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Protozoan diseases cause great harm in animal husbandry and require human-

provided medical treatment. Protozoan infection can induce changes in

cyclooxygenase-2 (COX-2) expression. The role played by COX-2 in the

response to protozoan infection is complex. COX-2 induces and regulates

inflammation by promoting the synthesis of different prostaglandins (PGs), which

exhibit a variety of biological activities and participate in pathophysiological

processes in the body in a variety of ways. This review explains the roles played

by COX-2 in protozoan infection and analyzes the effects of COX-2-related drugs

in protozoan diseases.

KEYWORDS

COX-2, protozoan infection, protozoa, AA, PGs
1 Introduction

Protozoan infection is one of the most common parasitic infections in humans and

plays a very important role in worldwide morbidity and mortality (1). Protozoan infections

are found around the world but are mainly concentrated in developing countries. The most

important diseases in humans include malaria (2), leishmaniasis (3), Chagas disease (4),

and giardiasis (5). Malaria is a life-threatening disease caused by Plasmodium, with

parasites transmitted to humans through the bite of infected female Anopheles

mosquitoes (3). World Health Organization (WHO) statistics show that five parasites

are the main causes of malaria in humans, with Plasmodium falciparum (P. falciparum) and

Plasmodium vivax (P. vivax) posing the greatest malaria threats (https://www.who.int/).

Combined, these species caused 241 million malaria cases in 2020, with 627,000 malarial

deaths (6). Leishmaniasis is a neglected tropical disease and the second leading cause of

parasite-associated death, with 700,000 to 1 million new cases diagnosed each year (7).

There are three main forms of leishmaniasis: visceral leishmaniasis (VL; also known as

black fever and the most serious leishmaniasis), cutaneous leishmaniasis (the most

common form), and mucocutaneous leishmaniasis. Left untreated, VL results in death in

more than 95% of cases (8). Chagas disease is one of the most important diseases. It is a

neglected tropical disease that has a high public health impact in the area. People can

become infected through vector-borne transmission, congenital transmission, blood

transfusions, organ transplantation and other transmission routes. Even in developed
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countries such as Germany, less than 1% of affected people receive

adequate treatment (9). Giardia lamblia (G. lamblia) is the most

common intestinal parasite worldwide (10). Immune-compromised

individuals and undernourished children in developing countries

are the most prone to severe manifestations of untreated giardiasis

(11). The prevalence of Giardia in developing countries is estimated

to range from 20% to 30% due to unsafe water supplies, ineffective

environmental sanitation, and poor personal hygiene (12).

Despite several initiatives to reduce the incidence of protozoan

disease, including treatment of giardiasis with the antibiotic

metronidazole (13); treatment of malaria with artemisinin (14);

and improvements in water, sanitation and hygiene conditions,

protozoan infection remains a serious global health concern.

Furthermore, drug resistance is a growing problem in veterinary

medicine and may develop in humans; for example, metronidazole

resistance has been reported in Endamoeba histolytica (E.

histolytica) (15), Trichomonas vaginalis (T. vaginalis) (16) and G.

lamblia (17). Clearly, there is a pressing need to develop new

methods to control protozoan infection. One possible way to

meet this need is to strengthen our understanding of the

interactions between protozoa and hosts. Moreover, here, in

addition to the four most relevant diseases, we also discuss other

diseases, such as toxoplasmosis and babesiosis.
2 The role played by cyclooxygenase-
2 in different diseases

After the protozoa invade the host organism, the protozoa and

the host immune system are destined to fight. The result of this not

only determines the fate of the parasite itself but also determines

whether the host can survive and recover. The result of the fight

depends on the location of the parasite within the host. Some

intracellular parasites (for example, Plasmodium, Leishmania,

Trypanosome and Toxoplasma) can enter and even reproduce in
Frontiers in Immunology 02
the host cells, but the host can destroy the infected cells.

Extracellular parasites (e. g., Giardia), which are parasitic in the

intestinal lumen, can be excreted due to the failure to adhere to

epithelial cells or the destruction of cells after adhesion.

Prostaglandin (PG) products play an important role for

pathogens, and they are involved in many processes, such as

inflammation, platelet aggregation, etc.

COX is the rate-limiting enzyme in prostaglandin-endoperoxide

synthesis (18). It can metabolize arachidonic acid (AA) to form

various PG products (Figure 1) (19–34). PGs play an important role

in the regulation of human physiology and are involved in many

processes, such as inflammation (35), platelet aggregation (36) and

tumor development (37). COX is expressed in the following three

isoforms: epoxygenase-1 (COX-1), COX-2 and COX-3 (38). The

COX-1 enzyme was first identified in 1976 (39). The mouse gene

(Ptgs1) encoding COX-1 was first isolated in 1993 (40). COX-1 is

mainly expressed in blood vessels, interstitial cells, smooth muscle

cells, and platelets (24), and after stimulation by growth factors or

hormones, its expression level is increased 2-4-fold. Studies have

shown that overexpression of COX-1 is associated with the

development of various carcinomas (41, 42). COX-2 was identified

in 1991 (43), and its discovery led to an understanding of the

differences in PGs in normal function and disease. The gene

(Ptgs2) encoding COX-2 is located on chromosome 1 (44). COX-2

is predominantly expressed in parenchymal cells in many tissues

except the heart (24). Upon stimulation with IL-1, TNF,

lipopolysaccharide (LPS), cAMP or other inflammatory factors, the

COX-2 expression level can increase by approximately 80-fold,

promoting a high rate of PG-endoperoxide and triggering an

inflammatory response. PGs produced by COX-2 have multiple

biological activities and can participate in pathophysiological

processes in the body through various pathways (45, 46). The

expression of COX-3 in human body is tissue specific, and COX-3

is common in the cerebral cortex and the heart. The typical remission

period of chronic inflammatory diseases such as rheumatoid arthritis
FIGURE 1

Overview of the AA metabolism pathways. Phospholipase enzymes (such as PLA2) can release AA from membrane-bound phospholipids (19) COX is
the rate-limiting enzyme in prostaglandin-endoperoxide synthesis. AA can be metabolized by COX to PGH2, which is metabolized into four different
PGs and tromboxane (Tx) (20–23). For example, prostacyclin synthase catalyzes the isomerization of PGH2 to form PG12 (20). TxA2 is formed via
PGH2 by Tx synthase. In addition, AA can also produce inflammatory substances, such as leukotrienes (ET), through the 5-lipoxygenase (5-LOX)
pathway (23). Different parts of the AA degradation pathway that occur in different pathogens (such as fungi, bacteria parasities) are also shown (24–
27). Moreover, how anti-protozoal drugs are though to operate controlling COX-2 are also shown (28–34).
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may be related to the expression of COX-3 (25).AA can be

metabolized by COX into PGH2, which is then metabolized into

four different PGs and tromboxanes (Txs), such as TxA2. For

example, prostacyclin synthase catalyzes the isomerization of PGH2

to form PGI2. TxA2 is formed from PGH2 by Tx synthase. In

addition, AA can also produce inflammatory substances through the

5-lipoxygenase (5-LOX) pathway, such as leukotrienes (LTs).

In tumor-related studies, PGE2 has been shown to be a

proinflammatory cytokine and is overexpressed in a variety of

human malignancies (47, 48). In various pathways, PGE2 binds

to prostaglandin receptor (EP) in cancer cells, inducing

tumorigenesis or promoting tumor progression (49). In intestinal

tumors, overexpression of COX-2 contributed to the production of

aberrant levels of PGE2 in epithelial cells. PGE2 plays various roles

in cancer progression, including proliferation, migration, and

immune escape. Tumor cells can acquire migratory capacity,

which promotes metastatic colonization (50). Notably, w-6
polyunsaturated fatty acids (PUFAs) were found to enhance the

metastatic potential of gastric cancer cells via COX-2/PGE2 (51,

52). Thus, PGE2 has been shown to be a conventional target with

pleiotropic effects in cancer onset and progression and can be used

to develop novel potential treatments with clinical implications.

In addition, COX-2 plays an important role in vascular

remodeling (53). COX-2 is an induced enzyme in the synthesis of

PG intermediates, and its expression is closely related to vascular

remodeling. Different induction factors upregulate the expression

level of COX-2 by activating different signaling pathways, which

subsequently activate different PGs, such as PGE2 or PGI2, and their

respective receptors EP or IP to regulate vascular remodeling with the

same or opposite effects. Moreover, regulator of calcineurin 1 (Rcan1)

may be an endogenous negative regulator of COX-2 expression and

activity, maintaining normal contractility and vascular stiffness in the

aorta and mesenteric arterioles by inhibiting calcineurin and NF-kB
pathway activation, respectively (54).

Alternatively, COX-2 plays an important role in endometrial-

related lesions (55). Studies have shown that treatment with PGE2

and the PTGER2 agonist butaprost can induce the proliferation of

bovine endometrial epithelial cells (bEECs). However, bEEC

proliferation was attenuated by the PTGER2 antagonist AH6809

and CDK inhibitors (56).

Therefore, COX-2 plays an important role in many pathological

processes, such as inflammation, coagulation, cell growth and

tumor development. Because COX-2-related reports in protozoan

infections are rare, in this review, we present an analysis of the

function of COX-2 in different protozoan infections as reported in

recent years and evaluate the correlations and differences.
3 Intracellular parasites

3.1 COX-2 in Chagas disease

3.1.1 The azards of Chagas disease
Trypanosoma cruzi (T. cruzi), the main pathogen that causes

Chagas disease, is estimated to infect approximately 6 to 7 million
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people worldwide (57). In Latin America, transmission to humans is

mainly established through triatomine vectors (58). However, oral

transmission, blood transfusion, maternal-neonatal transmission and

organ transplantation are also known transmission routes (59). Hotez

et al. (60) found that the prevalence of Chagas disease increased by

16% from 2000 to 2017. The WHO established World Chagas

Disease Day in 2020 (April 14th) to call attention to Chagas

disease (https://www.who.int/).
3.1.2 Role played by COX-2 in Chagas disease
Chronic Chagas disease cardiomyopathy (CCC) is one of the most

common types of chronic myocarditis in the world, with symptoms

ranging from mild to severe cardiac remodeling with associated

inflammation, fibrosis, arrhythmias and thromboembolisms, which

may cause congestive heart failure and sudden death (61). Because of

its important role in regulating inflammation and fibrosis in the heart,

COX-2 has attracted great interest in the context of Chagas

disease (62).

Studies have shown that macrophages and other innate immune

cells form the first line of defense to inhibit parasite reproduction

after parasite infection, as indicated by the immediate increase

observed in the expression of proinflammatory cytokines and the

production of the highly cytotoxic oxidant peroxynitrite (ONOO-)

(63). Inhibition of COX activity may increase NO levels and thus

restore antiparasitic activity in macrophages. Recently, obtained

evidence suggests that COX is involved in the T. cruzi invasion

process during infection (64). In the early stages of T. cruzi

interaction with host cells, the parasites regulate cellular

metabolism to enhance their own survival (65). Furthermore,

although the effects of ROS on parasites are complex, some

nonimmune cells, such as cardiomyocytes, respond to T. cruzi

infection by producing ROS. In fact, several studies have

identified mitochondria as the primary sources of ROS in T.

cruzi-infected cardiomyocytes (66, 67). Typically, disruption of

the mitochondrial membrane potential or loss of mitochondrial

membrane structural integrity adversely affects the electron

transport chain and causes increased mitochondrial ROS

(mtROS) production (66). ROS production can then increase the

nuclear localization of NF-kB and increase the NF-kB-mediated

transcription of inflammation-related genes to promote an

inflammatory response (68). Notably, when cardiomyocytes were

injured, NF-kB activation induced the upregulation of COX-2

expression, and inhibition of COX-2 activity reduced the parasite-

induced transcription of proinflammatory factors and enhanced

ROS activity, conferring protection on cardiomyocytes (69).
3.1.3 Drugs used to treat Chagas disease regulate
COX-2 expression

Multiple drugs are currently available for the treatment of Chagas

disease, including aspirin, benznidazole, and nifurtimox (4, 70).

Among these drugs, aspirin triggers resolvin D1 production during

the early chronic phase of T. cruzi infection, which modulates

systemic infection levels and inflammatory responses in cardiac
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tissue and reduces immune cell infiltration, cardiomyocyte

hypertrophy, fibrosis and the parasite load in heart tissue (70).

Moreover, curcumin treatment in mice with acute Chagas disease

improved mouse survival and prevented the activation of associated

inflammatory processes in the heart (28). The curcumin mechanism

of action may include inhibition of the Ca2+/NFAT-dependent

pathological COX-2/mPGES-1/PGE2 pathway in trypanosome-

infected cardiomyocytes, potentially conferring cardioprotection in

infected mice (62). Moreover, inhibition of PGE2 synthesis with

aspirin synergistically enhanced the activity of nitrofurantoin and

benznidazole in infected RAW 264.7 cells (70, 71).

In conclusion, the role played by COX-2 in Chagas disease may

be related to the attenuation of increased NO levels, negatively

affecting the antiparasitic activity of macrophages. It may also be

related to a reduction in the ROS content in cardiomyocytes. From

the perspective of protecting cardiomyocytes, the use of anti-

inflammatory drugs can exert a protective effect on cardiomyocytes

by regulating inflammation and fibrosis in the heart.
3.2 COX-2 in leishmaniasis

3.2.1 The hazards of leishmaniasis
Since the WHO first recognized leishmaniasis as a neglected

tropical disease and the second leading cause of parasite-related

death, more than 1 billion people in 98 countries still face a risk of

contracting this disease (https://www.who.int/). Depending on the

type of leishmaniasis, symptoms may include fever, weight loss, and

partial or total destruction of the mucous membranes of the nose,

mouth, and throat (72).

In 2020, most VL cases were diagnosed in Brazil, Ethiopia,

India, Kenya, Somalia, and Sudan (https://www.who.int/).

According to one estimate, 500,000 patients are first infected with

VL each year, and approximately 12 million people are infected

with Leishmania parasites (73). Dogs are considered the main urban

sources of L. infantum, which strongly parasitizes canine skin, and

people in contact with infected dogs can be infected.
3.2.2 Role played by COX-2 in leishmaniasis
Leishmania can upregulate COX-2 expression and PGE2

synthesis (20), and PGE2 can regulate the microbicidal properties

of macrophages in a manner mediated by NO2 (74). A COX-2

inhibitor (NS-398) has been reported to reduce the parasite load in

peritoneal macrophages of mice infected with Leishmania donovani

(L. donovani) (75). Moreover, antibodies against serine protease

(SP) inhibited COX-2-mediated PGE2 synthesis and reduced ROS

production while enhancing the expression of T helper 1 cell (Th1)

cytokines, such as IL-12 (76). Since defense against Leishmania

relies on Th1 inflammatory responses (77, 78), SP is suggested to be

an important novel target for treatment of VL.

De novo linoleic acid synthesis in Leishmania is required for

parasite survival in the extracellular promastigote and the

intracellular amastigote stages (79). Due to the anti-inflammatory

properties of linoleic acid, it may regulate COX-2. Western blotting

showed that infection with a linoleic acid-deficient Leishmania
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(KO) mutant led to increased phosphorylation of NF-kB p65, IkB

and IKKb in RAW264.7 cells. Similarly, RAW264.7 cells infected

with KO Leishmania showed a significant increase in COX-2

expression and TNF-a secretion compared with other cell lines.

Therefore, we speculate that COX-2 and TNF-a expression in

macrophages may be increased by the activation of the NF-kB
signaling pathway. In addition, after incubation for 2 h to 6 h, the

adhesion rate of promastigotes was the same in all groups. However,

the internalization rate of promastigotes in the KO group at 24 h

was lower than that in the other groups. Most infected macrophages

in the control group still contained parasites after 72 h of

incubation; however, after 72 h of incubation, the number of

parasites in the KO group was significantly smaller than that in

the control group. When RAW264.7 cells were pretreated with

BSA-bound linoleic acid, the KO group was found to have a higher

infectious capacity than the control group. Thus, KO parasites are

more likely to be killed within macrophages (79).

3.3.3 Drugs used to treat leishmaniasis regulate
COX-2 expression

Resveratrol is found in various medicinal plants (33). In addition

to its cytotoxic, antifungal, antimicrobial and cardioprotective effects,

resveratrol also inhibits COX-1 and COX-2 activity (80). Recent in

vitro and in vivo assays demonstrated that resveratrol at all

concentrations and resveratrol nanoemulsions exert important

inhibitory effects against Leishmania (81). This effective antiparasitic

activity may be related to potential mitochondrial membrane

depolarization, increased plasma membrane permeability, and

interference with cell cycle progression (82).

Glycyrrhizic acid (GA) is the main active ingredient of licorice

and has played an important role in traditional Chinese medicine and

research since ancient times (29). Recently, GA has been found to

have antiparasitic activity (83). Experimental GA treatment in vitro

resulted in enhanced expression of inducible NO synthase (iNOS)

and DUSP4 and inhibition of COX-2 expression. GA treatment of

infected macrophages enhanced the expression of IL-12 and TNF-a,
which was accompanied by the downregulation of IL-10 and TGF-b
expression (83, 84). GA increased the macrophage effector response

by inhibiting COX-2-mediated PGE2 synthesis in L. donovani-

infected macrophages (85). GA also reduced the parasite load in

the liver and spleen and increased T-cell proliferation in BALB/c mice

infected with Leishmania (79, 86).

In conclusion, although COX-2-related signaling pathways

involved in Leishmania infection have not been extensively studied,

genetic mutations have indicated that COX-2 expression may be

increased by NF-kB signaling pathway activation. Therefore, drugs

that can inhibit NF-kB signaling expression, COX-2 expression and

PGE2 synthesis might be a future direction in drug research.
3.3 COX-2 in toxoplasmosis

3.3.1 The hazards of toxoplasmosis
Toxoplasmosis is a common disease caused by Toxoplasma

gondii (T. gondii), a parasite with a high prevalence in the tropics

(87). The T gondii life cycle largely progresses in cats (88). Most T.
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gondii infections lead to mild symptoms, but immunocompromised

patients tend to have a poor prognosis. Therefore, toxoplasmosis

can be a significant disease in patients infected with human

immunodeficiency virus and with acquired immunodeficiency

syndrome (HIV/AIDS) or other immunosuppressive diseases (89).
3.3.2 Role of COX-2 in toxoplasmosis
Many studies have demonstrated a role of COX-2 and PGE2 in

T. gondii infection (32, 90–92). Notably, COX-2 and PGE2 promote

the survival of different pathogens in host cells, induce the

replication and dissemination of pathogens, and downregulate the

immune response (93, 94). COX-2 expression has been shown to be

significantly increased in T. gondii infection, confirming that this

parasite is a potent inducer of COX-2 (95). T. gondii-infected

macrophages may exhibit modulated AA content (a COX-2

substrate) mediated through the calcium signal transduction

pathway, and the PKC-dependent COX-2 metabolic pathway has

been shown to regulate PGE2 synthesis (91). Moreover, the

induction of lipid droplet (LD) formation by T. gondii in host

cells was found to be closely associated with COX-2 expression. LD

formation primarily maintains T. gondii survival but is also

important for the production of inflammatory mediators (96). An

LD core consists of phospholipids and neutral lipids, and when cells

detect parasites, these LDs release AA, which can be converted to

PGE2 via COX-2 activity (97).

Moreover, since T. gondii tachyzoites pass through the placenta

and can reach fetal tissue during pregnancy, which can cause

serious birth defects that exert impacts into adulthood, the study

of T. gondii replication in trophoblast cells and chorionic cells is

important (98). Studies have shown that the COX-2 expression

levels and PGE2 production levels are significantly increased,

proinflammatory cytokine (IL-6 and MIF) expression is induced,

and the level of anti-inflammatory cytokines (IL-4 and IL-10) and

the number of LDs are increased in toxoplasmosis (32). Thus, COX-

2 facilitates intracellular T. gondii proliferation in human

trophoblast cells and human chorionic villi, downregulates

proinflammatory mediator expression and increases LD

production in cells, thereby inhibiting immune responses in the

environment where the parasite lives.
3.3.3 Drugs or proteins used to treat
toxoplasmosis regulate COX-2 expression

Many anti-Toxoplasma drugs have been developed, and the

combination of sulfadiazine and pyrimethamine is currently the

gold standard for the treatment of toxoplasmosis (99). In addition,

spiramycin and some Chinese medicine ingredients, such as

curcumin and artemether, can significantly inhibit the

proliferation of Toxoplasma (100–102). Among these medicines,

the effect of curcumin on T. gondii may be similar to its effect on T.

cruzi. Recent studies have shown that annexin A1 (ANXA1)

expression in cytotrophoblasts is decreased after T. gondii

infection. ANXA1 is a calcium-dependent phospholipid-binding

protein that mediates glucocorticoid action, inhibits PG synthesis,

and limits the abundance of COX-2. Treatment with ANXA1
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reduces the parasitism rate of placental explants in the third

trimester of pregnancy (32). In vitro cultured trophoblast cells

provide a cellular model for studying the mechanism by which

various substances cross the placental barrier; furthermore, these

cells provide the cytological basis for studying the pathogenesis of

mother-to-child transmitted diseases. Since T. gondii tachyzoites

reach the fetal tissue through the placenta during pregnancy, it is

important to investigate T. gondii replication in trophoblast and

chorionic cells (27). It has been reported that COX-2 inhibitors

reduced T. gondii replication in trophoblast and chorionic tumor

cells and altered the expression of inflammation-associated

cytokines (32). For example, in BeWo cells (human chorionic

tumor cells), COX-2 inhibitors induced an increase in

proinflammatory cytokines (IL-6 and MIF) and reduced the

expression of anti-inflammatory cytokines (IL-4 and IL-10). In

HTR-8/SVneo (human chorionic trophoblast) cells, COX-2

inhibitors (meloxicam or celecoxib) induced an increase in IL-6

and nitrite and a decrease in IL-4 and TGF-1 levels (32). In

addition, COX-2 inhibitors reduced the number of LDs in the two

cell types.

In conclusion, the increase in COX-2 expression and PGE2

production induced by T. gondii infection in macrophages and

other cells is clear. However, the mechanism directing this increase

is not clear, with multiple pathways possibly regulating the increase

in COX-2 expression and PGE2 production. Studies targeting LDs

may be a direction for future research.
3.4 COX-2 in malaria

3.4.1 The hazards of malaria
A 2021 study reported a total of 241 million malaria cases

worldwide in 2020, and the total number of malaria-related deaths

worldwide was 627,000. Of these, 95% of malaria cases and 96% of

malaria deaths occurred in Africa.

Plasmodium mainly infects two types of hosts, mosquitoes and

humans; it undergoes sexual reproduction in mosquitoes and

asexual proliferation in humans (103). Plasmodium-carrying

Anopheles mosquitoes transmit the parasite by biting humans

(104). Then, the parasite migrates through the dermis and enters

the blood, where it is carried to the liver (105). The parasite then

enters hepatocytes and develops schizonts. The schizonts are

released from hepatocytes into the bloodstream, where they

invade red blood cells (106). They begin the next phase of their

life cycle in these red blood cells, progressing through ring stages to

the trophozoite site and then the schizont stage (107). Malaria

clinical outcomes range from the complete absence of symptoms to

severe disease and death. Children under the age of 5 years and

pregnant women are the most vulnerable groups affected by

malaria (108).

3.4.2 Role of COX-2 in malaria
Pregnant women are particularly susceptible to malaria due to

immunological changes during pregnancy (109). Placental malaria

caused by Plasmodium berghei (P. berghei) and P. falciparum can
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upregulate PG synthesis by increasing COX-2 enzyme activity

(110). COX-2 and PGs cause uterine contractions and can

therefore induce miscarriage or preterm birth (31). Thus,

regulating COX-2 and PG levels is very important to fetal health.

Moreover, COX-2 regulates severe malarial anemia (SMA).

SNP variations and their genetic combination in the COX-2

promoter have been reported to be related to the longitudinal risk

of malaria, SMA and all-cause mortality in children living in areas

with high Plasmodium falciparum transmission (111). Notably, in

contrast to the high expression of COX-2 in pregnant mice infected

with P. berghei, PGE2 levels in the monocytes of mice which

infected with P. falciparum were significantly associated with the

increase in plasma IL-10 levels (112). In P. falciparum infection, the

induction of high PGE2 levels by COX-2 is an important host

defense mechanism (113). In vitro studies have shown that reduced

PGE2 production is caused by the downregulation of COX-2

expression due to the associated production of parasite-produced

hemozoin (114). Hence, a central feature of SMA pathogenesis was

found to be the systemic inhibition of PGE2 production, and

reduced systemic PGE2 levels during infection are at least

partially mediated by leukocyte phagocytosis of hemozoin (115).

In vitro and in vivo experimental results suggest that inhibition of

COX-2-mediated PGE2 production is associated with TNF-a
overproduction in children with malaria (115).

Furthermore, in P. falciparum-transmitted areas, children with

malaria often present with an increased incidence of other

infections, such as bacterial infections and HIV-1 (116, 117).

Therefore, the COX-2 expression and PGE2 production in

children with malaria and children coinfected with bacteria or

HIV-1 were also analyzed. The results showed that the COX-2

expression levels in peripheral blood and bicyclo-PGE2/creatinine

levels in plasma were significantly reduced in coinfected children

compared to levels in malaria monoinfected children. Furthermore,

inhibition of circulating bicyclo-PGE2 was significantly associated

with reduced hemoglobin levels in children with either malaria

mono- or coinfection (112), suggesting that bicyclo-PGE may be a

marker and mediator of malaria pathogenesis.

COX-2 also plays a very important role in cerebral malaria

(CM). COX-2-derived PGE2 is negatively correlated with the

disease severity of CM caused by P. falciparum (118). Altered

blood brain barrier integrity and cytokine expression patterns are

key determinants of central nervous system lesion formation in

patients with CM caused by P. falciparum (119). Moreover, in

clinical trials, the peripheral blood of CM patients showed altered

PG concentrations (112). PG synthesis is controlled by many types

of cyclooxygenases, and COX expression has been found to play a

key role in immune regulation, hemostasis, and inflammatory

reactions in multiple pathologically altered brain tissues. COX

expression in CM patient brains was determined through

immunohistochemistry. The accumulation of COX-2-expressing

endothelial cells and astrocytes was detected in CM brain

samples (120).

Similar to elevated COX-2 expression in infected pregnant

mice, COX-2 expression was shown to be elevated in C57BL/6

mouse models of CM established with P. berghei (121). In a
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comparison study with CM-susceptible CBA mice, C57BL/6 mice

and malaria-resistant BALB/c mice, all three mouse types

responded to Plasmodium. The mice exhibited increases in the

number of LDs in macrophages and a significant inflammatory

response. Furthermore, the expression of COX-2 and 5-

lipoxygenase (5-LOX) was enhanced in the brain tissue cells and

blood vessels of C57BL/6 mice and CBA mice. However, neither

COX-2 nor 5-LOX was expressed in the brain tissue cells or blood

vessels of BALB/c mice. In the macrophages of infected BALB/c

mice, PPAR expression levels were increased in the nucleus and

decreased in the cytoplasm, suggesting PPAR-g nuclear

translocation (122, 123). PPAR-g translocation to the nucleus

may result in downregulation of proinflammatory cytokine

production (124), delaying disease severity in BALB/c mice; this

possibility may explain the increased infection resistance in BALB/

c mice.

3.4.3 Drugs used to treat malaria regulate
COX-2 expression

P. berghei caused elevated COX-2 expression in pregnant mice,

but Andrographis paniculata (AS201-01) tablets significantly

reduced placental COX-2 expression and PG production in

pregnant mice infected with P. berghei (31). The anti-

inflammatory activity of AS201-01 may inhibit iNOS and COX-2

expression by inhibiting p38/MAPK signaling pathway activation

(125). AS201-01 can increase TGF-b and decrease TLR-4

expression and the apoptotic index, ultimately inhibiting P.

berghei growth (31).

Studies have shown that although aspirin and celecoxib are

effective in T. cruzi-induced diseases, caution must be taken when

they are used to treat malaria. The reason for this may be related to

platelets, because human platelets are important for a variety of

Plasmodium parasites. Thus, the inhibition of platelet function by

platelet inhibitors such as aspirin may also eliminate the positive

effects (126). Erythrocytic parasite analysis indicates that platelet-

associated parasite killing is characterized by intracellular

erythrocytic accumulation of platelet factor 4 (PF4) (127). This

function of PF4 is critically dependent on the Duffy antigen (Fy)

receptor binding to PF4. Previous studies have shown that

evolutionary selection of African Fy -negative alleles provides

protection against P. vivax infection (128). Meanwhile, recent

studies showed that Fy binds the platelet effector molecule PF4

and is required for platelet-mediated killing of P. falciparum (129).

Platelet killing of P. falciparum requires platelet-iRBC contact, the

release of PF4, and the binding of PF4 to Fy receptors. The

mechanism may be that the release of PF4 upon direct platelet-

iRBC contact allows access to P. falciparum via the Fy (129).

In recent years, artesunate has been used as a first-line

treatment for severe malaria in adults and children. The use of

artesunate has been shown to reduce mortality in patients with

severe malaria (130). Artemisinin binds to a very wide range of

parasitic proteins and can affect diverse organelles and cellular

processes, including hemoglobin endocytosis, glycolysis, protein

synthesis and degradation, and cell cycle regulation (131).

Artemisinin-induced decreases in COX-2 expression have mainly
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been observed in cancer (132). Artesunate significantly inhibited

gastric cancer cell proliferation in a time- and dose-dependent

manner and induced the apoptosis of gastric cancer cells in a

dose-dependent manner, and this apoptotic effect was found to be

associated with decreased COX-2 expression (133). Furthermore,

artesunate prevents neuroinflammation in BV2 microglia by

interfering with the NF-kB and p38/MAPK signaling pathways

(134). However, whether COX-2 regulates neuroinflammation in

malaria has not been extensively investigated.

In conclusion, hemozoin is an insoluble crystalline pigment

produced by Plasmodium after digestion of host hemoglobin

within erythrocytes. After rupture of infected erythrocytes,

hemozoin is released into the bloodstream and is phagocytosed

by circulating monocytes and tissue macrophages (135).

Experiments with cultured blood monocytes have shown that

hemozoin increases the release of cytokines, such as the

proinflammatory cytokine TNF-a and the anti-inflammatory

cytokine IL-10. Then, TNF-a induces high levels of persistent

COX-2 gene expression (136), whereas reduced peripheral PGE2

biosynthesis induced by Plasmodium occurs through hemozoin-

induced suppression of blood mononuclear cell COX-2 gene

expression via increased IL-10 expression (113); hence, the

regulatory effects of hemozoin on COX-2 expression may

be complex.
3.5 COX-2 in babesiosis

3.5.1 The hazards of babesiosis
Babesiosis, also known as redwater, is a blood protozoonotic

disease transmitted by hard ticks (137). The clinical symptoms of

acute bovine babesiosis are fever, limb weakness, anemia, and

sometimes animal death (138). Babesiosis is endemic in many

countries in Europe, Asia and Africa (139). Babesiosis is mainly

transmitted between domestic animals and wild animals, but

certain strains are zoonotic (140).
3.5.2 Role of COX-2 in babesiosis
LDs are key regulators of not only inflammation and

toxoplasmosis but also babesiosis. Increases in the number of

liposomes during bovine Babesia infection have been reported to

be associated with Babesia strains and the expression of COX-2 and

other enzymes (141, 142). The attenuated strain R1A (LA) and toxic

strain S2P (LV) induced TNF-a and IL-6 secretion by mouse

peritoneal macrophages after infection with both parasites.

Moreover, the LA strain elevates liposome content and COX-2

expression, which is associated with TLR2 and TLR6 expression,

respectively (141, 142).
3.5.3 Drugs used to treat babesiosis regulate
COX-2 expression

Different Babesia species differ in their drug susceptibility. Large

canine Babesia species, such as Babesia canis and Babesia rossi, are
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sensitive to imidocarb dipropionate and diminazene aceturate, but

small species, such as Babesia gibsoni and Babesia conradae, are

relatively resistant to these drugs. Therefore, combination treatment

with hydroxynaphthoquinone atovaquone and the antibiotic

azithromycin is usually used (143). Azithromycin and other

antibiotics with antiprotozoal properties mainly target the

apicoplast, a residual plastid found in protozoa, and eventually

cause parasite death (144). Moreover, tafenoquine may be a highly

useful drug to treat B. microti infection (145). The regulatory effect

of these drugs on COX-2 has been less frequently reported than the

effects of other drugs.

Studies have shown that diminazene aceturate exerts a

regulatory effect on COX-2. For example, the local use of

diminazene aceturate in the treatment of endotoxic uveitis

downregulated the mRNA expression levels of inflammatory

factors and mediators, such as COX-2 and iNOS, in the iris and

ciliary body. Azithromycin inhibited PGE2 synthesis in human

leukocytes by inhibiting the expression of cPLA2, COX-1, and

COX-2 mRNA, suggesting an anti-inflammatory mechanism of

action (146).

In conclusion, the drug sensitivity of different Babesia species

may be related to the apicoplast or the proteins encoded by the

mitochondrial genome. For example, certain apicoplasts or

proteins encoded by the mitochondrial genome can be targeted

by antibiotics such as ciprofloxacin and rifampicin. However,

only anti-Babesia drugs, such as diminazene aceturate, have

shown a regulatory effect on COX-2; however, whether other

drugs have a regulatory effect on COX-2 expression remains to

be determined.
4 Extracellular parasites

4.1 COX-2 in giardiasis

4.1.1 Hazards for giardiasis
Giardiasis is caused by the protozoan parasite Giardia (147);

these parasites are transmitted through the fecal-oral route,

usually after ingestion of contaminated water or food or contact

between individuals (148). Approximately half of Giardia-infected

children are asymptomatic. Other children develop either acute or

chronic diarrhea (149). Metronidazole and tinidazole are the

preferred drugs for treating giardiasis (13), but resistance to

common anti-Giardia drugs has increased in recent years (150).

Therefore, the search for new molecular targets against Giardia

has become urgent.

4.1.2 The role of COX-2 in giardiasis
COX-2 plays a very important role in inflammation during

Giardia infection (149). Studies have shown that the levels of COX-

2 and proinflammatory cytokines (TNF-a, IL-6 and IL-1) are

increased in the intestinal tissue of infected mice. Moreover, in a

coculture with Giardia, the expression levels of COX-2 and

proinflammatory cytokines were significantly increased in J774A.1

macrophages (151). These results indicate that Giardia can induce
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the upregulation of COX-2 expression levels in both macrophage

infection and mouse infection models, suggesting a possible role

played by COX-2 in Giardia infection. Furthermore, pretreatment

with the COX-2 inhibitor NS398 attenuated the upregulated

expression of these proinflammatory cytokines, suggesting that

Giardia-induced upregulation of inflammatory cytokine

expression may be mediated through COX-2. Administration of

SB203580 (an inhibitor of p38), SCH772984 (an inhibitor of

ERK1/2) or JSH-23 (an inhibitor of NF-kB) after infection with

Giardia led to COX-2-mediated inflammatory factor expression

activation via the NF-kB and p38/ERK1/2/MAPK signaling

pathways (151).

The effect of COX-2 on the apoptosis of intestinal epithelial cells

(IECs) may be another key pathogenic factor in giardiasis. After

treatment for Giardia infection, the amount of nitric oxide (NO)

released from IECs gradually decreased. Moreover, a COX-2

inhibitor diminished cell viability, exacerbated the reduction in

NO release, and increased the cell apoptosis rate (152). In contrast,

COX-2 overexpression induced by the agonist rebamipide inhibited

the apoptosis of IECs induced by Giardia infection. Cell apoptosis is

closely related to the MAPK/AKT/NF-kB signaling pathway. For

example, the MAPK/AKT/NF-kB signaling pathway has been

reported to modulate COX-2 expression (149). First, the p38

inhibitor SB202190, ERK1/2 inhibitor SCH772984, and AKT

inhibitor MK-22062 were found to block the upregulated COX-2

expression induced by Giardia infection, revealing an association

between p38/ERK/AKT signaling and COX-2. Then, the TLR4

inhibitor TAK-242 was found to significantly block p38

phosphorylation and COX-2 expression in IECs infected with

Giardia, suggesting that TLR4-dependent p38 signaling plays a

role in regulating COX-2 expression. Moreover, in the p38-NF-kB
signaling pathway, COX-2 expression was inhibited by the NF-kB
p65 inhibitor JSH-23.
4.1.3 Drugs used to treat giardiasis regulate
COX-2 expression

The antiprotozoan activity of indazole derivatives has been

recently reported (153). The indazole core is a very important

basic structure in pharmacochemistry, and it is widely used to

regulate the inflammatory response (154, 155). Considering that

protozoan infections are associated with the inflammatory

response, researchers designed a group of 2H indazole derivatives

to treat parasite infections. Among these derivatives, compound No.

18 showed 12.8-fold greater activity than metronidazole against

Giardia. Interestingly, compound No. 18 also showed inhibitory

activity against COX-2 in vitro (153). The design of novel

antiparasitic compounds with additional COX-2 inhibitory

properties may be an interesting direction for future drug

production. However, other studies have shown that Giardia-

triggered apoptosis may increase IEC permeability and aid in the

development of giardiasis through the action of the protease

Giardipain-1 (156); thus, antiapoptotic therapy is thought to be

an effective strategy to mitigate giardiasis without harming

uninfected tissues.
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Overall, inhibition of COX-2 activity can promote a reduction

in the IEC activity induced by Giardia. Moreover, increasing the

production of reactive oxygen species (ROS) and reducing the

release of NO aggravates the apoptosis of IEC cells. Therefore,

inhibition of COX-2 activity does not exert a protective effect on

IECs but plays a role in promoting apoptosis. In contrast, COX-2

overexpression can reduce IEC apoptosis induced by Giardia.

Increased ROS levels and decreased NO levels have been

identified as stimuli leading to IEC apoptosis (157, 158). The

levels of ROS/NO may be influenced by COX-2 expression, which

is regulated by MAPK/AKT/NF-kB signaling (159, 160).

However, it is worth noting that IECs are renewed every 3-5

days (161, 162); therefore, Giardia trophozoites must always

adhere to new IECs to avoid being eliminated by intestinal

movement (163). In this case, apoptosis of some IEC cells may

play a positive role in giardiasis by preventing Giardia from

colonizing the intestinal epithelia.

In conclusion, we found that the effects of COX-2 on giardiasis may

be complex. Although inhibition of COX-2 activity does not protect

IECs, it promotes apoptosis in IECs. However, the results of promoting

IEC apoptosis may be diverse. On the one hand, IEC apoptosis can

prevent parasite infection by preventing Giardia colonization. On the

other hand, it may also cause epithelial damage and aggravate

inflammatory reactions. Therefore, the current research seems to be

focused on exploring which method (COX-2 overexpression or COX-2

inhibition) is more favorable for controlling giardiasis. However, the

results of current studies are not consistent.
4.2 COX-2 in Acanthamoeba
Keratitis (Acanthamoebiasis)

4.2.1 The hazards of Acanthamoeba Keratitis
Acanthamoeba spp. are pathogenic and opportunistic free-

living parasites that cause AK and granulomatous amoebic

encephalitis (GAE) in immunocompromised individuals (164).

The biological and pathogenic features underlying these

opportunistic protozoa are not fully understood. Therefore, a

focus on the relationship between the parasites and hosts is

needed. The symptoms of AK are mostly redness, photophobia,

tears, conjunctival congestion and eye pain, and AK is usually

misdiagnosed as herpetic, bacterial or fungal keratitis (165).

4.2.2 Role of COX-2 in AK
In the eyes, PGE2 formation may be attributed to both COX-1 and

COX-2 expression. PGE2 is one of the most extensively studied PGs.

PGE2 is critical for producing fever and pain and in neurotransmitter

modulation. The role played by PGE2 in the eyes has been studied,

especially in the context of low intraocular pressure (IOP) (166, 167).

Increased PG production may exacerbate inflammation and

downregulate the immune response and cytokine production (IL-1,

IL-2, IFN-g and TNF-a), key determinants controlling disease severity

and outcome. Moreover, the synthesis of PGs, especially PGE2, is

increased under parasite stimulation (168). PGE2 signals binding to the
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G protein-coupled receptor EP4 can stimulate adenylate cyclase (AC)

and then promote cAMP production. Elevated cAMP expression can

stimulate cyst formation (169). Thus, increased generation of PGs

affects cyst formation (169).

4.2.3 Drugs used to treat AK regulate
COX-2 expression

Agahan et al. (170) reported three cases ofAK thatwere successfully

treated with nonsteroidal anti-inflammatory drug (NSAID) eye drops.

NSAIDs inhibit COX activity. Studies have shown that diclofenac

sodium and indomethacin significantly inhibit Acanthamoeba

castellanii (A. castellanii) growth (171). Moreover, both diclofenac

sodium and indomethacin inhibited cyst formation. In 2015, Aqeel

et al. (172) observed that the inhibitory effect of G protein-coupled

receptors affected the growth of A. castellanii in vitro. These findings,

together with our observations of the inhibitory effect of NSAIDs on A.

castellaniigrowth, suggest that inhibitionofCOXexpression reducesPG

synthesis and thus downregulates G protein-coupled receptor activity,

leading to downstream cascade blockade and ultimately causing cell

cycle arrest. Acetaminophen is a weak inhibitor of PG synthesis, which

may explain its ineffectiveness against A. castellanii. NSAIDs are

frequently used in clinical practice, and they may be informative for

the design and improvement of therapeutics and may lead to better

prevention strategies when combined with other antiamoebic drugs.
5 Conclusion

In this review, we discussed the effects of COX-2 expression in

host cells in several different parasitic diseases, including Chagas

disease, leishmaniasis, giardiasis, trichomoniasis, amebiasis, malaria

and babesiosis (Table 1). For intracellular parasitic parasites, the role

of COX-2 may be related to the regulation of inflammatory factor

expression in the immunological cells of infected animals. For

example, aspirin can trigger resolvin D1 production in the early

chronic stage of T. cruzi infection, and resolvin D1 regulates systemic

infection levels and inflammatory responses in heart tissue by

reducing immune cell infiltration, cardiomyocyte hypertrophy,

fibrosis, and parasite load in heart tissue. Notably, the effects of

different Plasmodium species on COX-2 may be complex. For

example, P. berghei can induce increased COX-2 expression, but P.

falciparum can reduce COX-2 expression. Extracellular parasites such
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as Giardia can cause increased COX-2 expression in macrophages.

However, the inhibition of COX-2 activity can change its adhesion

ability; for example, inhibiting the COX-2 pathway can change IEC

cell activity, promote the apoptosis of IEC, and affect the subsequent

pathogenic ability of the parasite. It is important to note that changes

in COX-2 activity may also affect the cell cycle. Therefore, in addition

to its role in cancer, COX-2 may also inhibit different stages of cell

cycle progression, such as that of Acanthamoeba. Many

inflammatory factor-related signaling pathways are also involved in

these diseases, such as the NF-kB and p38/ERK1/2/MAPK pathways.

Therefore, clarifying the effect of COX-2 on parasites may lead to the

development of better antiparasitic drugs. It should be noted that the

most widely available COX-2 inhibitors, NSAIDs, have limited

application in the treatment of certain diseases, such as cancer, due

to certain side effects. Therefore, further studies are needed to identify

drugs that can effectively regulate COX-2 or PGE2 and are better for

use against parasites.
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TABLE 1 COX-2 in different parasitic diseases.

Disease Parasite Tissue or cell of action Drugs that regulate COX-2 expression Reference

Giardiasis Giardia Intestinal tissue 2H-idiazole derivatives (153)

Chagas Disease Trypanosoma Macrophages and cardiomyocytes Curcumin
Resolvin D1

(62, 74)

Leishmaniasis Leishmania Macrophages Resveratrol
Glycyrrhizic acid

(34, 83)

Toxoplasmosis Toxoplasma Macrophages Curcumin
ANXA1

(32, 100)

Malaria Plasmodium Monocytes AS201-01
Artesunate

(31, 130)
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