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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main

cause of COVID-19, causing hundreds of millions of confirmed cases and more

than 18.2 million deaths worldwide. Acute kidney injury (AKI) is a common

complication of COVID-19 that leads to an increase in mortality, especially in

intensive care unit (ICU) settings, and chronic kidney disease (CKD) is a high risk

factor for COVID-19 and its relatedmortality. However, the underlying molecular

mechanisms among AKI, CKD, and COVID-19 are unclear. Therefore,

transcriptome analysis was performed to examine common pathways and

molecular biomarkers for AKI, CKD, and COVID-19 in an attempt to

understand the association of SARS-CoV-2 infection with AKI and CKD. Three

RNA-seq datasets (GSE147507, GSE1563, and GSE66494) from the GEO

database were used to detect differentially expressed genes (DEGs) for

COVID-19 with AKI and CKD to search for shared pathways and candidate

targets. A total of 17 common DEGs were confirmed, and their biological

functions and signaling pathways were characterized by enrichment analysis.

MAPK signaling, the structural pathway of interleukin 1 (IL-1), and the Toll-like

receptor pathway appear to be involved in the occurrence of these diseases. Hub

genes identified from the protein–protein interaction (PPI) network, including

DUSP6, BHLHE40, RASGRP1, and TAB2, are potential therapeutic targets in

COVID-19 with AKI and CKD. Common genes and pathways may play

pathogenic roles in these three diseases mainly through the activation of

immune inflammation. Networks of transcription factor (TF)–gene, miRNA–

gene, and gene–disease interactions from the datasets were also constructed,

and key gene regulators influencing the progression of these three diseases were

further identified among the DEGs. Moreover, new drug targets were predicted
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based on these common DEGs, and molecular docking and molecular dynamics

(MD) simulations were performed. Finally, a diagnostic model of COVID-19 was

established based on these common DEGs. Taken together, the molecular and

signaling pathways identified in this study may be related to the mechanisms by

which SARS-CoV-2 infection affects renal function. These findings are significant

for the effective treatment of COVID-19 in patients with kidney diseases.
KEYWORDS

SARS-CoV-2, acute kidney injury, chronic kidney disease, differentially expressed genes,
gene ontology, protein-protein interaction, hub gene, drug molecule
1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) is a novel coronavirus that belongs to the Coronaviridae family

and Pisoniviricetes class. SARS-CoV-2 has been found to cause

severe respiratory problems when infecting the respiratory tract and

is the main cause of COVID-19 (1, 2), which was estimated to have

resulted in 18.2 million deaths worldwide during the pandemic in

2020 and 2021 (3). COVID-19 was initially deemed a febrile

respiratory disease, but increasing evidence suggests that it is a

complex multisystem disease (4, 5). Indeed, COVID-19 patients

often exhibit manifestations of renal involvement in addition to

respiratory symptoms (6). Acute kidney injury (AKI) is a common

complication of COVID-19 that increases mortality, especially in

intensive care unit (ICU) settings. Patients with chronic kidney

disease (CKD) have a high risk of SARS-CoV-2 infection and

COVID-19-related mortality (7–9).

AKI is the second most common complication in critically ill

COVID-19 patients and is characterized by elevated serum

creatinine, renal inflammation, and tubular necrosis .

Epidemiologically, the incidence of AKI in COVID-19 patients is

variable and depends on the severity of COVID-19, ranging from

10.5% to 37% (10). The pathophysiology of COVID-19-associated

AKI is complex, and an increasing number of studies suggest that

factors such as systemic inflammation and immune responses,

activation of coagulation pathways, the renin–angiotensin system,

and endothelial injury are involved in the process of renal damage

that occurs in COVID-19 (9, 11, 12). Early reports indicated

underlying CKD as a risk factor for COVID-19 severity and

mortality (8, 9). The largest study included data from 17 million

electronic health records and identified CKD as a risk factor for

mortality in COVID-19 patients, with glomerular filtration rate

(GFR)<30 ml/min/1.73 m2 and organ transplantation conferring a

high risk in multivariate analyses (13). Additionally, a nationwide

study in a US dialysis center reported higher seroprevalence of

SARS-CoV-2 antibodies than in the general US population (14).

AKI and CKD are often considered two separate stages of the same

disease class (15, 16). Although most COVID-19 patients have

improved renal function at discharge, the complex renal damage

mechanisms of COVID-19 and the use of nephrotoxic drugs and

mechanical ventilation during hospitalization suggest that further
02
investigation is required to determine the long-term prognosis of

renal function in COVID-19 patients (17–19).

The exact mechanism of SARS-CoV-2-related renal damage is

not known. The main binding site for SARS-CoV-2, i.e., angiotensin-

converting enzyme 2 (ACE2), is expressed at much higher levels in

the kidney than in the lung (20–22). ACE2 is expressed apically in

primary human airway epithelia (23), and previous studies have

demonstrated that in COVID-19, pneumonia occurs as ACE2 levels

increase in the cell membrane. In connection with a viral infection,

the density level of ACE2 is extremely progressive in the lungs (24).

Single-cell RNA sequencing analysis indicated that ACE2 is mainly

expressed by glomerular parietal epithelial cells and proximal tubular

cells. Other studies have suggested that SARS-CoV-2 can directly

invade human kidney organoids through the ACE2 receptor (25).

The infectivity of cells depends on not only ACE2 expression but also

the types of proteases expressed. The cellular components required

for virus entry into the kidney, such as cellular cathepsin L (CTSL)

and transmembrane serine protease 2 (TMPRSS2), are also highly

expressed, suggesting favorable conditions for the presence of SARS-

CoV-2 in the kidneys (26). In addition, SARS-CoV-2 contributes to

an imbalance in the renin–angiotensin–aldosterone system (RAAS)

via ACE2, which may also exert deleterious hemodynamic effects

involved in lung and kidney injury (27). Moreover, SARS-CoV-2 may

target lymphocytes because they express ACE2, leading to

lymphocyte activation, which consequently results in lymphocyte

death and decreased immune protection (28). In patients with CKD,

especially those with diabetic kidney disease (DKD), baseline

downregulation of ACE2 and upregulation of ACE, a combination

of proinflammatory and profibrotic states in the kidneys, might lead

to CKD progression (11, 29). Therefore, the human kidney is a main

target for SARS-CoV-2 infection, and it is necessary for researchers to

further explore the complicated interactions between SARS-CoV-2

infection, AKI, and CKD.

In this study, three datasets were used to explore the biological

relationship between COVID-19, AKI, and CKD. These datasets were

collected from the Gene Expression Omnibus (GEO) database, with

GSE147507, GSE1563, and GSE66494 being used for COVID-19,

AKI, and CKD, respectively. First, differentially expressed genes

(DEGs) were confirmed using these datasets, and then common

DEGs for the three diseases were identified and served as the main

experimental genes for the entire study. These common DEGs were
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utilized for further experiments and analyses, including pathway and

enrichment analyses, to understand the biological processes of

genome expression studies. Extracting hub genes from common

DEGs is essential for potential drug prediction, and a network of

protein–protein interactions (PPIs) was also constructed via common

DEGs to collect hub genes. Transcriptional regulators were also

explored based on the common DEGs of GSE147507, GSE1563,

and GSE66494, and potential drugs are suggested (Figure 1).
2 Materials and methods

2.1 Datasets employed in this study

To identify common genetic interactions among SARS-CoV-2,

AKI, and CKD, microarray, and RNA-seq data were obtained from

the National Center for Biotechnology Information (NCBI)

(https://www.ncbi.nlm.nih.gov/geo/) GEO database (30). The

SARS-CoV-2 dataset (GEO accession ID: GSE147507) involves

transcriptional analysis of COVID-19 lung biopsies for

respiratory infections using the Illumina NextSeq 500 platform

for high-throughput sequencing. The AKI dataset (GEO accession

ID: GSE1563) comprises human kidney tissue containing nine

normal renal tissue samples and five AKI renal samples (samples

from transplant patients with renal dysfunction without rejection),

which were sequenced by Affymetrix Human Genome U95 Version

2 Array (31). The CKD dataset (GEO accession: ID GSE66494) was

obtained from eight subjects with normal renal function and 54

CKD subjects (32); Agilent-014850 Whole Human Genome

Microarray 4x44K G4112F was used to measure gene expression.
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2.2 Identification of DEGs and mutual
DEGs among AKI, CKD, and COVID-19

Genes are defined as distinctively expressed when statistically

significant differences exist between the different levels of

transcripts tested (33). DEGs for the acquired datasets

GSE147507, GSE1563, and GSE66494 were first identified from

long expression values with the LIMMA package and Benjamini–

Hochberg calibration to control for the false discovery rate and

DESEq2 in the R programming language (v 4.0.2) for multiple test

options. Significant DEGs in the dataset were detected by cutoff

criteria (p-value<0.05 and |logFC| ≥ 1.0), and mutual DEGs were

obtained for GSE147507, GSE1563, and GSE66494 by the online

VENN analysis tool Jvenn.
2.3 Gene Ontology and pathway
enrichment analyses

The purpose of gene set enrichment analysis is to identify

common biological insights, such as biological processes or

chromosomal locations related to different diseases (34). Gene

Ontology, functional enrichment, and pathway enrichment

studies were performed with EnrichR (https://maayanlab.cloud/

Enrichr/) to characterize the biological mechanisms and signaling

pathways of the shared DEGs. Kyoto Encyclopedia of Genes and

Genomes (KEGG), WikiPathways, and BioCarta were also used to

identify shared pathways between AKI-, CKD-, and COVID-19-

related metabolic processes. The top pathways were selected based

on p-value<0.05.
FIGURE 1

This diagram illustrates the overall workflow of the study. The author first found the common differentially expressed genes of COVID-19, AKI, and
CKD and then analyzed the enriched functions, pathways, PPI networks, transcription factors and miRNAs, related diseases, and potential drugs of
these differential genes. The three datasets, GSE1563, GSE66494, and GSE147507, in the figure represent the datasets of AKI, CKD, and COVID-19,
respectively. AKI, acute kidney injury; CKD, chronic kidney disease; PPI, protein–protein interaction.
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2.4 Protein–protein interaction
network analysis

AKI, CKD, and COVID-19 functional and physiological

interactions were mapped with STRING (https://string-db.org/)

(version 11.0). PPIs were examined using channels such as text

mining, experimental databases, coexpression, culture, gene fusion,

and co-occurrence under different settings of classification

confidence scores (low, medium, and high) (35). Then, a medium

confidence score of 0.5 was set to generate PPI networks for

common DEGs. Cytoscape (v.3.7.1) was used to visualize PPIs,

genetic interactions, protein–DNA interactions, and other types of

interactions (36).
2.5 Hub gene extraction and
submodule analysis

Nodes, edges, and connections exist between PPI networks, and

nodes with high levels of cross-linking can be considered hub genes.

CytoHubba (http://apps.cytoscape.org/apps/cytohubba) is a

Cytoscape plug-in for ranking and extracting the key or potential

targeted elements of biological networks based on various network

characteristics. There are 11 methods for studying networks from

different perspectives in cytoHubba, among which maximal clique

centrality (MCC) is the best (37). By using the MCC method, the

top 15 central genes were identified from the PPI network. The

shortest possible paths between central genes were classified

according to the closest neighboring feature of cytoHubba.
2.6 Recognition of TFs and miRNAs
interacting with common DEGs

A transcription factor (TF) is a protein that binds to specific

genes and controls the rate at which genetic information is

transcribed. Therefore, TFs are crucial for molecular profiling.

Topologically plausible TFs that tend to bind to our common

DEGs were identified in the JASPAR database via the

NetworkAnalyst platform. JASPAR is an openly available resource

that collects profiles of TFs for numerous species in six taxonomic

groups (38). NetworkAnalyst is an online platform for meta-

analyzing gene expression data and obtaining insight into

biological mechanisms, roles, and explanations. Furthermore,

miRNAs targeting gene interactions are included to track the

detrimental effects of miRNAs that target gene transcripts to

affect protein expression (39). Both TarBase and mirTarBase are

experimental validity databases for miRNA–target gene interactions

(39, 40). MiRNAs interacting with common DEGs were obtained

from TarBase and miRTarBase through miRNA–gene interactions

from NetworkAnalyst. Topological analysis was performed by

Cytoscape, and TF–gene and miRNA–gene interaction networks

were identified. Using this tool, researchers can screen miRNAs

with high rankings and detect biological functions and features to

develop valid biological hypotheses.
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2.7 Evaluation of applicant drugs and
molecular docking

Through Enrichr, drug molecules were identified using the drug

signature database (DSigDB) in relation to COVID-19, AKI, and

CKD. Enrichr is a popular portal with a large number of different

gene set libraries for exploring genome-wide enrichment of gene

sets (41). DSigDB is a global archive for the identification of

targeted drugs associated with DEGs (42). DSigDB, which

contains 22,527 gene sets, can be accessed via Enrichr.

After drugs for the common DEGs were predicted by Enrichr,

we downloaded the MOL2 form of these drugs from the ZINC

(https://zinc.docking.org/) database (due to the lack of the MOL2

form of dimethyloxalylglycine in ZINC, we downloaded its SDF

format from PubChem (https://pubchem.ncbi.nlm.nih.gov/)). We

used openBabel software to convert the MOL and SDF formats of

these small molecules to PDB formats. We downloaded the PDB

format of DUSP6, BHLHE40, RASGRP1, TAB2, ACE2 (the

functional host receptor of SARS-CoV-2), and 3CLpro (an

enzyme necessary for SARS-CoV-2 replication) from Protein

Data Bank (https://www.rcsb.org/). We used Autodock tools

(version 1.5.4) to dock eight drugs and three proteins and then

visualized the results with PyMOL Molecular Visualization System

2020 (PyMOL).
2.8 Molecular dynamics simulation

Based on the docking results for each protein and drug

molecule, the drug–protein complex with the lowest binding

energy was used as the initial structure for all-atom molecular

dynamics simulations, and the simulation was performed using

AMBER 18 software. Before the simulation, charges of the small

molecules are calculated by the Hartree-Fock (HF) SCF/6-31G* of

the antechamber module and Gaussian 09 software. Afterward,

drug molecules and proteins are described using the GAFF2 small

molecule force field and ff14SB protein force field, respectively. Each

system utilizes the LEaP module to add hydrogen atoms to the

system, add a truncated octahedral TIP3P solvent box at a distance

of 10 Å in the system, add Na+/Cl− to the system to balance the

charge of the system, and output the topology and parameter file.

Molecular dynamics simulations were performed using AMBER

18 software. Before simulations, energy optimization of the system

was carried out, including the steepest descent method with 2,500

steps and the conjugate gradient method with 2,500 steps. After the

system energy optimization was completed, the temperature of the

system was raised slowly from 0 to 298.15 K by 200 ps at a fixed

volume and a constant heating rate. Under the condition that the

system maintained a temperature of 298.15 K, a 500-ps NVT

(isothermal isotropic) system simulation was performed such that

the solvent molecules were further uniformly distributed in the

solvent box. In the case of NPT (isothermal and isobaric), a 500-ps

equilibrium simulation of the entire system was performed. Finally,

under periodic boundary conditions, the two composite systems

were simulated by 4-ns NPT (isothermal and isobaric) systems.
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https://string-db.org/
http://apps.cytoscape.org/apps/cytohubba
https://zinc.docking.org/
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/
https://doi.org/10.3389/fimmu.2023.961642
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.961642
During the simulation, the non-bond cutoff distance was set to 10

Å, the particle mesh Ewald (PME) method was used to calculate the

long-range electrostatic interaction, the SHAKE method was

applied to limit the length of hydrogen atomic bonds, and the

Langevin algorithm (43) was used for temperature control, where

the collision frequency g was set to 2 ps-1. The system pressure is 1

atm, the integration step is 2 fs, and the trajectory is saved every 10

ps for subsequent binding energy calculations.
2.9 MM/GBSA binding free
energy calculation

The free energies of binding between proteins and ligands in all

systems were calculated by the molecular mechanics generalized

Born surface area (MM/GBSA) method. In this study, the above

molecular dynamics (MD) trajectory was used for calculation, and

the specific formula is as follows:

DGbind = DGcomplex − (DGreceptor + DGligand);

= DEinternal + DEVDW + DEelec + DGGB + DGSA

where DEinternal represents the internal energy, DEVDW represents

the van der Waals interaction, and DEelec represents the electrostatic
interaction. The internal energy includes the bond energy (Ebond),

angular energy (Eangle), and torsion energy (Etorsion); DGGB and

DGSA are collectively referred to as solvation-free energy. Among

them, GGB is the free energy of polar solvation, and GSA is the free

energy of non-polar solvation. For DGGB, we used the GB model

developed by researchers such as Nguyen (44) for calculation (igb =

2). The non-polar solvation free energy (DGSA) was calculated based

on the surface tension (g) multiplied by the solvent accessible

surface area (surface area, SA), DGSA= 0.0072 × DSASA. Entropy
change was neglected in this study due to high computational

resource consumption and low precision.
2.10 Gene–disease association analysis

The DisGeNET project is a centralized database of gene–disease

interactions obtained from a variety of sources and features various

biomedical aspects of diseases. It highlights novel views of human

genetic disorders (45). The network-analyst program was used to

study gene–disease associations to discover the relationship

between related diseases and chronic complications for the

shared DEGs.
2.11 Construction of the COVID-19
diagnostic model

We used GSE147507 expression matrix information to establish

a COVID-19 diagnosis model with fivefold cross-validation. We set

17 common DEGs as model key variables. Six different machine

learning algorithms (“extreme gradient boosting (XGBoost)”, “light
Frontiers in Immunology 05
gradient boosting (LGBM)”, “RandomForest”, “Adaboost”,

“support vector machine (SVC)”, and “k-nearest neighbor

(KNN)”) were employed for modeling. The performance of each

model was compared by a multimodel calibration curve and the

area under the curve (AUC), and the best model was selected. After

filtering out the best-performing models, we used the “SHapley

Additive exPlanations (SHAP)” package in Python to explain the

importance of key variables to the model and the contribution of

each variable.
2.12 Statistical analysis

DEGs for three GEO datasets were first identified from long

expression values with the LIMMA package and Benjamini–

Hochberg calibration to control for the false discovery rate and

DESEq2 in the R programming language (v 4.0.2) for multiple test

options. Significant DEGs in the dataset were detected by cutoff

criteria (p-value<0.05 and |logFC| ≥ 1.0).

Python software (version 3.7) was used to build the COVID-19

diagnostic model. During the modeling of various machine learning

algorithms, the xgboost 1.2.1 package was applied to run the

XGBoost algorithm, the lightgbm 3.2.1 package to run the

LightGBM algorithm, and the sklearn 0.22.1 package to run other

machine learning algorithms. The shap 0.39.0 package was used to

demonstrate model interpretability. All statistical analyses in

constructing the COVID-19 diagnostic model were carried out

with Python version 3.7 and the Extreme Smart Analysis platform

(https://www.xsmartanalysis.com/).
3 Results

3.1 Identification of DEGs and common
DEGs among COVID-19, AKI, and CKD

To discover the interrelationships and implications of AKI and

CKD with COVID-19, we analyzed human RNA-seq and

microarray datasets from NCBI to classify DEGs related to

COVID-19, AKI, and CKD. We assessed the RNA-seq and

microarray dataset experiments in the R language environment

using the DESeq2 and limma packages with the Benjamin–

Hochberg false discovery rate. In total, we identified 2199 genes

differentially expressed in COVID-19, and we also detected the

most significant DEGs for AKI and CKD: 200 in the AKI dataset

and 5,211 in the CKD dataset. All significant DEGs were extracted

on the basis of p-value<0.05 and |logFC| ≥ 1. After performing

cross-comparative analysis with Jvenn, a reliable web portal for

Venn analysis, 17 common DEGs from the AKI, CKD, and SARS-

CoV-2 datasets were identified, including HBD, HBB, TANK,

RNF6, TAB2, WTAP, PNRC1, ING3, TNFAIP8, S1PR1, SEC24A,

NRIP1, MARCKS, BHLHE40, DUSP6, EIF2AK2, and RASGRP1.

The expression levels of these 17 common DEGs based on the three

datasets are shown in heatmaps (Supplementary Figure 1).

However, the upregulation and downregulation of these 17 DEGs

in the cluster heatmaps of the three diseases were not completely
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consistent. Overall, these genes may be affected by certain pathways,

resulting in inconsistent upregulation and downregulation, and we

will further investigate how the upregulation and downregulation of

these genes are affected in future studies. The three diseases

correlate with each other because they share one or more

common genes (46) (Figure 2).
3.2 Gene Ontology and pathway
enrichment analyses

Gene Ontology and pathway enrichment analyses were used to

identify the biological significance and enriched pathways for the

shared DEGs. Gene Ontology analysis is performed within three

categories (biological process, cellular component, and molecular

function) (Figures 3A–C); pathway analysis reveals the functional

pathways in which genes are enriched. The most affected pathways of

the DEGs common to AKI, CKD, and COVID-19 were gathered from

three global databases, including KEGG,WikiPathways, and BioCarta.

The top 10 pathways in WikiPathways include the structural pathway

of interleukin 1 (IL-1), MAPK signaling pathway, TNF-a signaling

pathway, vitamin D receptor pathway, mammary gland development

pathway–puberty (Stage 2 of 4), circadian rhythm-related genes, small

ligand GPCRs, serotonin receptor 2 and ELK-SRF/GATA4 signaling,

transcription factor regulation in adipogenesis, and signal

transduction of the S1P receptor. The top 10 pathways in KEGG
Frontiers in Immunology 06
were the MAPK signaling pathway, measles, protein processing in the

endoplasmic reticulum, NOD-like receptor signaling pathway,

pathogenic Escherichia coli infection, Epstein–Barr virus infection,

lipid and atherosclerosis, coronavirus disease, circadian rhythm, and

African trypanosomiasis. The top 10 pathways in BioCarta include the

Toll-like receptor pathway, regulation of MAP kinase pathways

through dual specificity phosphatases, regulation of elF2, TNFR2

signaling pathway, hemoglobin’s chaperone, effects of calcineurin in

keratinocyte differentiation, double-stranded RNA-induced gene

expression, TNF/stress-related signaling, phospholipids as signaling

intermediaries, and signal transduction through lL1R (Figures 4A–C).
3.3 Classification of hub proteins
and submodules

We carefully checked the PPI network from STRING and

visualized it in Cytoscape to predict common DEG interactions

and related pathways. The majority of interconnected nodes are

considered hub genes of a PPI network. Based on PPI network

analysis incorporating the cytoHubba plugin in Cytoscape, we

classified the top 4 DEGs as the most influential genes; DUSP6,

BHLHE40, RASGRP1, and TAB2 were detected as hub

genes (Figure 5A).
FIGURE 2

This study incorporates two microarray datasets and one RNA-seq
dataset, which together encompass AKI (GSE1563), CKD
(GSE66494), and SARS-CoV-2 (GSE147507). This integrated analysis
identified 17 DEGs that are common to SARS-CoV-2, AKI, and CKD.
AKI, acute kidney injury; CKD, chronic kidney disease; SARS-CoV-2,
severe acute respiratory syndrome coronavirus 2; DEGs, differentially
expressed genes.
A

B

C

FIGURE 3

The ontological bar graphs of the DEGs that are shared among
SARS-CoV-2, AKI, and CKD using the Enricher online tool. The GO
function is divided into three parts: (A) biological processes, (B)
molecular function, and (C) cellular component. Each bar graph
represents a function in GO. DEGs, differentially expressed genes;
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; AKI,
acute kidney injury; CKD, chronic kidney disease; GO, Gene
Ontology.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.961642
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.961642
These hub genes are potential biomarkers, and the results may

lead to new therapeutic strategies to study diseases. As hub genes

are potential markers, we also constructed a submodule network

with the cytoHubba plugin to better understand their near

connectivity and proximity (Figure 5B).
3.4 Determination of regulatory signatures

To determine substantial changes at the transcriptional level

and understand the hub proteins’ regulatory molecules and

common DEGs, we adopted a network-based approach to decode

regulatory TFs and miRNAs. From TF–gene and miRNA–gene

interaction network analyses, it was ascertained that 53 TF

(Figure 6) and 34 posttranscriptional miRNA (Figure 7)

regulatory signatures are regulated by more than one common

DEG, indicating that they strongly interact with each other.
3.5 Identification of candidate drugs

Evaluating protein–drug interactions is crucial to understand

the structural features recommended for receptor sensitivity (46,

47). Regarding common DEGs as potential drug targets in AKI,

CKD, and COVID-19, we identified eight possible pharmaceutical
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molecules based on transcriptome signatures from the DSigDB

database using Enrichr. A list of the top 8 chemical compounds for

three diseases according to p-value and potential drugs for DEGs,

including common chemical compounds, is presented in Table 1.

The results of docking analyses are shown in Supplementary

Table 1, in which lower binding energy indicates a more stable

docking result. The docking results for pyrvinium with BHLHE40,

RASGRP1, and ACE2 are the most stable, with binding energies of

−7.46, 7.77, and −6.61 kcal/mol, respectively. The most stable drug

molecules docked with DUSP6 and TAB2 are tanespimycin and

niclosamide, with binding energies of −5.67 and −9.26 kcal/mol,

respectively; the most stable drug binding to 3CLpro is

camptothecin, with a binding energy of −5.59 kcal/mol (Figure 8).
3.6 MM/GBSA results

Based on the trajectory of the molecular dynamics simulation,

we used the MM/GBSA method to calculate binding energy, which

can accurately reflect the binding effect of a drug molecule and

target protein.

As shown in Supplementary Table 2, the binding energies of

drug molecule ligands and proteins in the tanespimycin–DUSP6,

pyrvinium–RASGRF1, niclosamide–TAB, pyrvinium–BHLHE40,

pyrvinium–ACE2, and camptothecin–3CLpro systems were found

to be −15.7857 ± 1.3991, −27.6909 ± 0.9977, −14.8572 ± 0.5838,

−21.5866 ± 0.9644, −28.5042 ± 1.4538, and −13.2160 ± 1.4146,

respectively. Negative values indicate that the two molecules have

binding affinity for the target protein, and lower values indicate

stronger binding. Obviously, our calculations show that all systems

have the potential to bind, with the binding affinities of pyrvinium–

BHLHE40 and pyrvinium–TAB2 being significantly lower than 20

kcal/mol, suggesting that the two complexes have better binding

effects. Through energy decomposition, we can determine that in

the pyrvinium–ACE2 complex, the electrostatic energy (EEL) has a

strong contribution; in contrast, the electrostatic energy has a weak

contribution in the tanespimycin–DUSP6 and camptothecin–

3CLpro complexes. The van der Waals energy (VDW) plays a

role in all combinations. In addition, the polar solvation energy of

24 is 331.4498 ± 1.3050 kcal/mol, indicating that it is not conducive

to binding, with the non-polar solvation energy playing a weak role.

The remaining polar or non-polar solvation energy contribution of

the other systems is not significant and has little effect on binding.
3.7 Identification of disease association

Different diseases can correlate with each other and usually

share one or more similar genes (46). Therapeutic design strategies

for combating disease have begun to uncover relationships between

genes and disorders (48). According to NetworkAnalyst, studies

have reported an impaired sense of smell, heart failure, testicular

hypogonadism, and mood disorders associated with COVID-19.

Persistent loss of smell or taste without an obvious cause (e.g.,

typhoid) is called olfactory failure. The most common causes of

olfactory loss are allergic sinusitis, nasal polyps, colds, and viral
A

B

C

FIGURE 4

Bar graphs showing pathway enrichment analysis of DEGs shared by
SARS-CoV-2, AKI, and CKD as performed by Enricher: (A) KEGG
2019 human pathway, (B) WikiPathways, and (C) BioCarta. Each bar
represents a pathway in KEGG/WikiPathways/BioCarta. DEGs,
differentially expressed genes; SARS-CoV-2, severe acute respiratory
syndrome coronavirus 2; AKI, acute kidney injury; CKD, chronic
kidney disease; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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infection. Heart failure is a syndrome of impaired cardiac

circulation due to impaired systolic or diastolic function, which is

not an independent disease but rather the end stage of various heart

diseases, resulting in blood stagnation in the venous system and

inadequate perfusion in the arterial system. In the majority of heart

failure cases, the common initial manifestation is pulmonary

congestion. In addition, many COVID-19 patients experience

symptoms of renal tissue ischemia, which probably progresses to

AKI or even CKD (Figure 9).
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3.8 COVID-19 diagnostic model

The receiver operating characteristic (ROC) values of each

machine learning model for training and validation sets are

shown in Supplementary Figures 2A, B, respectively. Calibration

curves for each model are shown in Supplementary Figure 2C.

XGBoost had the highest AUC in both the training set and

validation set at 1 and 0.792, respectively (Supplementary

Figures 2A, B). The calibration plot in Supplementary Figure 2C

shows that the XGBOOST model was also the most accurate.

Supplementary Tables 3, 4 show that the AUC, cutoff, accuracy,

sensitivity, specificity, positive predictive value, negative predictive

value, and F1 score of XGBoost for the training set were 1.000,

0.683, 0.984, 1.000, 1.000, 1.000, 0.978, 1.000, and 0.961,

respectively. In brief, XGBoost was the best-performing model,

and we used it to build a diagnostic model for COVID-19.

After filtering out the best-performing XGBoost model, we used

the “SHAP” package to explain the importance of key variables to

the model. Supplementary Figure 2D shows the contribution of

each variable, with red dots indicating positive contributions and

blue dots indicating negative contributions. A shorter distance from

the point to the left indicates a smaller value and a larger value at a

longer distance. For example, a higher expression value of TANK

predicts a higher risk of COVID-19, whereas a lower value predicts

a lower risk.
4 Discussion

AKI and CKD are currently considered to be two stages of renal

disease progression; the former is a common complication and

mortality risk factor in COVID-19 patients, and the latter is an

independent risk factor for COVID-19 and poor prognosis of
A B

FIGURE 5

(A) PPI network with nodes representing DEGs and edges representing interactions between nodes among SARS-CoV-2, AKI, and CKD. (B)
Determination of hub genes from the PPI network by using the cytoHubba plugin in Cytoscape. The latest MCC procedure of the cytoHubba plugin
was pursued to obtain hub genes. Here, the red nodes indicate the highlighted top 4 hub genes and their interactions with other molecules. PPI,
protein–protein interaction; DEGs, differentially expressed genes; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; AKI, acute kidney
injury; CKD, chronic kidney disease; MCC, maximal clique centrality.
FIGURE 6

A regulatory interaction network of DEG–TFs derived from
NetworkAnalyst. Here, the square nodes represent TFs, and gene
symbols are circled as they interact with TFs. The larger the square
or circle, the more important the TFs or DEGs are in this network.
DEG, differentially expressed gene; TFs, transcription factors.
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COVID-19 (49, 50). Decreased GFR is strongly associated with the

prevalence and mortality of COVID-19, and chronic metabolic

diseases resulting in CKD, such as diabetes, hypertension, and

obesity, are also related to COVID-19 mortality (9). In this study,

we collected three datasets and used a computational network data

analysis method to discover gene expression patterns and molecular

pathways of AKI, CKD, and COVID-19 and identify molecular

targets of potential biomarkers, providing more treatment options

for different disease conditions (51–53). By analyzing

transcriptional profiles of SARS-CoV-2, AKI, and CKD to

identify genes with altered expression in SARS-CoV-2 infection
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implicated in the pathogenesis of AKI and CKD, we report novel

interaction mechanisms. Seventeen common DEGs were revealed

that showed similar expression patterns in the three diseases and

were evaluated by Gene Ontology (GO) pathway analysis functions

based on p-values to acquire insight into the pathophysiology of

AKI, CKD, and COVID-19.

GO involves a genetic adjustment context based on a general

theoretical model that promotes genes and their internal

relationships. Evolutionary studies have gradually provided

biological knowledge of genetic functions and their regulation in

different ontological categories (54). From Enrichr, three categories

of GO analysis, namely, biological process (molecular activities),

molecular function (activities at the molecular level), and cellular

component (genes that regulate function), were evaluated through

the GO database as a source of annotation for ontological processes

(55). In the biological process category, hydrogen peroxide catabolic

and hydrogen peroxide metabolic processes were among the top

GO terms. Hydrogen peroxide has emerged as a major redox

metabolite that functions in redox sensing, signaling, and redox

regulation (56). Hydrogen peroxide catabolism contributes to

limiting or repairing oxidative damage (57). SARS-CoV-2-

infected individuals are susceptible to oxidative stress, and their

ability to resist oxidative stress may be associated with the

inflammatory status and may have little association with the

severity of the disease (58). One study revealed that SARS-CoV-2

captures iron and generates reactive oxygen species to injure the

human immune system while promoting the catabolism of

hydrogen peroxide to oxygen and water in phagocytes to reduce

killing capacity (59). Excessive peroxide causes a renal oxidative

stress response, inducing mitochondrial metabolism and kinetic

dysfunction and causing inflammation and apoptotic cell death,

which induce AKI and aggravate CKD (60). Chen et al. and Huang

et al. found massive infiltration of CD4+ T cells, CD56+ natural

killer cells, and CD68+ macrophages in the tubular stroma in the

renal tissue of COVID-19 patients and that activated T cells migrate

to the location of infection to exert their function (61, 62). Under

these conditions, SARS-CoV-2 may promote necrosis or apoptosis
TABLE 1 List of the suggested drugs for COVID-19 with AKI or CKD.

Name Adjusted p-value Odds ratio Combined score

1 Tanespimycin ssMCF7 DOWN 0.000926 203.69 2809.91

2 Camptothecin MCF7 DOWN 0.001249 10.91 122.15

3 Niclosamide HL60 UP 0.001249 35.03 393.6

4 Camptothecin PC3 DOWN 0.001249 11.06 124.87

5 Pyrvinium MCF7 UP 0.001249 36.73 419.4

6 Staurosporine MCF7 DOWN 0.001249 16.41 188.24

7 Dimethyloxalylglycine PC3 UP 0.001249 94.94 1107.22

8 Sulpiride PC3 DOWN 0.001249 17.29 203.43

9 Daunorubicin MCF7 DOWN 0.001249 12.97 160.49

10 Niclosamide MCF7 UP 0.001249 51.36 652.36
MCF and PC3 represent different cell lines. Adjusted p-value<0.05 has a statistical difference.
AKI, acute kidney injury; CKD, chronic kidney disease.
FIGURE 7

The regulatory interaction network of DEGs and miRNAs. The
square nodes represent miRNAs, and gene symbols interact with
miRNAs as circles. The larger the square or circle, the more
important the miRNAs or DEGs are in this network. DEGs,
differentially expressed genes.
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of T cells by activating reactive oxygen species metabolism,

consequently hindering viral clearance, and excess peroxide

production can trigger the oxidative stress response in kidney

tissue, causing inflammation, cell death, and the deterioration of

renal function. Regarding molecular function, hemoglobin-a
binding and heme-binding activity were the two top GO
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pathways. Endothelial cell expression of hemoglobin-a regulates

nitric oxide signaling, impacting blood perfusion and oxygen supply

(63). Kronstein-Wiedemann et al. found that SARS-CoV-2 infects

red blood cell progenitors and dysregulates hemoglobin and iron

metabolism, impairing hemoglobin homeostasis and exacerbating

COVID-19 (64). It has also been demonstrated that an abnormal
A

B

C

FIGURE 8

Results of molecular docking of drug and protein. Each figure shows the overall picture of the docking of protein and drug molecules and the
enlarged picture of the docking part. (A) The docking diagram of DUSP6 with tanespimycin, with binding energy of −5.67 kcal/mol. (B) The binding
energy between ACE2 and pyrvinium is −6.61 kcal/mol. (C) 3CLpro and camptothecin docking diagram, with binding energy of −5.59 kcal/mol.
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hemoglobin phenotype is directly associated with a decreased

renal function (65). Moreover, free heme is a pro-oxidant

that can disrupt homeostasis in vivo through proinflammatory

and cytotoxic effects (66). AKI causes renal hemopexin

accumulation, potentially impacting heme Fe-mediated tubular

injury and leading to disease progression (67). Therefore, it

cannot be ruled out that SARS-CoV-2 infection may initiate AKI

by disrupting hemoglobin metabolic homeostasis, which in turn can

aggravate this vicious cycle, leading to sustained progression of

renal function impairment.

Pathway analysis is a key step to reflect the internal reaction

process of an organism with a viral infection. KEGG,

WikiPathways, and BioCarta pathways of 17 common DEGs were

identified to find similar pathways for AKI, CKD, and COVID-19.

Our analysis found that the MAPK signaling pathway, the

structural pathway of IL-1, and the Toll-like receptor pathway

may have pivotal roles in the occurrence mechanisms of these

three diseases. The MAPK signaling pathway activated in viral

infections links cell-surface receptors to the transcription

machinery, transducing extracellular signals into several outputs,

which may also affect the mechanisms of host defense and apoptosis

(68). A variety of studies have demonstrated that the MAPK

signaling pathway is associated with cell injury, inflammation,

and fibrosis, all of which result in acute and chronic kidney

diseases (69–73). Weckbach et al. and Saheb et al. found that

MAPK pathway activation is one of the important mechanisms of

organ inflammation in SARS-CoV-2 infection and may affect

sensitivity to steroid treatment (74, 75). In general, the MAPK

pathway is vital for regulating organ inflammation and function and

is probably involved in the occurrence of multiple-organ

dysfunction in COVID-19 patients. COVID-19 is suggested to

involve a proinflammatory factor pattern similar to that of some
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autoimmune diseases; therefore, a potential way to treat COVID-19

may be by inhibiting increases in cytokine and chemokine levels

(76). IL-1 binds to specific receptors, which leads to increases in

coreceptor and intracellular signal conduction, thereby inducing an

effective inflammatory response (77). In the chronic inflammatory

mechanism underlying the progression of AKI to renal fibrosis, IL-1

signaling plays an important role (78, 79). Following secretion of

chemokines and cytokines such as IL-1b, IL-6, TNF-a, IL-21, and
IL-8 , the SARS-CoV-2- induced cy tok ine s torm and

hyperinflammatory response have pivotal roles in infection

severity, AKI development, and death (80). Bowe et al. even

pointed out that survival in COVID-19 somehow predisposes

patients to worsening subsequent long-term kidney function (81).

Toll-like receptors (TLRs) are activated by foreign and host

molecules to initiate the immune response. TLR agonists are able

to serve as a possible therapeutic agent or a vaccine adjuvant for

cancers or infectious diseases; TLR inhibitors may be a promising

approach to the treatment of autoimmune diseases and bacterial

and viral infections (82). In AKI caused by ischemia and

reperfusion, researchers have discovered that proximal tubule

TLR4 expression is linked to inflammation and apoptosis

following hypoxia–reoxygenation injury (83). Activation of TLR4

signaling regulates the transcription of numerous proinflammatory

cytokines and chemokines, resulting in renal inflammation (84, 85).

Therefore, the Toll-like receptor pathway is involved in the

pathogenesis of SARS-CoV-2 infection and kidney diseases.

Nevertheless, the mechanism by which SARS-CoV-2 triggers

inflammation is not clear. Recently, a study discovered that

antibody-mediated SARS-CoV-2 uptake by monocytes and

macrophages causes inflammatory cell death that eliminates the

production of infectious viruses and results in systemic

inflammation that contributes to COVID-19 pathogenesis. This

strong inflammatory effect may be the main cause of severe illness

and death (86). The underlying inflammatory pathways identified

in these three diseases once again demonstrate that inflammation is

a significant mechanism by which SARS-CoV-2 infection leads to

damage in multiple organs.

Based on the analysis of DEGs, we established a PPI network

showing protein biology and predicting relevant drug targets at the

proteomic level and identified hub proteins expressed by topology

metrics that may serve as biomarkers or key treatment targets of

COVID-19 and are associated with various pathobiological

mechanisms. The top hub proteins represent different diseases,

most of which are risk factors for AKI, CKD, and COVID-19. The

top 4 topological metric hub proteins (DUSP6, BHLHE40,

RASGRP1, and TAB2) are clearly involved in these diseases. In

this step, the cutoff (parameter) of the topological metric for hub

proteins is 15 (degree). DUSP6, a negative regulator of the

extracellular signaling-regulated kinase (ERK) signaling pathway,

is a broadly expressed dual-specificity phosphatase protein and has

roles in apoptosis inhibition and cellular protection (87, 88). Han

et al. found that H2O2 potentially promotes heart regeneration in

zebrafish by stimulating MAPK signaling through a depression

mechanism involving DUSP6 (89). Missinato et al. also suggested

that DUSP6 attenuates Ras/MAPK signaling during regeneration

and that suppressing DUSP6 can enhance cardiac repair (90). In
FIGURE 9

The gene–disease association networks show diseases associated
with mutual DEGs. Diseases are represented by square nodes, and
their associated gene symbols are represented by circular nodes.
The larger the square or circle, the more important the diseases or
DEGs are in this network. DEGs, differentially expressed genes.
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contrast, dual inactivation of DUSP4 and DUSP6 selectively impairs

growth in NRAS and BRAF mutant cells in cancer through

hyperactivation of MAPK signaling (91). These studies

demonstrate that DUSP6 plays a vital role in tissue damage and

repair by regulating hydrogen peroxide metabolism and the MAPK

signaling pathway. Moreover, in diabetic nephropathy patients who

have the highest prevalence of CKD, DUSP6 has been found to

mediate protection against high glucose-induced inflammation

(92). Interestingly, Hsu et al. demonstrated that DUSP6 also plays

a positive role in the pathological process of endothelial

inflammation through TNF-a-induced endothelial intercellular

adhesion molecule-1 (ICAM-1) expression, a process that is

independent of ERK signaling (93). Expression of ACE2 in

vascular endothelial cells provides the pathophysiological basis for

viral invasion. Histopathological examination of COVID-19

patients has revealed that SARS-CoV-2 directly invades

endothelial cells, causing diffuse endothelial cell inflammation and

microvascular damage, which most likely leads to the failure of

multiple organs, including the kidneys (94, 95). Hence,

manipulation of DUSP6 holds great potential for the treatment of

acute inflammatory diseases, such as AKI and COVID-19. There

are more studies on DUSP6 in oncology, demonstrating that its

expression improves tumor proliferation and drug resistance (96–

99). The factor BHLHE40 has emerged as an important regulator of

immunity during infection, autoimmunity, and inflammatory

conditions, especially in cytokine production and proliferation

(100). BHLHE40 also plays an important role in the

transcriptional regulation of immune cell infiltration (101). As

mentioned above, the cytokine storm and infiltration of immune

cells in tissues and organs are pivotal causes of the aggravation and

organ dysfunction occurring in COVID-19. As an important

immune regulator, BHLHE40 is significant in regional and

systemic inflammatory responses to AKI, CKD, and SARS-CoV-2

infection. Feng et al. identified that 17b-estradiol (E2) regulates

BHLHE40 expression to exert a protective effect on carotid artery

ligation and that upregulation of BHLHE40 in vascular smooth

muscle cells (VSMCs) results in suppression of MAPK signaling

(102). One study found that BHLHE40 plays an important role as a

transcription factor in autoreactive T helper (Th) cell pathogenicity.

Lin et al. showed that BHLHE40 expression induced by the IL-1

signaling pathway can identify encephalitogenic Th cells and

defines a pertussis toxin (PTX)-IL-1-BHLHE40 pathway active in

autoimmune neuroinflammation (103). In addition, Camponeschi

et al. indicated that B-cell receptor (BCR) or TLR9 activation

induces expression of BHLHE40, a key negative regulator of

activation-induced proliferation of human B cells and highly

expressed in anergic cells (104). Therefore, as a regulator of many

significant immune-inflammatory signaling pathways, BHLHE40

participates in the pathogenic process of immune-inflammatory

diseases. RASGRP1 is an important guanine nucleotide exchange

factor and activator of the RAS-MAPK pathway following T-cell

antigen receptor (TCR) signaling, and its deficiency causes

immunodeficiency with impaired cytoskeletal dynamics (105).

Moreover, Zhang et al. found that RASGRP1 mediates TLR2-

induced ERK1/2 activation and inhibition of IL-12p40

production, which regulates TLR9 activation to induce an
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appropriate protective IL-12 response (106). By promoting

lymphocyte proliferation, RASGRP1 activity is also indispensable

to autoimmunity (107). Thus, RASGRP1 activity is essential to the

innate protective immune response. In addition, a study discovered

that its expression in vascular endothelial cells maintains vascular

health (108). Based on this evidence, RASGRP1 has great potential

to become a pivotal regulatory target of COVID-19 with AKI and

CKD. Nuclear TAB2 is a repressor of NF-kB-mediated gene

regulation. The TAB2 protein is expressed in the vascular

endothelium of most tissues (109), and its downregulation has a

significant effect in inhibiting the inflammatory response and

protecting tissue from acute injury, and it can serve as a target of

manipulation for multiple cytokines (110, 111). TAB2 gene may be

one of the target genes for COVID-19 infection and organ injury.

Taken together, we reveal that the top 4 hub genes are all involved

in the regulation of microvascular endothelial cell function. Many

published studies support that endothelial inflammation is the key

mechanism promoting COVID-19 progression and multiorgan

dysfunction. Therefore, the hub genes identified in this study are

potential biomarkers and therapeutic targets for COVID-19.

Transcriptional and posttranscriptional modifications are

important aspects of epigenetics, influencing gene expression.

Therefore, we analyzed TF–gene and miRNA–gene interactions to

identify the transcriptional and posttranscriptional regulators of

common DEGs. TFs control transcriptional processes and

proportions, and miRNAs play key roles in gene regulation at the

posttranscriptional level and in RNA silencing. The discovery of

relationships between DEGs, TFs, and miRNAs is conducive to an

understanding of the molecular-level progression of diseases. The

identified TFs, such as FOXC1, FOXL1, POU2F2, NFIC, NFkB1,

MEF2A, GATA2, and E2F1, are mainly associated with different

types of cancers and congenital disorders. DUSP6, BHLHE40,

RASGRP1, and TAB2, the top 4 topological metric hub genes,

appear to be pivotal molecular targets of COVID-19, AKI, and

CKD. The TF–gene interaction network indicates that FOXC1 is

involved in BHLHE40, RASGRP1, and TAB2 expression but that

FOXL1 only regulates TAB2. Additionally, POU2F2, NFIC, NFkB1,

and MEF2A regulate the expression of DUSP6 gene, and NFkB1

manipulates the transcription of BHLHE40 and TAB2 genes. GATA2

is involved in TAB2 expression, and E2F1 regulates the expression of

the other three hub genes. In detail, FOXC1 and FOXL1 belong to the

human Forkhead-box (FOX) gene family, which is widely involved in

cellular activities (112). For example, Koo et al. reported that FOXC1

appears to contribute to pathological angiogenesis by regulating

vascular endothelial growth factor signaling (113). Additionally, a

study by Zhang et al. showed that FOXC1, as an ischemia-inducible

TF, upregulates the expression of TLR members in myocardial

ischemia, promoting cardiac inflammation and playing a

detrimental role in myocardial ischemia (114). Although studies of

FOX genes in infection and kidney disease are scarce, current

evidence suggests that FOXC1 activates inflammation under

hypoxia, which may have a regulatory role in SARS-CoV-2

infection and renal dysfunction. POU2F2 is a member of the POU

transcription factor family and is involved in the immune response by

regulating B-cell proliferation and differentiation genes (115). NFIC

belongs to the family of transcription factors involved in various
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morphogenetic processes during development (116). A number of

studies have found that NFIC controls cell proliferation by regulating

TGF-b1 signaling in adult regenerative processes, such as tooth root

development, hair follicle cycling, and hepatocyte proliferation (117–

119). Overall, the roles of these transcription factors in kidney disease

and infection have been poorly investigated to date. MiRNAs are

small non-coding RNAs that serve as central players that regulate the

posttranscriptional processes of gene expression. They bind to target

mRNAs and repress their translation by inducing their degradation

or inhibiting their translation to control mRNA expression. RNA

sequencing is becoming popular in the postgenomic era, but high-

throughput experimental technologies for miRNA target

identification are still expensive and time-consuming. Therefore, an

increasing number of bioinformatics approaches are being developed

for miRNA studies, especially for miRNA target prediction. In this

study, we successfully used bioinformatics tools to accurately identify

miRNAs targeting the DEGs of the three diseases. Some of these

miRNAs are closely related to regulating the expression of the hub

genes. For instance, hsa-mir-181a-5p, hsa-mir-125b-5p, and hsa-mir-

603 participate in the expression of the DUSP6 gene; both hsa-mir-

329-3p and hsa-mir-335-5p are associated with BHLHE40

expression, and hsa-mir-125b-5p, hsa-mir-335-5p, and hsa-mir-21-

5p are involved in RASGRP1 expression; hsa-mir-181a-5p, hsa-mir-

155-5p, and hsa-mir-21-5p manipulate TAB2 expression.

Specifically, miRNA mutations often lead to the development of

various diseases. SomemiRNAs are involved in lung cancer (e.g., hsa-

mir-665, hsa-mir-30a-5p, hsa-mir-150-5p, and hsa-mir-181a-5p)

(120–123), immune disorders (e.g., hsa-mir-92a-3p, hsa-mir-665,

and hsa-mir-155-5p) (124–126), and different types of chronic

inflammation or infection (e.g., hsa-mir-483-3p, hsa-mir-92a-3p,

and hsa-mir-335-5p) (127–129). Most miRNAs are related to

cancer and congenital diseases, though some specific miRNAs are

related to the pathogenesis of AKI. For example, Zhang et al.

discovered that miR-181a-5p inhibits pyroptosis through the

downregulation of NEK7 in lipopolysaccharide (LPS)-induced HK-

2 cells and cecum ligation and puncture (CLP)-induced mice and

indicated that miR-181a-5p is a new potential therapeutic target for

sepsis-induced AKI therapy (130). The research results of He et al.

confirmed that miR-122 directly targets vitamin D receptor (VDR) in

renal tubular cells, which strongly suggests that miR-122

upregulation contributes to LPS-induced kidney injury by

downregulating VDR expression (131). Moreover, hsa-mir-122-5p

has been proven to regulate the ASF1A, BRWDM, and PFKFB2

signaling pathways, a potential mechanism for the development of

AKI in transplanted kidneys (132). As a novel small molecule, miR-

665-3p regulates autophagy by targeting ATG4B, indicating that

miR-665-3p inhibition is a potential therapeutic approach against

inflammation and apoptosis for the treatment of ischemia–

reperfusion (133). hsa-miR-483-3p is associated with diabetic renal

vascular injury and lupus nephritis (134), and hsa-mir-186-5p is

involved in a variety of acute organ injury processes (135).

Accordingly, TFs and miRNAs target major proteins to alter

particular diseases (136). SARS-CoV-2 infection possibly induces

transcriptional regulator mutations regulating primary signaling

pathways, thus activating inflammatory responses and leading to

impairment of renal function.
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Mutations in genes are often closely related to multiple diseases,

and we performed gene–disease (GD) analysis to predict associations

between significant DEGs and various diseases. The results revealed

various diseases from the common DEGs of AKI, CKD, and COVID-

19, which include DUSP6, NRIP1, TNFAIP8, S1PR1, and TANK. It is

notable that most of these diseases are involved in reproductive

phylogenetic problems, psychophysiological disorders and cancers,

and occasionally heart dysfunctions. DUSP6, as an important DEG,

has been discovered to be associated with gonad development, altered

sexual signs, and psychophysiological disorders, such as

hypogonadism, absence of secondary sex characteristics, and mood

and depressive disorders. COVID-19 has a strong relationship with

hypogonadism. Recent studies have demonstrated the mechanisms

by which secondary immune responses govern endocrine function in

SARS-CoV-2 infection and can hinder testosterone synthesis in male

patients, affecting male reproductive health; there is also a possibility

of inflammation due to the infection, direct viral invasion of the testis,

and drug-related damage (137, 138). These findings indicate that men

should be considered at higher risk of poor prognosis or death.

Anxiety and depression are common manifestations in COVID-19

patients, and the immune system perturbation caused by infection

and the roles of inflammatory and clinical predictors may induce

psychopathology. The COVID-19 pandemic might be associated

with psychiatric disorders (139, 140). TNFAIP8 and NRIP1 are

mostly associated with tumors, with breast cancer appearing more

frequently in our GD network. Some studies have suggested that

estrogen levels in COVID-19 patients can affect the inflammatory

state and microbiome, which may be a mechanism of breast tumor

production; psychological factors also have certain effects on female

patients (141, 142). Additionally, heart diseases, such as heart failure

and myocardial infarction, may be regulated by NRIP1. Cardiac

injury in COVID-19 patients seems to be associated with higher

mortality. Myocardial infarction, cardiomyopathies, arrhythmias,

fulminant myocarditis, and venous thromboembolism are the most

common cardiovascular complications of COVID-19 (143).

Excessive secretion of inflammatory cytokines (IL-6 and TNF-a)
leads to systemic inflammation and multiple organ dysfunction

syndrome, severely affecting the cardiovascular system (144).

Furthermore, SARS-CoV-2 tropism and interaction with the RAAS

system may enhance inflammatory responses and cardiac aggression

(145). It is clear that COVID-19 is a systemic disease complicated by

multiorgan dysfunction, and organ crosstalk plays a key role in this

process. The involvement of the kidney, as the main organ leading to

organ crosstalk, was first defined in patients with acute respiratory

distress syndrome (ARDS) and COVID-19. The lungs and the

kidneys cooperate to maintain the electrolyte balance and the acid–

base balance in the body, and impairment of renal function disrupts

the balance and affects lung function (95). In addition to the lungs,

the kidneys engage in crosstalk with multiple other organs.

Progression of CKD is also often accompanied by reproductive

health challenges, including menstrual abnormalities, impaired

sexual health, and reduced fertility (146). Crosstalk between the

gonad and the kidney may also be related to reproductive system

problems in COVID-19 patients. Depression has been reported to be

the most common psychological problem in patients with CKD and

is influenced by biological, psychological, and socioeconomic factors
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(147, 148). Furthermore, psychological symptoms in CKD are

independent predictors of adverse clinical outcomes, including

faster GFR decrease, dialysis therapy initiation, death, or

hospitalization (149). It is possible that the bidirectional

relationship between the progression of COVID-19 and depression

is also affected by the complex interplay between biopsychosocial

factors. Kidney diseases and cancers are intertwined in many ways.

On the one hand, underlying kidney disease appears to increase

cancer risk and its associated morbidity and mortality (150).

Jørgensen et al. showed that an elevated urinary albumin/creatinine

ratio at baseline correlates with subsequent cancer incidence (151).

Albuminuria is also associated with an increased risk of cancer death

from all causes and lung and prostate cancers in men aged 50 and

older in the USA (152). As with albuminuria, end-stage renal disease

(ESRD) is associated with an increased risk of renal and urinary tract

cancer, and increased rates of endocrine cancer, viral infection-related

cancer, skin cancer, and liver cancer have also been reported in ESRD

patients (153, 154). On the other hand, carcinoma, paraneoplastic

renal manifestations, and nephrotoxicity of chemotherapeutic- and

molecular-targeted drugs can lead to the development of AKI and

sustained impairment of renal function (155). GD analysis

demonstrates the common underlying molecular mechanisms of

various comorbidities in COVID-19 and kidney disease and

highlights a possible reason why the kidney is able to act as the

main organ for organ crosstalk in COVID-19.

Currently, some drugs have been approved for the treatment of

COVID-19 with few adverse effects. For example, remdesivir and

chloroquine have been demonstrated to prevent SARS-CoV-2

infection and COVID-19 (156). Furthermore, baricitinib, which

shows antiviral effects by interfering with viral entry into cells,

shows improved therapeutic effects in combination with remdesivir

(157). Casirivimab and imdevimab (REGN-COV2), neutralizing

antibodies, also have shown promising results for SARS-CoV-2

infection by inhibiting viral receptor-binding domain binding to

host cells (158). In addition, drugs such as dexamethasone,

tocilizumab, and interferon have been shown to have significant

effects against COVID-19 (159–161). The protein–drug interaction

and molecular dynamics analyses of this study indicate eight possible

chemical compounds targeting common DEGs, with different

binding affinities for the four hub proteins: DUSP6, BHLHE40,

RASGRP1, and TAB2. Pharmaceutical molecules strongly binding

to TAB2 were the most abundant, including tanespimycin,

camptothecin, niclosamide, pyrvinium, and daunorubicin;

molecules strongly binding to RASGRP1 and BHLHE40 were the

second most abundant, with the former including camptothecin,

niclosamide, and pyrvinium and the latter including tanespimycin,

niclosamide, and pyrvinium. The least abundant was the DUSP6

protein, but all pharmaceutical molecules can bind to this protein.

We identified the heat shock protein 90 (HSP90) inhibitor

tanespimycin as a host-dependent factor of SARS-CoV-2 and an

effective, broad-spectrum antiviral drug against human coronavirus

(162). Another drug is camptothecin, a quinoline alkaloid originally

isolated from the Chinese happy tree, and has been found to have

anticancer and antiviral properties. Regarding SARS-CoV-2,

camptothecin potentially blocks the interaction of the spike

glycoprotein with the ACE2 receptor on host cells (163). Another
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identified drug is niclosamide, an anthelminthic drug, which is widely

used to treat a variety of diseases due to its pleiotropic anti-

inflammatory and antiviral activities. An effect via interruption of

the viral life cycle or induction of the cytopathic effect renders it a

possible candidate for COVID-19 (164). Pyrvinium has anthelmintic

properties and therapeutic functions against fungi and is a potential

novel agent for tumor therapy (165). Daunorubicin belongs to the

anthracycline group and is widely used in human cancer

chemotherapy (166 , 167) . Moreover , s taurospor ine ,

dimethyloxalylglycine, and sulpiride were found to be potential

drugs in this study. Staurosporine is a very potent inducer of

apoptosis because it inhibits many different kinases. Staurosporine-

induced apoptosis has been discussed for various tumor therapies

(168). The prolyl-hydroxylase inhibitor dimethyloxalylglycine

activates the hypoxia-inducible factor (HIF)-1 pathway by

stabilizing HIF-1a and has a protective effect against ischemia/

reperfusion injury (169). Dimethyloxalylglycine may be protective

against AKI. Sulpiride, an antipsychotic with selective dopaminergic

antagonist properties, has a therapeutic effect in COVID-19 patients

with psychiatric disorders (170, 171). With regard to diseases as risk

factors of COVID-19 infection, such as cancer, other infections, and

organ damage, the above drugs all have potential therapeutic effects.

Further investigation is needed for confirmation.
5 Conclusion

Our study summarizes relationships among COVID-19, AKI, and

CKD through bioinformatics analysis and identifies the potential

molecular mechanism by which SARS-CoV-2 infection affects renal

function. We examined 17 DEGs from three datasets by GO analysis

and identified oxidative metabolism as the major biological function of

these genes. Moreover, pathway enrichment analysis revealed that the

MAPK signaling pathway, the IL-1 structural pathway, and the Toll-

like receptor pathway, which are important pathways of systemic and

organ inflammation pathology, are pivotal in the occurrence of AKI,

CKD, and COVID-19. This study suggests that these pathways are

involved in the mechanisms of AKI in COVID-19 patients and the

deterioration of renal function. Then, the four most significant hub

genes were screened from the PPI network and found to be closely

related to the inflammatory response and tissue injury. In addition, the

TFs and miRNAs identified play crucial roles in different functional

disorders. Different types of diseases related to DEGmutations, mainly

reproductive phylogenetic problems, psychophysiological disorders,

and cancers, are shared complications of the three diseases. Analysis of

COVID-19, AKI, and CKD provides a way to identify the

pathogenesis of various diseases and helps in further understanding

the underlying mechanisms of the development of AKI and the

progression of CKD in COVID-19 patients. Therefore, it is possible

to reduce the risk of SARS-CoV-2 infection resulting in AKI and

CKD. However, COVID-19 is a newly discovered disease that has not

been thoroughly studied, and more data are needed for further

research. Multiomics analysis of COVID-19 is becoming important

with the availability of bioinformatics approaches. Further cohort

follow-up may help to elucidate the molecular mechanisms of AKI

and CKD development in COVID-19 patients. This study provides
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promising pathways and molecular biomarkers for the association of

COVID-19 with kidney diseases, and the findings are significant for

the effective treatment of COVID-19.
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Expression of 17 common DEGs in three datasets. Panels (A–C) represent the
expression of common DEGs in GSE1563, GSE66494, and GSE147507,

respectively. In the heatmap, each row represents the expression of a gene
in different samples; red indicates that the gene is upregulated, and blue

indicates that the gene is downregulated.

SUPPLEMENTARY FIGURE 2

Building COVID-19 diagnostic models and model interpretability (A) AUC of
the 6 machine learning models in the training set. (B) AUC of the 6 machine

learning models in the validation set. (C) Calibration plots were used to assess
the agreement between predicted and observed values in different

percentiles of predicted values. (D) Figure a is a SHAP diagram showing the

relationship between each variable and the outcome. Each point represents a
patient; the redder the color of the point indicates a larger value, and the bluer

the color of the point indicates a smaller value. The farther to the right of the
abscissa of the point, the greater the contribution to the predicted positive

outcome, and the farther to the left of the abscissa of the point, the greater
the contribution to the predicted negative outcome.

SUPPLEMENTARY TABLE 1

Results of molecular docking of drugs and proteins (kcal/mol).

SUPPLEMENTARY TABLE 2

Binding free energies and energy components predicted by MM/GBSA
(kcal/mol).

SUPPLEMENTARY TABLE 3

Comparison of multiple models in training set.

SUPPLEMENTARY TABLE 4

Comparison of multiple models in validation set.
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