT03426891

4/III An Investigational Immuno-Therapy Study of Temozolomide Plus Radiation Therapy
with Nivolumab or Placebo, for Newly Diagnosed Patients with Glioblastoma

Nivolumab, TMZ, radiotherapy NCT02667587

4/III An Investigational Immuno-Therapy Study of Nivolumab Compared to
Temozolomide, Each Given with Radiation Therapy, for Newly diagnosed Patients
with Glioblastoma

Nivolumab, TMZ, radiotherapy NCT02617589

4/I Biomarker-Driven Therapy Using Immune Activators with Nivolumab in Patients
with First Recurrence of Glioblastoma

Nivolumab + anti-GITR monoclonal antibody, IDO1
inhibitor, ipilimumab

NCT03707457

4/I Nivolumab, BMS-986205, and Radiation Therapy with or without Temozolomide in
Treating Patients with Newly Diagnosed Glioblastoma

Nivolumab, IDO1 inhibitor NCT04047706

4/II Atezolizumab in Combination with Temozolomide and Radiation Therapy in
Treating Patients with Newly Diagnosed Glioblastoma

Atezolizumab, radiotherapy, TMZ NCT03174197

4/I Avelumab With Laser Interstitial Therapy for Recurrent Glioblastoma Avelumab, MRI-guided LITT therapy NCT03341806

4/I GMCI, Nivolumab, and Radiation Therapy in Treating Patients with Newly
Diagnosed High-Grade Gliomas

Nivolumab, radiotherapy, oncolytic virus, TMZ NCT03576612

Vaccine therapy

1/I Vaccine Therapy in Treating Patients with Newly Diagnosed Glioblastoma
Multiforme

Autologous DCs, tetanus toxoid, therapeutic autologous
lymphocytes

NCT00639639

1/II Dendritic Cell Vaccine for Patients with Brain Tumors DCs vaccination, adjuvant poly-ICLC NCT01204684

1/I Phase I Study of a Dendritic Cell Vaccine for Patients with Either Newly Diagnosed
or Recurrent Glioblastoma

DCs vaccine, radiotherapy, TMZ, bevacizumab NCT02010606

3/II/III Proteome-Based Personalized Immunotherapy of Glioblastoma DCs vaccine, allogeneic hematopoietic stem cells, cytotoxic
lymphocytes

NCT01759810

4/I/II Adjuvant Dendritic Cell-immunotherapy Plus Temozolomide in Glioblastoma
Patients

DCs vaccine, TMZ NCT02649582

4/II Immunotherapy Targeted Against Cytomegalovirus in Patients with Newly Diagnosed
WHO Grade IV Unmethylated Glioma

Human CMV pp65-LAMP mRNA-pulsed autologous DCs
containing GM CSF, TMZ, tetanus–diphtheria toxoid (Td)

NCT03927222

4/II Study of DC Vaccination Against Glioblastoma DCs vaccine, radiotherapy, TMZ NCT01567202

4/I Pembrolizumab and a Vaccine (ATL-DC) for the Treatment of Surgically Accessible
Recurrent Glioblastoma

DCs vaccine, pembrolizumab, poly-ICLC NCT04201873

I Nivolumab With DC Vaccines for Recurrent Brain Tumors DCs vaccine, nivolumab NCT02529072

4/II Radiation Therapy Plus Temozolomide and Pembrolizumab with and without
HSPPC-96 in Newly Diagnosed Glioblastoma (GBM)

HSPPC-96, pembrolizumab, TMZ NCT03018288

4/II Efficiency of Vaccination with Lysate-loaded Dendritic Cells in Patients with Newly
Diagnosed Glioblastoma

DCs vaccine, radiotherapy, TMZ NCT03395587

4/I Safety and Immunogenicity of Personalized Genomic Vaccine and Tumor Treating
Fields (TTFields) to Treat Glioblastoma

Peptides vaccine, poly-ICLC, tumor treating fields NCT03223103

4/I/II Study to Evaluate Safety, Tolerability, and Optimal Dose of Candidate GBM Vaccine
VBI-1901 in Recurrent GBM Subjects

VBI-1901 (a polyvalent therapeutic vaccine against
cytomegalovirus antigen gB and pp65) + GM-CSF

NCT03382977

(Continued)
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which function as viral vectors to introduce specific genes, such as

tumor suppressor genes, suicide genes, or immunostimulatory genes,

into tumor cells to trigger an anti-tumor response; and selectively

replication-competent viruses, which infect tumor cells and replicate

until the cell lyses, and then infect and lyse neighboring cells (1–3,

184–186). Thus, the anti-tumor effect introduced by OVs occurs

through two mechanisms: the direct killing of tumor cells and the

subsequent stimulation of innate and adaptive immune responses.

After the direct tumor lysis and apoptosis introduced by OVs, TAAs,

pathogen-associated molecular patterns (PAMPs), and damage-

associated molecular patterns (DAMPs) are released from the

disrupted tumor cells. Both PAMPs and DAMPs can not only

trigger innate immunity by stimulating pattern recognition

receptors but also improve antigen cross-presentation and adaptive

immune responses (4, 5, 187, 188). Therefore, OVs are also thought to

be capable of turning the TME from immunologically “cold” to “hot”.

Oncolytic virus (OV) therapy has been investigated for the

treatment of malignancies for decades. In 2015, the FDA approved

the application of talimogene laherparepvec (T-VEC), a genetically

modified Herpes Simplex Virus (HSV), to treat advanced melanoma

as the first OV therapy in the USA (6, 189). GBM virotherapy clinical
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trials started in 1991 (7, 190). Since then, multifarious genetically

engineered OV candidates have been investigated to treat GBM both

in preclinical and clinical research. These include parvovirus,

oncolytic herpes simplex virus (oHSV1716, oHSVG207),

conditionally replicating adenovirus (ONYX-015, DNX-2401, DNX-

2440), measles paramyxovirus (MV-CEA, MV expressing IL-13),

oncolytic polio/rhinovirus recombinant (PVSRIPO), and retroviral

replicating vector (Toca 511). Among these, DNX-2401, PVSRIPO,

and Toca 511 are the most promising, having shown complete

durable responses when intratumorally administered in GBM

patients (8–10, 191–193). However, these trials failed to meet

primary end points. Recently, the novel strategy of inserting

immunomodulatory genes into the viral genome to conduct OVs to

express immunomodulatory transgenes has been evaluated in several

preclinical trials to treat gliomas. These include OVs with an

expression of IL-12, IL-15, ICIs, tumor necrosis factor (TNF)-

related apoptosis-inducing ligand (TRAIL), immune stimulators

(GM-CSF, OX40 ligand), tumor suppressors (PTEN, P53), E-

cadherin, and FMS-like tyrosine kinase 3 ligand (Flt3L) (11–20,

152, 194–202). Some have demonstrated safety and efficacy in

preclinical trials, but others still require further investigation.
TABLE 1 Continued

Status/
Phase

Study Title Details NCT
Number

Adaptive T-cell therapy

4/I Genetically Modified T-cells in Treating Patients with Recurrent or Refractory
Malignant Glioma

IL13Ra2-specific, 41BB-costimulatory CAR/truncated
CD19-expressing autologous T lymphocytes

NCT02208362

4/I IL13Ralpha2-Targeted Chimeric Antigen Receptor (CAR) T Cells with or without
Nivolumab and Ipilimumab in Treating Patients with Recurrent or Refractory
Glioblastoma

IL13Ra2-specific hinge-optimized 4–1BB-costimulatory
CAR/truncated CD19-expressing autologous TN/MEM
cells, ipilimumab, nivolumab

NCT04003649

4/I Combination of Immunization and Radiotherapy for Malignant Gliomas GM-CSF + poly-I:C or CAR-T or TCR-T + radiation NCT03392545

I/II CAR-T Cell Receptor Immunotherapy Targeting EGFRvIII for Patients with
Malignant Gliomas Expressing EGFRvIII Recruiting

EGFRvIII targeted CAR-T cell NCT01454596

I/II CAR-T Cell Immunotherapy in MUC1 Positive Solid Tumor Anti-MUC1 CAR-T cells NCT02617134

I/II CAR-pNK Cell Immunotherapy in MUC1 Positive
Relapsed or Refractory Solid Tumor

Anti-MUC1 CAR-pNK cells NCT02839954

I/II A Clinical Research of CAR T Cells Targeting HER2
Positive Cancer

HER2-targeted CAR-T cell NCT02713984

I Autologous T Cells Redirected to EGFRVIII-With a
CAR in Patients With EGFRVIII+ Glioblastoma

EGFRvIII-targeted CAR-T cell NCT02209376

I EGFRvIII CAR T Cells for Newly Diagnosed GBM EGFRvIII-targeted CAR-T cell NCT02664363

I Pilot Study of Autologous Anti-EGFRvIII CAR T Cells in Recurrent Glioblastoma
Multiforme

EGFRvIII-targeted CAR-T cell NCT02844062

I CMV-specific Cytotoxic T Lymphocytes Expressing
CAR Targeting HER2 in Patients with GBM

HER2-targeted CAR-T cell NCT01109095

I T Cells Expressing HER2-specific CAR for Patients With
Glioblastoma

HER2-targeted CAR-T cell NCT02442297

I Pilot Study of Autologous Chimeric Switch Receptor Modified T Cells in Recurrent
GBM

PD-L1-target CAR-T cell NCT02937844
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Although OV therapy has drawn concentrations, powerful

clinical effectiveness in treating GBM is still lacking. The first

obstacle is the limited efficiency of OV delivery. Several factors

impact its systemic delivery, including complement factor

neutralization, off-target dispersion risk, virus reduction during

hepatic metabolism, and limitation from the BBB. To address these

problems, mesenchymal stem cells (MSCs) with tumor-tropic and

immune-evasive abilities are introduced as carriers for the virus

delivery. Not only can MSCs shield OVs from host immunity, but

they also alleviate the systemic sequestration of viruses and off-target

toxicities. A recent study has successfully conducted MSCs to migrate

and deliver therapeutic viruses to distant glioma cells (21, 203). That

is, most trials concerning GBM adopted intracranial or intratumoral

administration of OVs to overcome the BBB. However, it is also

intractable for the second obstacle introduced by the

immunosuppressive TME. Recent studies have demonstrated that

GSCs and glioma-associated mesenchymal stem cells in the TME are

likely to generate resistance to OV therapy (22, 23, 204, 205).

Moreover, it has been demonstrated that TAMs can restrict the

replication and spread of oncolytic viruses (24, 206). Furthermore,

MDSCs can induce B-cell-mediated immunosuppression, which may

limit the effective response to OVs with the expression of

immunomodulatory transgenes (25, 81). Accordingly, a better-

designed delivery and a better understanding of the TME should be

pursued to optimize OV therapy against GBM.
4 Conclusion

Myeloid cells, including BMDMs, microglia, MDSCs, and

neu t roph i l s , p l ay a c ruc i a l ro l e in ma in ta in ing the

immunosuppressive TME in GBM. Numerous factors impact the

recruitment, stimulation, and function of myeloid cells in the TME,

which constitutes a significant challenge for therapy efficacy.

Currently, immunotherapies predominantly focus on the

investigation of vaccines, CAR-T cells, ICIs, and OVs therapies.

However, successful advances in a clinical environment are still

lacking. Moreover, single immunotherapy is always insufficient in

GBM and leads to the formation of a “cold tumor”, because

multifarious factors challenge immunotherapy, including the

immunosuppressive TME, the high tumor heterogeneity, the low

TMB, the dMMR status, persistence and delivery of the vaccines, and

CAR-T cells. Thus, a better understanding of the functions of myeloid

cells in the TME and their interactions with GBM cells should be
Frontiers in Immunology 10
pursued in the future to optimize therapeutic strategy. Recently,

combined therapy of OVs with ICIs in GBM demonstrated an

improved efficiency over OV therapy alone (207). Similar results

have also been obtained from the combined therapy of OVs with

CAR-T cell therapy compared with CAR-T cells alone (154). Thus,

this combination should be further investigated in order to be applied

in clinical environments. Accordingly, immunotherapy for GBM

requ i re s in tegra t ed e ffor t s to r educe and deac t i va t e

immunosuppressive myeloid cells, improve the TME suppression,

promote CAR-T cell function by equipping multi-antigens targets,

and reinforce T-cell effector function with the blockade of immune

checkpoints. These contributions will promote the development of an

optimal personalized therapeutic strategy for GBM patients.
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