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responses correlate with the
severity of COVID-19
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Introduction: The COVID-19 pandemic has posed a major burden on healthcare

and economic systems across the globe for over 3 years. Even though vaccines are

available, the pathogenesis is still unclear. Multiple studies have indicated

heterogeneity of immune responses to SARS-CoV-2, and potentially distinct

patient immune types that might be related to disease features. However, those

conclusions are mainly inferred by comparing the differences of pathological

features between moderate and severe patients, some immunological features

may be subjectively overlooked.

Methods: In this study, the relevance scores(RS), reflecting which features play a

more critical role in the decision-making process, between immunological

features and the COVID-19 severity are objectively calculated through neural

network, where the input features include the immune cell counts and the

activation marker concentrations of particular cell, and these quantified

characteristic data are robustly generated by processing flow cytometry data

sets containing the peripheral blood information of COVID-19 patients through

PhenoGraph algorithm.

Results: Specifically, the RS between immune cell counts and COVID-19 severity with

time indicated that the innate immune responses in severe patients are delayed at the

early stage, and the continuous decrease of classical monocytes in peripherial blood is

significantly associated with the severity of disease. The RS between activation marker

concentrations andCOVID-19 severity suggested that the down-regulation of IFN-g in
classical monocytes, Treg, CD8 T cells, and the not down-regulation of IL_17a in

classical monocytes, Tregs are highly correlated with the occurrence of severe
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disease. Finally, a concise dynamicmodel of immune responses in COVID-19 patients

was generalized.

Discussion: These results suggest that the delayed innate immune responses in

the early stage, and the abnormal expression of IL-17a and IFN-g in classical

monocytes, Tregs, and CD8 T cells are primarily responsible for the severity of

COVID-19.
KEYWORDS

delayed innate immune responses, relevance scores, COVID-19, neural network,
dynamics model
1 Introduction

Coronavirus disease 2019 (COVID-19), caused by the novel

human pathogen severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), is a serious disease that has resulted in widespread

global morbidity and mortality. Clinical manifestations of COVID-19

are heterogeneous, with about 80% people experiencing

asymptomatic or moderate symptom, the other patients develop

severe symptom which may progress to acute respiratory distress

syndrome (ARDS) (1, 2). Even though vaccines are available, the

pathogenesis of COVID-19 is still unclear. To optimally manage the

pandemic, there is an urgent need to understand the host immune

responses in COVID-19 patients.

High-throughput single-cell technologies such as flow cytometry

and mass cytometry, which can measure features on millions of

individual cells, are well suited to support studies of the heterogeneity

of immune responses and of how immune cells interact with other

host cells and pathogens. Identification of host immunological

correlated factors for disease severity is one of the most common

application of single-cell technologies (3). Innate immune cells like

basophils (4), monocytes (5), plasma DCs (4, 6), and NK cells (6) were

reported with reduced abundances in peripheral blood of COVID-19

patients, and with greater reductions in individuals with severe

disease than those with moderate disease. While other innate

immune cells like neutrophils (7, 8), eosinophils (9) have been

shown increased abundances in COVID-19 patients, especially

severe patients. And the neutrophil-to-lymphocyte ratio (10, 11)

was also reported to be associated with severity of illness. What’s

more, the numbers of SARS-CoV-2 specific B cells were also found

increased from 1-3 months (12) after symptom onset, but with

abnormal expansion of antibody-secreting cells in severe patients

rather than moderate patients (13), which raised the question about

the role of B cell responses in COVID-19 patients. Nevertheless, T cell

responses in COVID-19 patients are more controversially, there were

evidences of terminally differentiated T cells in severe disease (10, 14),

other study (15) suggested that CD8 T cells in severe patients might in

a hyperactive state by expressing high level of nature killer cell related

markers and increased cytotoxicity. It is not clear whether the T cells

in severe patients are exhausted or just highly activated. Multiple

studies (14, 16–18) have indicated heterogeneity of immune responses
02
to SARS-CoV-2, and potentially distinct patient immune types that

might be related to disease features.

However, those immunological correlated factors for disease

severity in previous studies were mainly inferred by comparing the

differences of cell counts or bio-marker expression levels between

moderate and sever patients, some immunological features may be

subjectively overlooked. In this study, the relevance scores(RS) (19–

26) between immunological features and the severity of COVID-19

are objectively calculated through neural network, this calculation

method belongs to the feature importance explainability approaches

(explanation for AI system’s decisions) (25), these values reflect which

features played a more critical role in the decision-making process. To

the best of our knowledge, this is the first time that COVID-19

patients’ cytometry data are analyzed by the explainability approach

of AI system. Firstly, we collected two publicly available flow

cytometry data sets containing peripheral blood information of

COVID-19 patients from the Flow Repository website (27).

Secondly, we used the PhenoGraph algorithm (28) to robustly

cluster these patients ’ cells into phenotypically distinct

subpopulations. Thirdly, we constructed a neural network with

these immune cell counts or activation marker concentrations of

particular immune cells as the input neurons, the disease severity as

the output neuron. Fourthly, we calculated the RS value between

input neurons and output neuron through the Layer-wise Relevance

Propagation(LRP) algorithm (20), then we compared these RS

between immune cell counts and disease severity at different stages,

and analyzed the RS between activation marker concentrations and

disease severity on particular immune cells. Finally, we generalized a

concise dynamic model of immune responses in COVID-19 patients.

These results suggested that the delayed innate immune responses in

the early stage is primarily responsible for the severity of COVID-19.
2 Methods

2.1 Acquisition of data sets

To understand the host immune responses to SARS-CoV-2

infection, the publicly available individual flow cytometry data sets

were selected from the Flow Repository (http://flowrepository.org/)
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(27) under accession number FR-FCM-Z36F (29) and FR-FCM-

Z2KP (30). Detailed information of samples in these data sets can

be found in the original research papers and on the Flow Repository

website. A total of 145 samples were obtained from these data sets and

a summary of these data sets can be found in Table 1. Relevance data

sets were identified from the query “COVID-19”. Selection was

primarily focus on the integrity of severity categories: health

control, mild/moderate and severe, the specific of patient’s illness

time, the uniformity of the patient’s condition distribution, and the

staining strategy(which could identify the lymphocyte subsets). Due

to the differenct staining strategies of the data sets in Flow Repository,

it is infeasible to merge them into a large and consistent data set.

Finally, one mass cytometry and one flow cytometry data set were

selected from 22 COVID-19 related data sets. The data set FR-FCM-

Z36F was collected from a cohort of hospitalized COVID-19 patients

and healthy controls to identify dynamic disease-associated changes

in circulating immune cell frequency and phenotype, it will be used

for calculating the RS between immune cell counts and the severity of

COVID-19 in time. The data set FR-FCM-Z2KP was collected to

analysis the activation markers produced by PBMC from COVID-19

patients, it will be used for calculating the RS between activation

marker concentrations produced by PBMC and the severity of

COVID-19.
2.2 Data pre-processing (Clustering by
PhenoGraph algorithm)

The PhenoGraph algorithm (28) was used for robustly clustering the

peripheral blood cells of COVID-19 patients into phenotypically distinct

subpopulations. The algorithm was run on the R-based (31) application.

Samples(in.fcs files) were first pre-processed: margin events were filtered

out, live single cells were gated (11). Then these cleaned data were used

for PhenoGraph training. To address patient specific variability and to

understand immune cells dynamics shared between samples,

PhenoGraph clusters were merged, and data were transformed with an

arcsinh transformation with cofactor 5. The k-nearest neighbor was set to

be 30 for data set Z36F, and 100 for data set Z2KP.

After the PhenoGraph clustering, the percentage of peripheral

blood cells(cell counts) for each cluster (phenotypically distinct
Frontiers in Immunology 03
subpopulations) of patients are recorded(see in S1 File), these data

are tensors of floating point numbers distributed between 0 and 1,

which can be directly used as the input of neural network. And the

expression matrix of each cluster(activation marker concentration of

cells) are recorded also(see in S2 File), all data were compressed with

an arcsinh transformation with cofactor 5, the missing value of

patients is set to 0, these data will be used as the input of neural

network as well.
2.3 Relevance scores calculated by neural
network

Given a trained neural network that models a scalar-valued

prediction score for each target output, and given an input vector,

we are interested in computing for a RS quantifying the relevance of

input vector to a considered target of interest (25). In other words, we

want to analyze which features of input vector are important for the

neural network’s decision toward the target.

The RS can be computed by the Layer-wise Relevance

Propagation(LRP) algorithm proposed by Bach et al (19), these

derivations go from upper-layer neurons to lower-layer neurons.

Let zj be an upper-layer neuron, whose value in the forward pass is

computed as zj=Sizi·wij + bj where zi is one neuron of the lower-layer,

and wij, bj are the connection weight and biases. The relevance

redistribution onto lower-layer neurons zi is performed in two steps:

Step one, computing relevance messages Ri j going from upper-

layer neuron zj to lower-layer neuron zi.

Ri j =
zi  ·  wij  +

ϵ · sign(zj) + d  · bi
N

zj  +  ϵ  ·  sign(zj) 
· Rj (1)

(20, 21)

where N is the total number of lower-layer neurons to which zj
is connected, ϵ is a small positive number which serves as a

stabilizer, and sign(zj)=(lzj≥0-lzj<0) is defined as the sign of zj.

Moreover, d is a multiplicative factor that is either set to 1.0, in

which case the total relevance of all neurons in the same layer is

conserved, or else it is set to 0.0, which implies that a part of total

relevance is “absorbed” by the biases and that the relevance

propagation rule is approximately conservative.
TABLE 1 Publicly available data sets from the Flow repository database included in analysis.

Repository
ID

FCS File
Numbers Study Design Sample

Source
Sample

Description
Detecting
Instrument

The RS calculated by
neural network

FR-FCM-Z36F
(29)

96

Apply a streamlined CYTOF workflow to
characterize whole blood samples to identify
dynamic disease-associated changes in circulating
immune cell frequency and phenotype.

Human
whole
blood

Severe: 36
(Early stage: 11
Middle stage: 10
Late stage: 15)
Moderate: 48
(Early stage: 28
Middle stage: 13
Late stage: 7)
Healthy: 12

Mass
cytometry

The RS between immune
cell counts and COVID-19
severity.

FR-FCM-
Z2KP (30)

49
Analysis of cytokine secretion in PBMC of patients
with COVID-19.

PBMC

Severe: 17
Severe_to_Moderate:
6
Moderate: 20
Healthy: 6

BD
Symphony

The RS between activation
marker concentrations of
immune cells and
COVID-19 severity.
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Since ϵ is a small stabilizer, formula (1) actually equals to

Ri j =
zi   ·  wi j

zj
+
d   ·  bj
N   ·  zj

 !
· Rj (2)

In our experiment, we set d=0 to ignore the effect of bj to RS.

Formula (2) finally reduced to

Ri j ≃
zi · wij

zj
· Rj (3)

(19, 22)

Step two, computing relevance Ri going from all the neurons in

upper-layer to lower-layer neuron zi.

Ri =oj
Ri j (4)

(20, 21)

Taking a regression neural network with two hidden layers as an

example, the structure of this neural network is [In, H1, H2, Out]

(Figure 1). To calculate Rk out going from neuron ‘out’ in output layer to

neuron ‘k’ in H2 layer. Since there is only one single output neuron zout,
its relevance Rout is set to its value zout (20). Plug them into formula (3):

Rk out = zk  ·  wk out (5)

where zk means neuron ‘k’ in H2 layer, wk out means the

connection weight between neuron ‘k’ and neuron ‘out’.

To calculate the vector eRk going from all the neurons in output

layer(the actual number of neurons in output layer is ignored here to

unify the representation) to neuron ‘k’ in H2 layer:

eRk =oout
Rk out = zk · gWH2   Out k, :½ � (6)

where gWH2   Out½k, :� means the connection vector between neuron

k and all the neurons in output layer, its value is obtained by taking

the kth row of vector gWH2   Out.
Frontiers in Immunology 04
eRj and eRi are obtained by repeating formula (5) and (6) as shown

in Figure 1. fRIn =oi
 eRi, which represents the relevance score going

from all the neurons in H1 layer to all the neurons in input layer, is

finally expressed as

fRIn =oi
 eRi = fZIn · gWIn  H1 · gWH1  H2 · gWH2   Out (7)

where fZIn means the vector of all the neurons in input layer,gWIn  H1 means the connection vector between Input layer and H1

layer, gWH1  H2 means the connection vector between H1 layer and H2

layer, gWH2   Out means the connection vector between H2 layer and

Output layer. fRIn actually contains all the relevance messages from

output neurons to input neuron because of the transmission between

neurons, it will be used as the RS value between all the input neurons

and output neurons.
2.4 Optimization of neural network

To easily calculate the RS corresponding to disease severity, the

publicly available free toolbox Pyrenn (32) from Technische

Universität München has been used to implement the neural

network learning, one neuron was assigned in the output layer to

construct a regression model (Figure 1). The targets is from 1 to 3,

where 1 is for healthy person, 2 is for moderate patients, and 3 is for

severe patients. When calculating the RS between immune cell counts

and disease severity, the input vector is the cluster percentage of

whole blood cells(red blood cells have been lysed) of patients (S1 File).

When calculating the RS between the concentration of activation

markers and disease severity, the input vector is the activation marker

concentrations(all data were compressed with an arcsinh

transformation with cofactor 5) of one cell type of patients (S2 File).

Because the disease severity is not an exact number, but a range of

values, the accuracy was set as in Figure S1 (in S3 File) to meet the

actual situation of this regressive neural network. For instance, if Yt

(the target)=1, when yt(the predictive value)-Yt<0.5, the forecast is

deemed accurate, otherwise, it is considered inaccurate, the whole

algorithm is shown in Figure S1. The K-fold cross validation was used

in the optimization process of neural network, in order to make the

validation set contain about 20% of the sample data, the value of k is

set to 5. The avarage accuracy of 20 epoches(20~40 epoches) was used

to evaluate the performance of the neural network. The dropout

regularizaion has been used to prevent the neural network from

overfitting. The detail of the optimization processes of the neural

network are recorded in S3 File.

After the neural network learning, the value of RS will be

achieved. For neural network with two hidden layers created by

Pyrenn (30), the connection matrix gIW1,1 , gLW2,1 and gLW3,2 in

Pyrenn are actually the connection weight of input layer to hidden

layer 1, hidden layer 1 to hidden layer 2, and hidden layer 2 to output

layer respectively. According to formula (7) described in methods, the

RS is calculated by the following formula:

RS = gIW1,1· gIW2,1 · gIW3,2 (8)

In order to measure the contribution of each input neuron per se

to the result, fZInis not included in this formula.
FIGURE 1

The derivation of RS value goes from upper-layer neurons to lower-
layer neurons (23) based on LRP algorithm. Where the neural network
has two hidden layers H1 and H2, and the output layer has only one
neuron. Specifically, ‘i’, ‘j’, ‘k’ and ‘out’ represent one neuron of the
input, H1, H2 and output layer, and the neuron number of these layers
are ‘In’, ‘H1’, ‘H2’ and ‘Out’ respectively. Rk out means the relevance

going from the neuron out in output layer to neuron k in H2 layer, fRk

means the relevance vector going from all the neurons in output layer
to neuron k in H2 layer, and so on for the other vectors.
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The source code for optimization of neural network and the RS

calculation have been uploaded on the website: https://github.com/

Zhu-0010/hello_world/branches.
2.5 Welch’s t-test

The Welch’s t-test was used to compare whether the difference

between the two averages of RSs(between active marker expression of

cells and severity of COVID-19) between group HC_W and group

HC_ICU is significant. This test assummes that both groups of data

are sampled from populations that follow a normal distribution, but it

does not assume that those two populations have the same variance.
2.6 The pipeline for RS calculation

The pipeline for RS calculation is carried out in the following order

(Figure 2): firstly, the flow cytometry data of COVID-19 patients are

prepared for PhenoGraph clustering, these preparations include filtering

the margin events and gating the live single cells. Secondly, the

PhenoGraph algorithm is used to robustly cluster these prepared data

into phenotypically distinct subpopulations for each patient, and
Frontiers in Immunology 05
generates two files which will be used as the input data for neural

network learning: the ‘Cluster_Percentage with group’ file and the

‘PhenoGraphX_Acsinh_Expr’ file, the former mainly contains the

information of the immune cell(subpopulations) counts of each patient,

the later mainly contains the activation marker concentrations on

particular cells of each patient. Thirdly, these two files are transformed

into the data format that is suitable for neural network learning. The main

task is to determine the input and output neurons, where the data of cell

counts or the activation marker concentrations are used as the input

neurons, the disease severity are used as the output neurons. Fourthly,

depending on the different kinds of input neurons, two neural networks

are constructed. The RS between the input neurons and output neurons

will be calculated according to the method described in subsection 4.2.
3 Results

3.1 Clustering by PhenoGraph algorithm

To investigate the phenotype of immune cells in COVID-19 patients,

the PhenoGraph algorithm (28) was used for robustly partitioning the

two flow cytometry data set (Table 1) of COVID-19 patients into

phenotypically distinct clusters. The algorithm identified 38 clusters for

each patient in data set Z36F (Figure 3A), these clusters mainly included I

B cells, plasmacytoid dendritic cELLs(pDC), basophils, plasma B cells,

CD16 low NK cells, CD57 high memory CD4 T cells, CD57 high CD8

TEMInaive CD8 TIs, naive CD4 T cells, CXCR3+ CCR6- memory CD4

T cells, gd T cells, CD161+ effector memory CD8 T cells, effector memory

CD8 T cells, neutrophils, inducible eosinophils(iEos) (33), resident

eosinophils(rEos), classical monocytes and non-classical monocytes.

And the cell counts of these clusters for each patient have been gotten

as well(S1 File), which will be used as the input data for deep learning of

RS between immune cell counts and the severity of COVID-19, where the

cell counts of immune cells will be used as the input neurons, and the

severity of the patients will be used as the output neurons.

The PhenoGraph algorithm also identified 52 clusters for each

patient in data set Z2KP (Figure 3B), the subtypes of these clusters

included B cells, classical monocytes, CD8 T cells, conventional CD4 T

cells (Tconv), regulatory CD4 T cells (Treg), double-negative T cells

(DNT). And the activation marker concentrations of these clusters for

each patient have been gotten as well (the activation markers’

information of cluster 1 are shown in S2 File), specifically, these

activation markers are IL-17a, IL-2, GATA3, IFN-g, IL-4, IL-10, PD_1,
CD40L, RORgt, CTLA_4, CCR7, TNF-a and IL-6. These files will be

used as the input data for deep learning of RS between activation marker

concentrations and the severity of COVID-19, where the activation

marker concentrations will be used as the input neurons, and the

severity of patients will be used as the output neurons. These clusters’

cell types were defined bymanual gating as described in Daniel et al. (34).
3.2 The RS between immune cell counts and
the severity of COVID-19 at different stages

Patients at different stages (in data set Z36F) and different severities

are divided into six groups: health contral and moderate patients

(HC_W)/health contral and severe patients(HC_ICU) at the early
FIGURE 2

The pipeline of learning flow cytometry data by neural network. Where
the operations described in blue words belong to steps of
PhenoGraph Clustering, and the operations described in purple words
belong to steps of neural network learning. The publicly available free
toolbox Pyrenn (32) is used to implement the neural network learning.
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stage (day 1 since symptom onset), HC_W/HC_ICU at the middle stage

(day 4), HC_W/HC_ICU at the late stage (day 7-12). The RS between

immune cell counts of peripheral blood and severity of COVID-19 are

calculated separately at these six stages. The hyperparameters of neural

network are optimized the way in subsection 2.3, the network structure

[nin, 5, 4, 1] with dropout rate = 0.1 was used for HC_W groups, and [nin,

2, 2, 1] with dropout rate = 0.2 was used for HC_ICU groups. The RS

value is calculated through formula (8). The results are shown in Figure 4,

a positive value of RS means that the cell counts have a positive

correlation to the severity of COVID-19, the higher the RS value, the

stronger the correlation. Relatively, a negative value of RS indicates that

the cell counts have a negative correlation to the disease severity, the

higher the absolute value, the stronger the negative correlation. What’s
Frontiers in Immunology 06
more, a RS value close to 0 is considered neutral, which means the cell

counts has little influence on the severity of COVID-19 (20).

16 most correlated cell types (including 8 positive and 8 negative

cell types) for each stage are recorded in descending order in Figure 4.

We can get four aspects of information from this picture. Firstly, for

moderate patients, the cell counts of immune cells in peripheral blood

may increase or decrease during disease, it indicates that the decrease

of immune cells in peripheral blood does not prevent the recovery of

illness, it is more like a regular pathological process of COVID-19.

Secondly, with the development of disease, the cell types work with

positive/negative RS show the tendency of inheritance and

development. For instance, in the early stage, CCR6+ neutrophils,

classical monocytes, plasma B, CD16 lowIcells, naive CD8 T cells,
BA

FIGURE 3

(A) The heatmap of median lineage marker expressed on automatically gated immune clusters of data set Z36F. (B) The heatmap of median lineage
markers expressed on automatically gated immune clusters of data set Z2KP. The horizontal axis represent the types of markers. The vertical axis show
the ID and manually gated cell type for each cluster, NA means there is no cell type matches this cluster by comparing the expression heatmap. The
colors on the Mosaics from red to blue indicate the strongest to weakest marker intensity, the intensity of each kind of marker is normalized to 0-1.
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neu-6, neu-15, and neu-16 show positive RS, in the middle stage,

CCR6+ neutrophils, classical monocytes, neu-6, nue-15 still have

positive RS with the severity of illness, while rEos, iEos, neu-10, and

CD57 high memory CD4 T cells become outstanding, in the late stage,

rEos, CCR6+ neutrophils, neu-6, neu-10 continue the positive

relationship, the other neutrophils begin to work. Thirdly, as the

disease progresses, immune cells with a positive RS value and those

with a negative value rarely appear in the opposite camp, that suggests

the orderliness of the immune response in moderate patients.

Fourthly and importantly, the most significant difference of RS

between moderate and severe patients occurred at the early stage

(Figure 4A). Cells that are positively correlated with the severity of

COVID-19 in moderate patients but have no remarkable correlation in

severe patients, they are classical monocytes, plasma B, and some

subtypes of neutralphils, some even have negative correlation in severe

patients, they are CI NK and naive CD8 T cells. The minor differences

happened at the middle and late stage (Figures 4B, C), when the function

of immune cells in moderate patients tended to be gentle, most of these

cells in severe patients remained at a high level. In addition to the overall

differences by stages, the classical monocyte, which increase significantly

in moderate patients in the early and middle stage, but remained at a low

level or even decreases in the severe patients.
3.3 The RS between activation
marker concentrations and the severity
of COVID-19

The RS between activation marker concentrations and the

severity of COVID-19 are calculated by training data set Z2KP,
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where the activation markers are IL-17a, IL-2, GATA3, IFN-g, IL-4,
IL-10, PD_1, CD40L, RORgt, CTLA_4, CCR7, TNF-a and IL-6,

respectively. The hyperparameters of neural network are optimized

the way in subsection 2.3, the network structure [nin, 1, 11, 1] was

used for both HC_W and HC_ICU groups. The RS value is calculated

through formula (8) as well. In Figure 5, each data point represent the

RS of a subtype of one kind of immune cells, these immune cells are

classical monocyte, Treg, Tconv, CD8 T and B cells. And the Welch’s

t-test was used to determine whether the difference between the two

averages of HC_W group and HC_ICU group is significant.

The information reflected in Figure 5 can be interpreted in three

ways. We hypothesize that the immune response in moderate patients

is normal pathological and that in severe patients is abnormal

pathological. Therefore, firstly, we focused on the expression of

activation marker on immune cells in moderate patients. For

classical monocytes, IL_4 and CTLA_4 are markedly positively

correlated with the development of disease, while IL_17a shows a

negative correlation. For Treg, IL_4 is positively correlated with this

disease, IL_17a is negatively correlated. For both Tconv and CD8 T

cells, IL_4 still shows a remarkable positive correlation. For B cells,

IL_4 continues its significant positive correlation with disease, while

IF_2 and TNFa show negative correlation with this disease. It is

obvious that IL_4 is up-regulated in all cells, IL_17a, IF_2 and TNFa
are down-regulated depending on cell types.

Secondly, we focus on the expression of activation markers that

are significantly associated with moderate patients but not severe

patients. In severe patients, IL_17a is not down-regulated on classical

monocytes; none of the IL_17a and IL_4 is down or up regulated on

Treg; and there are no obvious expression difference on Tconv, CD8

T, and B cells. These phenomenon suggest that the not down-
B

C

A

FIGURE 4

(A) Comparison of RS between moderate and severe patients at early stage. The RS represent the relevance score between cell counts and the severity
of COVID-19. The mean accuracy in moderate patients is 69.5%, in severe patients is 61.2%. (B) Comparison of RS between moderate and severe
patients at middle stage. The mean accuracy in moderate patients is 72.3%, in severe patients is 67.0%. (C) Comparison of RS between moderate and
severe patients at late stage. The mean accuracy in moderate patients is 70.1%, in severe patients is 66.6.%.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.974343
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2023.974343
regulation of IL_17a on classical monocytes and Treg are more

associated with the occurrence of severe disease.

Thirdly, we focus on the expression of activation markers that are

significantly associated with severe patients but not moderate

patients. In severe patients, IFN-g and TNFa are significantly

down-regulated on classical monocytes; IFN-g is down-regulated on

Treg; IFN-g is down-regulated but TNFa is up-regulated on CD8 T

cells. These phenomenon imply that the down-regulation of IFN-g on
classical monocytes, Treg, and CD8 T cells are highly correlated with

the occurrence of severe disease.
3.4 Dynamics of immune response in
COVID-19 patients

The dynamics of immune response in COVID-19 patients are

summarized as a concise mode in Figure 6. This model suggests that

in moderate patients (Figure 6A) the innate immune responses are

rapidly activated on a large scale at the early stage, they occurred
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within one day since symptom onset. Then the adaptive immune

responses are primed by the innate immune responses (35), it takes

about several days (36) to generate enough virus-specific immune

cells. Subsequently, the innate immune responses are down regulated

after an early peak, and then these responses slowly decline and

continue into late stage of disease. While in severe patients

(Figure 6B), the innate immune responses are delayed till the

middle stage of disease, and this leads to the delayed priming of

adaptive immune responses as well. Once activated, the innate

immunity remains highly activity(compared to moderate patients at

the same time) till the late stage of disease. Then the adaptive

responses are activated as well.
4 Discussion

This study calculated the RS between immune cell counts and the

severity of COVID-19, and the RS between activation marker

(transcription factors and cytokines) concentrations of immune
FIGURE 5

The RS between activation marker concentrations and the severity of COVID-19 of Classical monocytes, Treg, Tconv, CD8 T cells, and B cells,
respectively. The mean accuracy of these neutral networks is 73.4% for moderate patients and 81.5% for severe patients. Differences are tested using
Welch’s t-test.
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cells and the severity of COVID-19. By comparing the RS of immune

cells counts to the severity of COVID-19 between moderate and

severe patients at different stages, we found that the innate immune

responses in severe patients are delayed till the middle stage of disease,

and this leads to the delayed priming of adaptive immune responses

as well. The dynamics of immune response of COVID-19 found in

our work are in consistent with the model reviewed by Alessandro

Sette et al. (35) This model suggested that the immune evasion of

SARS-CoV-2 makes it evade the triggering of early innate immune

responses in severe patients, and this delay in innate immune

responses is correlate with the severity of illness by failing to prime

an adaptive immune response, what’s worse, the innate immune

system (especially the neutrophils) tries to fill the vacuum left by

absence of adaptive immune responses in the late stage, this finally

result in excessive lung immunopathology. While our result show that

not only the proliferation of a large number of neutrophils in the

peripheral blood, but also the reduction of classical monocytes are

significantly correlated with severe illness of COVID-19, this is

consistent with other works (37, 38), both the apoptosis of classical

monocytes in the circulatory system and migration to tissues are

thought to influence the reduction of cell counts in the

peripheral blood.

In addition, Daniel K. Beyer et al. (39) have reviewed that the

delayed type I and type III IFN responses are associated with risk of

severe COVID-19, and SARS-CoV-2 is thought to be effective at

evading the triggering of early innate immune responses. And this

delayed innate immune response subsequently failed to prime an

adaptive immune response, the study of Carolina Lucas et al. (40)

indicated that COVID-19 mortality did not correlated with the cross-

sectional antiviral antibody levels per se but, rather, with the delayed

kinetics of neutralizing antibody(NAb) production. What’s more,

advanced age has been widely recognized as a significant factor

associated with severe disease, multi-omics profiling (41) suggests

that age may delay or impair antiviral cellular immune responses and

delay efficient return to immune homeostasis. The above data linked

the general evidence for the pathogenesis of SARS-CoV-2, for

instance, the target: type I and type III IFN; the mechanism:

delaying the innate immune responses; the immunological

characteristics: the delayed innate immune cell counts and the

delayed kinetics of NAb production; and the clinical characteristics:

advanced age.
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Apart from the dynamics of immune response clarified by our study,

there are also some details worth noting. Firstly, the negative value of RS

in Figure 4 means that the corresponding cell counts have a negative

correlation with the severity of COVID-19, these correlations

corresponding to lymphopenia. An apoptosis and migration scoring

system studied by Ji-Yuan Zhang et al. (42) suggested that cell death and

lymphocyte migration (into infected site or adhesion to inflamed vascular

endothelium) may be both associate with lymphopenia. So in our work,

this negative value of RS mainly represent the decrease of the

corresponding cells in the peripheral blood, the specific direction

(apoptosis or migration) of these cells is till unknown.

Secondly, the lymphopenia is not only occurred in severe patients,

but also occurred in moderate patients (Figure 4). In addition,

lymphopenia is also occurred in patients with respiratory viral

infections, such as the A/H3N2 virus, the human rhinovirus (HRV)

and respiratory syncytial virus (RSV) (43). The above phenomenon

imply that the lymphopenia is not the cause of severe illness.

Thirdly, it can be seen from Figure 4 that the neutrophil subsets

show strong correlation at different disease stages, but have different

modes of action, including positive or negative correlations. This is

not surprising because different neutrophil subsets act in

heterogeneous manners have already been reviewed (44), the

reactive oxygen species (ROS) and neutrophil extracellular traps

(NETs) produced by neutrophils are thought to contribute to cell

death (45), and neutrophils have been characterized in the lungs and

tracheal aspirates of COVID-19 patients (8).

Deep learning of disease characteristics are often limited by the

sample size and the complexity of patient’s own physical condition, its

accuracy is usually not high (46–48). Our research is affected by the

same factors, generally speaking, there are two main reasons that

limited the accuracy of this study, one is the regression neural

network model, the other is the sample size. Generally, the accuracy

of classifier is higher than regression neural network, but one neuron

was set in the output layer for facilitating the RS calculation, this made

regressive neural network an appropriate choice for our work, and led

to a partial sacrifice of accuracy. This work totally analyzed 145 cases,

although it is sufficient for clinical analysis of diseases, it is indeed a

small sample for neural network. Flow cytometry data set from the

Flow Repository website often contains only dozens to hundreds of

cases. Meanwhile, different cell staining strategies limit the possibility

of merging these data sets to study homogeneity, they greatly limit the
BA

FIGURE 6

(A) The dynamics of immune response in moderate patients. (B) The dynamics of immune response in severe patients. ‘Innate’ line refers to the kinetics
of innate immune cell counts detectable in peripheral blood and the activation marker concentrations of these cells. ‘Adaptive’ line refer to the kinetics
of adaptive immune cell counts detectable in peripheral blood and the activation marker concentrations of these cells.
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size of sample collection. Therefore, further validation of our results is

warranted when additional data are released, as well as

immunological data on infected sites, to help accurately interpreting

the biological significant of negative RS.
Data availability statement

The original contributions presented in the study are included in

the article/Supplementary Material. Further inquiries can be directed

to the corresponding authors.
Ethics statement

Ethical review and approval was not required for the study on

human participants in accordance with the local legislation and

institutional requirements. Written informed consent for

participation was not required for this study in accordance with the

national legislation and the institutional requirements.
Author contributions

TC assist in the analysis of immunological parameters. XM, YF and

HS help validate machine learning results. D-QW assist in reviewing

this article. GJ provide experimental guidance. All authors contributed

to the article and approved the submitted version.
Funding

This work is supported by grants from the National Nature Science

Foundation of China (Grant No. 82173388, 32070662, 61832019,

32030063), the Key Research Area Grant 2016YFA0501703 of the

Ministry of Science and Technology of China, the Science and

Technology Commission of Shanghai Municipality (Grant No.:

19430750600), as well as SJTU JiRLMDS Joint Research Fund and

Joint Research Funds for Medical and Engineering and Scientific

Research at Shanghai Jiao Tong University (YG2021ZD02).
Frontiers in Immunology 10
Acknowledgments

The computations were partially performed at the Pengcheng Lab.

and the Center for High-Performance Computing, Shanghai Jiao

Tong University.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The reviewer MH declared a shared parent affiliation with the

author TC to the handling editor at the time of review.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2023.974343/

full#supplementary-material

S1 FILE

Cluster Percentage. The cluster counts(%) for each patient robustly clustered by

PhenoGraph algorithm.

S2 FILE

PhenoGraph1_Acsinh_Expr. The activation marker concentrations(simpleAsinh:

asinh(x/5)) on PhenoGraph1(Cluster1) of each patient robustly clustered by
PhenoGraph algorithm.

S3 FILE

Optimization of the neutral network.
References
1. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138
hospitalized patients with 2019 novel coronavirus–infected pneumonia in wuhan, China.
JAMA (2020) 323:1061. doi: 10.1001/jama.2020.1585

2. Torres Acosta MA, Singer BD. Pathogenesis of COVID-19-induced ARDS:
Implications for an ageing population. Eur Respir J (2020) 56:2002049. doi: 10.1183/
13993003.02049-2020

3. Tian Y, Carpp LN, Miller HER, Zager M, Newell EW, Gottardo R. Single-cell
immunology of SARS-CoV-2 infection. Nat Biotechnol (2022) 40:30–41. doi: 10.1038/
s41587-021-01131-y

4. Laing AG. A dynamic COVID-19 immune signature includes associations with
poor prognosis. Nat Med (2020) 26:1623–35. doi: 10.1038/s41591-020-1038-6

5. Knoll R, Schultze JL, Schulte-Schrepping J. Monocytes and macrophages in
COVID-19. Front Immunol (2021) 12:720109. doi: 10.3389/fimmu.2021.720109

6. Zhou R, To KK-W, Wong Y-C, Liu L, Zhou B, Li X, et al. Acute SARS-CoV-2
infection impairs dendritic cell and T cell responses. Immunity (2020) 53:864.
doi: 10.1016/j.immuni.2020.07.026
7. Meizlish ML, Pine AB, Bishai JD, Goshua G, Nadelmann ER, Simonov M, et al. A
neutrophil activation signature predicts critical illness and mortality in COVID-19. Blood
Adv (2021) 5:1164–77. doi: 10.1182/bloodadvances.2020003568

8. Veras FP, Pontelli MC, Silva CM, Toller-Kawahisa JE, de Lima M, Nascimento DC,
et al. SARS-CoV-2–triggered neutrophil extracellular traps mediate COVID-19
pathology. J Exp Med (2020) 217:e20201129. doi: 10.1084/jem.20201129

9. Chua RL, Lukassen S, Trump S, Hennig BP, Wendisch D, Pott F, et al. COVID-19
severity correlates with airway epithelium–immune cell interactions identified by single-
cell analysis. Nat Biotechnol (2020) 38:970–9. doi: 10.1038/s41587-020-0602-4

10. Kuri-Cervantes L, Pampena MB, Meng W, Rosenfeld AM, Ittner CAG, Weisman
AR, et al. Comprehensive mapping of immune perturbations associated with severe
COVID-19. Sci Immunol (2020) 5:eabd7114. doi: 10.1126/sciimmunol.abd7114

11. The CONTAGIOUS consortium, Penttilä PA, Van Gassen S, Panovska D,
Vanderbeke L, Van Herck Y, et al. High dimensional profiling identifies specific
immune types along the recovery trajectories of critically ill COVID19 patients. Cell
Mol Life Sci (2021) 78:3987–4002. doi: 10.1007/s00018-021-03808-8
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2023.974343/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.974343/full#supplementary-material
https://doi.org/10.1001/jama.2020.1585
https://doi.org/10.1183/13993003.02049-2020
https://doi.org/10.1183/13993003.02049-2020
https://doi.org/10.1038/s41587-021-01131-y
https://doi.org/10.1038/s41587-021-01131-y
https://doi.org/10.1038/s41591-020-1038-6
https://doi.org/10.3389/fimmu.2021.720109
https://doi.org/10.1016/j.immuni.2020.07.026
https://doi.org/10.1182/bloodadvances.2020003568
https://doi.org/10.1084/jem.20201129
https://doi.org/10.1038/s41587-020-0602-4
https://doi.org/10.1126/sciimmunol.abd7114
https://doi.org/10.1007/s00018-021-03808-8
https://doi.org/10.3389/fimmu.2023.974343
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2023.974343
12. Rodda LB, Netland J, Shehata L, Pruner KB, Morawski PA, Thouvenel CD, et al.
Functional SARS-CoV-2-Specific immune memory persists after mild COVID-19. Cell
(2021) 184:169–183.e17. doi: 10.1016/j.cell.2020.11.029

13. Woodruff MC. Extrafollicular b cell responses correlate with neutralizing
antibodies and morbidity in COVID-19. Nat Immunol (2020) 21:1506–16.
doi: 10.1038/s41590-020-00814-z

14. Mathew D, Giles JR, Baxter AE, Oldridge DA, Greenplate AR, Wu JE, et al. Deep
immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic
implications. Science (2020) 369:eabc8511. doi: 10.1126/science.abc8511

15. Yu K, He J, Wu Y, Xie B, Liu X, Wei B, et al. Dysregulated adaptive immune response
contributes to severe COVID-19. Cell Res (2020) 30:814–6. doi: 10.1038/s41422-020-0391-9

16. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A,
Antonakos N, et al. Complex immune dysregulation in COVID-19 patients with severe
respiratory failure. Cell Host Microbe (2020) 27:992–1000.e3. doi: 10.1016/j.chom.2020.04.009

17. Sekine T, Perez-Potti A, Rivera-Ballesteros O, Strålin K, Gorin J-B, Olsson A, et al.
Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-
19. Cell (2020) 183:158–168.e14. doi: 10.1016/j.cell.2020.08.017

18. Coleman M, Zimmerly K, Yang X. Accumulation of CD28null senescent T-cells is
associated with poorer outcomes in COVID19 patients. Biomolecules (2021) 11:1425.
doi: 10.3390/biom11101425

19. Bach S, Binder A, Montavon G, Klauschen F, Müller K-R, Samek W. On pixel-wise
explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS
One (2015) 10:e0130140. doi: 10.1371/journal.pone.0130140

20. Arras L, Montavon G, Müller K-R, Samek W. Explaining recurrent neural network
predictions in sentiment analysis. ArXiv (2017) 159–68. doi: 10.18653/v1/W17-5221

21. Arras L, Horn F, Montavon G, Müller K-R, Samek W. Explaining predictions of
non-linear classifiers in NLP. ArXiv Preprint (2016) 1–7. doi: 10.18653/v1/W16-1601

22. Arras L, Horn F, Montavon G, Müller K-R, Samek W. “What is relevant in a text
document?”: An interpretable machine learning approach. PloS One (2017) 12:e0181142.
doi: 10.1371/journal.pone.0181142

23. Lapuschkin S, Binder A, Montavon G, Müller K-R, Samek W. The LRP toolbox for
artificial neural networks. J Mach Learn Res (2016) 17:1–5. Available at: https://jmlr.org/
papers/v17/15-618.html.

24. Arras L, Osman A, Mueller K-R, Samek W. Evaluating recurrent neural network
explanations. In: Blackboxnlp workshop on analyzing and interpreting neural networks for
nlp at acl 2019. Stroudsburg: Assoc Computational Linguistics-Acl (2019). p. 113–26.

25. Kaur D, Uslu S, Rittichier KJ, Durresi A. Trustworthy artificial intelligence: A
review. ACM Comput Surv (2023) 55:1–38. doi: 10.1145/3491209

26. Aketi SA, Roy S, Raghunathan A, Roy K. Gradual channel pruning while training
using feature relevance scores for convolutional neural networks. IEEE Access (2020)
8:171924–32. doi: 10.1109/ACCESS.2020.3024992

27. Spidlen J, Breuer K, Rosenberg C, Kotecha N, Brinkman RR. FlowRepository: A
resource of annotated flow cytometry datasets associated with peer-reviewed publications.
Cytometry (2012) 81A:727–31. doi: 10.1002/cyto.a.22106

28. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir ED, Tadmor MD, et al. Data-
driven phenotypic dissection of AML reveals progenitor-like cells that correlate with
prognosis. Cell (2015) 162:184–97. doi: 10.1016/j.cell.2015.05.047

29. Geanon D, Lee B, Gonzalez-Kozlova E, Kelly G, Handler D, Upadhyaya B, et al. A
streamlined whole blood CYTOF workflow defines a circulating immune cell signature of
COVID -19. Cytometry (2021) 99:446–61. doi: 10.1002/cyto.a.24317

30. Neumann J, Prezzemolo T, Vanderbeke L, Roca CP, Gerbaux M, Janssens S, et al.
Increased IL-10-producing regulatory T cells are characteristic of severe cases of COVID-
19. Clin Transl Immunol (2020) 9:e1204. doi: 10.1002/cti2.1204
Frontiers in Immunology 11
31. Team RC. R:A language and environment for statistical computing. MSOR
Connections (2014) 1.

32. Atabay D. Pyrenn: First release (2015). doi: 10.5281/ZENODO.45022.

33. Kanda A, Yun Y, Bui DV, Nguyen LM, Kobayashi Y, Suzuki K, et al. The multiple
functions and subpopulations of eosinophils in tissues under steady-state and
pathological conditions. Allergology Int (2021) 70:9–18. doi: 10.1016/j.alit.2020.11.001

34. Geanon D, Lee B, Kelly G, Handler D, Upadhyaya B, Leech J, et al. A streamlined
CyTOF workflow to facilitate standardized multi-site immune profiling of COVID-19
patients. Allergy Immunol (2020). doi: 10.1101/2020.06.26.20141341

35. Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell (2021)
184:861–80. doi: 10.1016/j.cell.2021.01.007

36. Palmer EM, Holbrook BC, Arimilli S, Parks GD, Alexander-Miller MA. IFNg-
producing, virus-specific CD8+ effector cells acquire the ability to produce IL-10 as a
result of entry into the infected lung environment. Virology (2010) 404:225–30.
doi: 10.1016/j.virol.2010.05.004

37. Romão PR, Teixeira PC, Schipper L, da Silva I, Santana Filho P, Júnior LCR, et al.
Viral load is associated with mitochondrial dysfunction and altered monocyte phenotype
in acute severe SARS-CoV-2 infection. Int Immunopharmacol (2022) 108:108697.
doi: 10.1016/j.intimp.2022.108697

38. Wang C, Yu R, Zhang S, Zhao Y, Qi C, Zhu Z, et al. Genome-wide mendelian
randomization and single-cell RNA sequencing analyses identify the causal effects of
COVID-19 on 41 cytokines. Briefings Funct Genomics (2022) 21:423–32. doi: 10.1093/
bfgp/elac033

39. Beyer DK, Forero A. Mechanisms of antiviral immune evasion of SARS-CoV-2. J
Mol Biol (2022) 434:167265. doi: 10.1016/j.jmb.2021.167265

40. Lucas C, Klein J, Sundaram ME, Liu F, Iwasaki A. Delayed production of
neutralizing antibodies correlates with fatal COVID-19. Nat Med (2021) 27:1178–86.
doi: 10.1038/s41591-021-01355-0

41. Speranza E, Purushotham JN, Port JR, Schwarz B, Flagg M, Williamson BN, et al.
Age-related differences in immune dynamics during SARS-CoV-2 infection in rhesus
macaques. Life Sci Alliance (2022) 5:e202101314. doi: 10.26508/lsa.202101314

42. Zhang J-Y, Wang X-M, Xing X, Xu Z, Zhang C, Song J-W, et al. Single-cell
landscape of immunological responses in patients with COVID-19. Nat Immunol (2020)
21:1107–18. doi: 10.1038/s41590-020-0762-x

43. McClain MT, Park LP, Nicholson B, Veldman T, Zaas AK, Turner R, et al.
Longitudinal analysis of leukocyte differentials in peripheral blood of patients with
acute respiratory viral infections. J Clin Virol (2013) 58:689–95. doi: 10.1016/
j.jcv.2013.09.015

44. Hirschfeld J. Neutrophil subsets in periodontal health and disease: A mini review.
Front Immunol (2020) 10:3001. doi: 10.3389/fimmu.2019.03001

45. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al.
Neutrophil extracellular traps kill bacteria. Science (2004) 303:1532–5. doi: 10.1126/
science.1092385

46. Zhang S, Poon SK, Vuong K, Sneddon A, Loy CT. A deep learning-based approach
for gait analysis in huntington disease. In: MEDINFO 2019: Health and wellbeing e-
networks for all. IOS Press (2019). 264:477–81. doi: 10.3233/SHTI190267

47. Kumamaru KK, Fujimoto S, Otsuka Y, Kawasaki T, Kawaguchi Y, Kato E, et al.
Diagnostic accuracy of 3D deep-learning-based fully automated estimation of patient-
level minimum fractional flow reserve from coronary computed tomography
angiography. Eur Heart J - Cardiovasc Imaging (2019), 21:437–45. doi: 10.1093/ehjci/
jez160

48. Lee SJ, Rho M. Multimodal deep learning applied to classify healthy and disease
states of human microbiome. Sci Rep (2022) 12:824. doi: 10.1038/s41598-022-04773-3
frontiersin.org

https://doi.org/10.1016/j.cell.2020.11.029
https://doi.org/10.1038/s41590-020-00814-z
https://doi.org/10.1126/science.abc8511
https://doi.org/10.1038/s41422-020-0391-9
https://doi.org/10.1016/j.chom.2020.04.009
https://doi.org/10.1016/j.cell.2020.08.017
https://doi.org/10.3390/biom11101425
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.18653/v1/W17-5221
https://doi.org/10.18653/v1/W16-1601
https://doi.org/10.1371/journal.pone.0181142
https://jmlr.org/papers/v17/15-618.html
https://jmlr.org/papers/v17/15-618.html
https://doi.org/10.1145/3491209
https://doi.org/10.1109/ACCESS.2020.3024992
https://doi.org/10.1002/cyto.a.22106
https://doi.org/10.1016/j.cell.2015.05.047
https://doi.org/10.1002/cyto.a.24317
https://doi.org/10.1002/cti2.1204
https://doi.org/10.5281/ZENODO.45022
https://doi.org/10.1016/j.alit.2020.11.001
https://doi.org/10.1101/2020.06.26.20141341
https://doi.org/10.1016/j.cell.2021.01.007
https://doi.org/10.1016/j.virol.2010.05.004
https://doi.org/10.1016/j.intimp.2022.108697
https://doi.org/10.1093/bfgp/elac033
https://doi.org/10.1093/bfgp/elac033
https://doi.org/10.1016/j.jmb.2021.167265
https://doi.org/10.1038/s41591-021-01355-0
https://doi.org/10.26508/lsa.202101314
https://doi.org/10.1038/s41590-020-0762-x
https://doi.org/10.1016/j.jcv.2013.09.015
https://doi.org/10.1016/j.jcv.2013.09.015
https://doi.org/10.3389/fimmu.2019.03001
https://doi.org/10.1126/science.1092385
https://doi.org/10.1126/science.1092385
https://doi.org/10.3233/SHTI190267
https://doi.org/10.1093/ehjci/jez160
https://doi.org/10.1093/ehjci/jez160
https://doi.org/10.1038/s41598-022-04773-3
https://doi.org/10.3389/fimmu.2023.974343
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Machine learning of flow cytometry data reveals the delayed innate immune responses correlate with the severity of COVID-19
	1 Introduction
	2 Methods
	2.1 Acquisition of data sets
	2.2 Data pre-processing (Clustering by PhenoGraph algorithm)
	2.3 Relevance scores calculated by neural network
	2.4 Optimization of neural network
	2.5 Welch’s t-test
	2.6 The pipeline for RS calculation

	3 Results
	3.1 Clustering by PhenoGraph algorithm
	3.2 The RS between immune cell counts and the severity of COVID-19 at different stages
	3.3 The RS between activation marker concentrations and the severity of COVID-19
	3.4 Dynamics of immune response in COVID-19 patients

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


