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For many years, vitamin D has been acknowledged for its role in maintaining

calcium and phosphate balance. However, in recent years, research has assessed

its immunomodulatory role and come up with conflicting conclusions. Because

the vitamin D receptor is expressed in a variety of immune cell types, study into

the precise role of this molecule in diseases, notably autoimmune disorders, has

been made possible. The physiologically activated version of vitamin D also

promotes a tolerogenic immunological condition in addition to modulating

innate and acquired immune cell responses. According to a number of recent

studies, this important micronutrient plays a complex role in numerous

biochemical pathways in the immune system and disorders that are associated

with them. Research in this field is still relatively new, and some studies claim that

patients with severe autoimmune illnesses frequently have vitamin D deficiencies

or insufficiencies. This review seeks to clarify themost recent research on vitamin

D ’s immune system-related roles, including the pathophysiology of

major disorders.
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Introduction

Vitamin D is an attractive molecule that has received particular attention recently. It is

a major calcium homeostasis and bone metabolism modulator, increasing phosphorus and

calcium absorption from the intestine, decreasing their excretion from the kidney, and

promoting osteogenesis (1). It is also one of the crucial immune system regulator hormones
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that affect immune responses. Vitamin D acts as a pro-survival

molecule. This vitamin defends cells against damaging signals by

inhibiting inflammatory responses, such as changing the pathways

through which T-helper-2 (Th2), M2 macrophages, and regulatory

T cells (Treg) differentiate in order to maintain energy and redox

homeodynamics by supplying a tolerogenic state (2). Vitamin D

insufficiency continues to be one of the most common causes of

osteoporosis, muscle weakness, falling fractures (particularly in the

elderly), numerous malignancies, metabolic syndrome,

cardiovascular illnesses, immune-mediated diseases (including

autoimmune diseases), and infections (3–8). Ultraviolet (UV) rays

that reach the epidermal layer of the skin and regular diet are the

two main sources of vitamin D. That suggests that it should not be

viewed solely as a vitamin: pro-hormone is the proper category (9).

The normal range for vitamin D is still disputed among different

nations. However, it is generally acknowledged that an adult can

deal with a lower limit of 50–75 nmol/L. Numerous problems,

including impaired bone metabolism, falling risk, various

myopathies, and immune system dysregulation, are linked to low

vitamin D levels (9–12).

The amount of vitamin D the body receives from food sources

is typically insufficient, and these abundant sources are also scarce.

These are the main factors that contribute to vitamin D deficiency

(13). Vitamin D is present in small amounts in butter, peanuts,

and eggs, but is present in large quantities in some foods like fish

liver oil. Additionally, both cow milk and breast milk are deficient

in vitamin D (1, 14). Despite the fact that vitamin D can be gained

through diet, the skin is still the primary source of this pro-

hormone. Seven-dehydrogenated cholesterol undergoes

spontaneous transformation into vitamin D3 under the

influence of UV radiation (13). The primary molecule that

carries vitamin D and its subsequent metabolites in the blood is

vitamin D binding protein (DBP). This vitamin needs to be

hydroxylated twice in order to be physiologically active (14).

The expression of the enzyme 1-hydroxylase, which converts

25-hydroxyvitamin D3 (25-OH D3) (precursor) to 1,25-(OH)2

D3 enabling immune microenvironments to respond to this

substance in antigen-presenting cells, is one of the factors

contributing to the recent interest in the immune-related

function of vitamin D (13). It is initially hydroxylated by

hydroxylase and several cytochrome P450 isoforms on the 25th

carbon. Vitamin D status is mostly tracked by measuring 25-OH

D3, which has a 2-week half-life and is the primary form of the

vitamin in circulation.

As a result of the CYP27B1 gene expression, 1-alpha-hydroxylase

carries out the second stage of hydroxylation in the kidney, skin, and

immune cells, resulting in the production of 1,25-(OH)2 D3 or

calcitriol (15, 16). The binding of vitamin D to its nuclear receptors,

known as vitamin D receptors or VDRs, inside target cells controls

gene expression. VDR is also found in non-classical tissues like the

brain, eye, heart, pancreatic islet beta cells, and immune cells. The

principal mechanism of action of vitamin D in those tissues is

metabolism (17). The identification of VDR in immune cells is

related to the putative function of vitamin D in controlling

immunological responses, cell proliferation, differentiation, and

apoptosis induction. B cells, TCD4, TCD8-activated cells,
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neutrophils, monocytes, macrophages, NK cells, and dendritic cells

all contain this receptor (18, 19). It modifies the genes of chromatin-

modifying enzymes through direct and indirect interactions (20).

The VDR gene, which has 10 introns and 11 exons, is located on

chromosome 12. It contains more than 900 SNPs, according to the

literature. The DNA binding domain is encoded by exons 2 and 3,

where the majority of these polymorphisms accumulate. Exon

changes result in alterations to this domain and impact the

structure of the receptor, which precludes vitamin D binding

(21). Vitamin D receptors molecular signaling is somehow

complex. The VDR binds to retinoid X receptors to form a

complex, which is what makes up the traditional route. By

attaching to the VDR-RXR, vitamin D controls the expression of

many genes. VDR could, however, manifest as an intra-

membranous receptor. These are the main substances that initiate

the alternate routes that activate the cytochromes. Secosteroids are

among the chemicals that are produced by the downstream

enzymes. The metabolites modulate the function of some

transcription factors and alter gene expression (22, 23).
Vitamin D and the innate
immune system

The innate immune system, which is the body’s first line of

defense against pathogens, is in charge of quick reactions, pathogen

detection, and elimination to stop an illness from getting worse.

Vitamin D has a crucial role in innate immunity by stimulating the

production of pattern recognition receptors (PRRs), antimicrobial

peptides, and cytokines in the cells. Additionally, it can prevent the

maturation and activation of dendritic cells as well as the

differentiation of monocytes into macrophages. Cathelicidins, alpha-

and beta-defensins, and other cationic antimicrobial peptides make up

the majority of the immune system. The primary function of vitamin

D signaling is to control innate immunological responses, according to

numerous studies, especially those conducted in recent decades (24).

The production of antimicrobial peptides by intestinal epithelial cells,

Paneth cells, monocyte/macrophages, and neutrophils is one of the key

factors in this control (24). Since the middle of the nineteenth century,

vitamin D has been known to induce the antibacterial activity of

human monocytes and macrophages (25). The phagocytic and

chemo-like activity of macrophages is enhanced by 1,25-(OH)2 D3

(26). The generation of antimicrobial cathelicidin peptides is

stimulated by the activation of the toll-like receptor in monocytes

and macrophages, which also results in the positive expression of the

VDR and alpha 1-hydroxylase genes, killing intrathecal

Mycobacterium tuberculosis (27). However, 1,25-(OH)2 D3

suppresses the expression of TLR2 and TLR4 genes in macrophages.

After 72 hours, this situation frequently takes control and negatively

affects TLR activation and inflammation during the late infection

stage. The conversion of 25-OHD3 into 1,25-(OH)2 D3 occurs during

infection as a result of increased CYP27B1 expression in activated

macrophages and monocytes brought on by cytokines like interferon-

g (IFN- g) along with toll-like receptor signaling. The 1,25-(OH)2 D3 is
then used to enhance the antibacterial activity of macrophages and

monocytes via the VDR-RXR pathway. The outcome is an increase in
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cathelicidin production. Themicrobial membranes of invasive bacteria

and fungus are destabilized by this peptide (28). As a result, 1,25-(OH)

2 D3 is immunomodulatory in Mycobacterium TB infection (29).

Antimicrobial peptides including 2-defensin and cathelicidin are

activated by the calcitriol complex, retinoid X receptor, and VDR

(30). Human cathelicidins, such as hCAP18 (either its 17-kDa (140

amino acids) or 5-kDa (37 amino acids) forms) and Leucine-leucine-

37 (LL-37), isolated from a large prepropeptide in immune cells

(neutrophils) or non-immune tissues (like testis), act against

bacteria, fungi, and viruses as a response to infections and destroy

microbial membranes (31). Vitamin D signaling has been shown to

influence the physiological intestinal tract, aid intestinal hemostasis,
Frontiers in Immunology 03
and regulate microbiota in healthy individuals (24). Innate lymphoid

cells (ILCs) andNK cells are also affected by 1,25-(OH)2D3. T cell and

dendritic cell (DC) responses are modulated by NK cells, which are

crucial components of the innate immune system (32). ILCs are a

crucial component of immunity. All mucosal tissues, particularly the

colon, contain these cells. They are also among the first immune cells

to promote cell growth, the healing of wounds, the release of anti-

inflammatory mediators in response to infections, and the secretion of

antimicrobial peptides (33–35). Through their VDR receptors, 1,25-

(OH)2 D3 enhances the cytotoxic activity of NK cells and ILCs. The

expression of their inflammatory cytokines is similarly decreased

(Figure 1) (24, 36–40) (Table 1).
FIGURE 1

The effects of vitamin D on the immune system. Vitamin D and 1,25(OH)2D3 modulate the innate immune response. The regulatory role of this
molecule has been shown to affect the innate immune system, such as macrophages, dendritic cells, Nk cells, and ILCs, so, as a critical molecule
plays a role in many diseases' pathophysiology. This vitamin also contributes to making an acquired immune response. (See text for additional
details). Th, T helper cell; IL, Interleukin; IFN-g, Interferon-g.
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Vitamin D and the acquired
immune system
Although the active form of vitamin D leads to the stimulation

of innate immune responses, this vitamin causes the suppression

of acquired immune responses (Table 2). The most significant

secretors of IL-2 and interferon-g (IFN-g) are T-helper 1 (Th1)

cells, induced by the activation of the T cell receptor (TCR) and

CD4+ membranous protein. In fact, Th1 is a key player in

stimulating other inflammatory leukocytes and serves as a

marker of cellular immunity activation. 1,25-(OH)2 D3 inhibits

the synthesis of the pro-inflammatory cytokines IL-2 and IFN g as
well as Th1-mediated responses. By inhibiting the nuclear factor

of activated T cells (NFAT) and activator protein-1 (AP-1) factors,

1,25-(OH)2 D3 encounters this inhibitory action (49).
Frontiers in Immunology 04
Additionally, 1,25-(OH)2 D3 increases the production of Th2

anti-inflammatory cytokines (including IL-3, -4, -5, and -10),

while decreasing the production of Th9 (IL-9) and Th22 (IL-22)

pro-inflammatory cytokines (48, 50). IL-9 is essential for

attracting immune cells to the sites of inflammation, particularly

mast cells. It is mostly produced by Treg cells. Th9 cell release of

IL-9 may be the cause of allergic reactions and inflammatory

reactions. The majority of IL-22-producing body cells are still

Th22 cells. This crucial interleukin promotes the proliferation and

development of keratinocytes. IL-22 enhances the secretion of

anti-microbial peptides in the gut epithelium, which may result in

a more effective defense against encroaching microorganisms. The

anti-inflammatory function of T-regulatory cells, which is crucial

for autoimmune control and homeostasis, is induced by 1,25-

(OH)2 D3. The primary transcription factor in this class is

Forkhead Box P3 (Foxp3). It is essential for 1,25-(OH)2 D3’s
TABLE 1 Effects of 1, 25(OH) 2D3 on innate immunity.

Cell Effects of 1,25(OH)2D3 References

Dendritic cells ↓ proliferation
↓ differentiation
↓ maturation
↓ CD40, CD80, CD86, MHC class-II: decreased T cell stimulation
↓ IL-12; Indirect Th1 response inhibition
↑ IL-10 and Foxp3: Treg induction
↓ Th17 cell induction

(41, 42)

Macrophages ↓ IL-6 and IL-23: decreased Th17 response
↓ TNF and IL-1
↓ MHC class-II: ↓ antigen presentation
↑ cathelicidins, defensins, phagocytosis, chemotaxis
↑ Stimulation of response to infection
↓ TLRs 9/4/2

(41, 42)

NK-cells ↑ cytotoxic function
↓downregulating inflammatory cytokine expression

(24, 43)

Innate lymphoid cells ↑ cytotoxic function
↓downregulating inflammatory cytokine expression

(24, 44)
Upward arrow means increasing.
Downward arrow means decreasing.
TABLE 2 Effects of 1, 25(OH)2D3 on adaptive immunity.

Cell Effects of 1,25(OH)2D3 References

B cells ↓ proliferation
↓ Plasma cell development

↓ Antibody secretion
↓Memory B cell differentiation

↑CCR10: Homing to skin

(45)

T cells Th1 ↓ IL‐2 transcription
↓ IFN-g transcription

(46)

Th2 ↑Th2 Cytokines(IL4,IL5,IL10) (47)

Treg ↑Treg cell differentiation
↑ Foxp3 transcription

↑IL10,CTLA4

(46)

Th17 ↓ IL ‐17,IL21 transcription (46)

Th22 ↓IL22 (48)

Th9 ↓IL -9 (48)
Upward arrow means increasing.
Downward arrow means decreasing.
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transcriptional upregulation as well as for the maturation,

maintenance, and function of Tregs (51). It has been suggested

that 1,25-(OH)2 D3 in both in vivo and in vitro conditions

increases the amount of Tregs to reduce autoimmunity (52). In

general, 1,25-(OH)2 D3 suppresses the induction of T-helper 1

(Th1)-cell cytokines, particularly IFN-g; however, it also enhances
Th2-cell immunological responses, which are mediated both

directly by raising IL-4 production and indirectly by suppressing

IFN-g production (53). Many autoimmune and inflammatory

disorders, including systemic lupus erythematosus, multiple

sclerosis, and rheumatoid arthritis, are caused by Th17 cells, a

type of inflammatory lymphocytes that promote inflammation

and phagocytosis, notably neutrophils. Through mechanisms such

as inhibition of the NFAT and RORt transcription factors,

recruitment of histone deacetylase (HDAC), Runt-related

transcription factor 1 (Runx1), and a direct impact on induction

of Foxp3, the complex of vitamin D/VDR would result in the

suppression of IL-17 production (54). Additionally, it may result

in T cell homing at inflammatory areas and in the skin via CCR5

and CCR10, respectively. The homeostasis of B cells is directly

impacted by VDR expression in their membrane. The active form

of vitamin D causes apoptosis in antibody-producing cells,

neutralizing the production and differentiation of B cells into

plasma cells and memory cells, reducing the production of

antibodies, and increasing the homing of these cells through

CCR10 to the skin (53). The clinical significance of this

influence on B cells can be shown in autoimmune illnesses

including those linked to autoreactive antibodies. B cells

produced a variety of autoantibodies. These have the power to

harm the organs and start an inflammatory reaction that leads to
Frontiers in Immunology 05
autoimmune diseases. Additionally, a large number of regulatory

B cells have been found to suppress the production of

autoantibodies (55). In reality, the biologically active form of

vitamin D suppresses B cell proliferation and controls their

responses. Through lowering stimulant molecules like CD40,

CD80, CD86, and MHC class-II in cells presenting antigens like

dendritic cells, this vitamin also leads to T cell suppression and

immune response modification (Figure 1) (41). Let us explore the

specific roles that vitamin D plays in some key immune-related

disorders in the present review (Table 3).
Allergic rhinitis

Allergic rhinitis (AR) is a nasal mucosal disease characterized by

an allergen reaction due to IgE production (72). The role of vitamin

D is explained in multiple investigations related to this disorder.

Examining the relationship between vitamin D serum levels and

allergic diseases in adults using the third National Health and

Nutrition Survey (NHANES III), Wjst et al. noted that AR

worsened in vitamin D-deficient patients (73). Another Finnish

study tried to investigate maternal intake of vitamin D in the course

of pregnancy and its association with asthma and allergic rhinitis

incidence in newborns. They recruited 1,669 children affected by

allergic rhinitis, atopic eczema, and asthma. It was discovered that

high levels of vitamin D intake in pregnant women were related to

an allergic risk reduction in 5-year-old children (74). Additionally,

Chen et al. suggested that prenatal vitamin D sufficiency has a

protective effect on developing allergic rhinitis and aeroallergen

sensitization at childhood (75).
TABLE 3 Summarization of vitamin D function in different immune related disorders.

Disease Cells affected by
vitamin D Mechanism of action Target genes Ref

Allergic rhinitis T-helper type 2, Eosinophil Decreased expression of CD86
MIR17HG miR-17-92a-

1 cluster host gene
(56,
57)

Asthma CD4 + T cells
Respiratory infection prevention via enhancing the immunity of the lungs,

inhibiting steroid resistance by increasing the production of IL-10
VDR gene

(58,
59)

Atopic Dermatitis
(AD)

Keratinocytes Regulation of epidermal function and local immune response CYP24A1
(60,
61)

Rheumatoid
Arthritis

T cells
Decreasing the production of IL-12 via NF-kB downregulation, inhibition of

IFN-g
TaqI

(62,
63)

Multiple sclerosis
(MS)

Whole body HLA-DRB*15 upregulation HLA-DRB1 (64)

Parkinson disease
(PD)

Alterations in VDR expression levels BsmI, FokI (65)

Infection-related
disorders

Macrophages, monocytes,
Paneth cells

Enhancement of cell autophagy, release of antimicrobial proteins mTOR, cathelicidine
(66,
67)

Cancer Tumor cells MAPK and Nf-kB inhibition, immune regulation MKP5, Nf-kB
(9,
68)

Diabetes mellitus
(DM)

DCs and macrophages,
cytotoxic T cells

Self-tolerance and immune regulation
MHC-II and co-

stimulatory molecules
(69,
70)

Inflammatory
bowel disease (IBD

B cells, T cells, dendritic
cells, and macrophages

Enhancing the expression of IL-10, suppressing the proliferation of B and T
cells

VDR, IL-10,
Cathelicidine

(50,
71)
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Furthermore, pieces of evidence from clinical investigations

demonstrated that AR risk can be inversely related to the serum

vitamin D level (76, 77). On the contrary, Feng et al. indicated no

causal association between them. This study goes against the

previous claims of vitamin D supplementation’s protective effects

on allergic rhinitis (78). In addition, Searing et al., in an in vitro

study, explained that this important vitamin may affect

dexamethasone’s stimulation on circulatory mononuclear cells’

IL-10 and mitogen-activated protein kinase phosphatase-1

(MAPKP-1). Vitamin D levels reflect a negative correlation with

the dose of the inhaler, oral of steroids. The induced mRNA amount

of mitogen-activated protein kinase phosphatase-1 (MKP-1) and

IL-10-induced vitamin D with dexamethasone was significantly

higher than those induced by dexamethasone by itself. MKP-1

and IL-10 are critical for glucocorticoid-dependent anti-

inflammatory and repressive effects (79). Also, according to other

in vitro studies, there is growing evidence that serum vitamin D

level is correlated with inflammatory factors. Eosinophil infiltration,

allergic symptom scores, and mRNA levels of IL-4 and IL-13 were

all lower in the mice group under vitamin D supplementation.

Moreover, CD86 expression in the cervical lymph nodes was

decreased among T-helper type 2-mediated inflammation and

CD11c+major histocompatibility complex II-high (MHCII high)

cells. IL-4 was also conversely correlated with vitamin D levels

(56, 80).

The MiR-17-92 cluster is a human miRNA located on

chromosome 13. Increasing the expression of this miRNA has been

reported in many immune disorders such as cancers and some

allergic diseases, but the regulatory mechanism is not well defined.

One way to treat allergic diseases is specific immunotherapy. It has

been noted that vitamin D raises specific immunotherapy effects on

MiR-17-92 cluster suppression in peripheral B cells in allergic rhinitis

patients (81). This study confirmed that vitamin D improves the anti-

inflammatory function of corticosteroids in patients with allergic

rhinitis. Regarding the effects of vitamin D supplementation in the

treatment regimen of allergic rhinitis, Bakhshaee et al. concluded that

it could relatively improve symptoms of clinical AR, further

emphasizing vitamin D supplementation as a therapeutic agent (82).
Asthma

The role of vitamin D in asthma is still uncertain. The CDX2

polymorphism is in the 9,913th position in the promoter region of the

VDR gene emerging from the substitution of A with G. It has been

mentioned that this polymorphism changes the levels of VDR

transcription and its overall activity. It also subsequently modulates

the genes effective in inflammation, regulation of immunity, and

airways remodeling. This polymorphism in its homozygous form has

been associated with the diagnosis of asthma and decreased FEV1 (21).

Some cross-sectional studies have indicated a possible

relationship between asthma and vitamin D clinically (83).

Studies have concluded that a drop in serum level of 1,25-(OH)2
D3 was associated with an advance in prevalence, hospitalization,

the number of emergency visits, respiratory rate, and a reduction in

lung function in children with asthma (84). Recent clinical trials
Frontiers in Immunology 06
have proved the protective effect of vitamin D supplements in

asthmatic patients (85–87). One study demonstrated that weekly

oral calcifediol supplementation in vitamin D-deficient adults could

help control the disease course and improve patients’ quality of life

(88). One study by Gapta et al. reported that the low serum levels of

vitamin D in children with steroid-resistant asthma (STRAs) are

characterized by decreased lung function, increased corticosteroid

use, and asthma exacerbation. The possible reason was that low

vitamin D levels help smooth muscles of the respiratory tract to

grow and diminish lung function in severe asthma (89). Examples

of vitamin D activity in asthma include improving the immune

function of the lung tissue and preventing the development of

respiratory infections (85, 90, 91) or overcoming resistance to

steroids by increasing the production of IL -10 via CD4 + T cells

(92). In contrast with the asthma prevention duty of vitamin D, it

can cause the exacerbation of it. Low levels of vitamin D (<30 ng/

mL) increase the risk of asthma (83, 93).

Furthermore, several studies could not show a significant

correlation between vitamin D levels and the incidence of asthma

in children and adults (94–96). In addition, several clinical trials

failed to find a significant association between vitamin D

supplementation in deficient individuals and improvement in

clinical outcomes such as controlling the disease course, lessening

symptoms and side effects, improving respiratory volumes and

ratios, reducing exacerbation episodes, and decreasing required

medications (97–99). In addition, vitamin D intake during

pregnancy enhances the risk of asthma in children and adults

(100, 101).
Atopic dermatitis

Among the factors involved in atopic dermatitis (AD), the

growing importance of vitamin D deficiency was noted in atopic

patients. Furthermore, vitamin D is correlated with the antimicrobial

peptide (AMP) production by keratinocytes. Vitamin D and its

analog play a vital role in treating AD, psoriasis, vitiligo, and acne

(17, 102–104). Few investigations have surveyed the prevalence and

severity of AD in people with vitamin D deficiency. Atopic dermatitis

is associated with vitamin D levels, and vitamin D deficiency

increases the risk of atopic dermatitis (105).

On the other hand, it has been noticed that vitamin D levels

were higher in mild AD patients than in those with moderate to

severe dermatitis (95). It seems that children born to mothers who

have a low intake of fish or vitamin D during pregnancy have a

higher risk of developing atopic dermatitis symptoms (106, 107).

Also, as Wang et al. suggested, low breast milk vitamin D levels may

influence the infant’s immune system, inversely correlated with

persistent AD symptoms (108).

However, despite the positive relationship between

hypovitaminosis D in the above studies and the prevalence or

severity of AD, several texts have shown the reverse association

(76, 109). Another investigation discovered that children of mothers

with elevated serum 25-OH D3 levels had a higher risk of emerging

advanced eczema at 9 months and 9 years old (100). Moreover,

research carried out by Tian et al. claimed that the risk of atopic
frontiersin.org
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dermatitis (AD) in children at the first year of age is generally

increased with higher maternal serum vitamin D levels throughout

pregnancy (110). From the above considerations, it can be implied

that this is a very controversial topic. Vitamin D is sometimes a

protective agent and sometimes a risk factor for AD. However, it

seems that at least in the majority of studies, it has been suggested

that there is a reverse relationship between vitamin D serum levels

(food intake or sunlight) and AD prevalence and severity. Further

fueling the conflicting evidence in this matter, Lucas et al. believed

that 1-hydroxylase CYP27B1 (responsible for 1,25-Vitamin D3

synthesis), the vitamin D receptor, and the vitamin D-mediated

signaling target gene CYP24A1 are all upregulated as a result of

allergic sensitization, which subsequently auto-downregulates

vitamin D receptor-mediated signaling through reducing available

ligand accumulations. This study suggested that an increase in local

vitamin D-mediated signaling is a pro-allergic condition at

the inflammation site, which results in low serum levels of

vitamin D (111).

Vitamin D plays an essential role in regulating innate and

acquired immune mechanisms. Vitamin D receptors (VDRs) have

been found in various cells, including keratinocytes and multiple

immune cells (112). 1,25-(OH)2 D3 prevents T cell proliferation,

especially Th1s producing IL-2 and interferon-g leading

to macrophages and Th17s activation. It induces production of

IL-17 and IL-22 (113–115). Moreover, 1,25-(OH)2 D3 reproduce

CD4 +/CD25 + cells through stimulating IL-10 production, which

ultimately impairs the Th1s and Th17s development (116, 117).

The polymorphisms of the VDR gene may cause differences in

response to vitamin D in inflammatory conditions. Some of them

might be discovered in severe AD patients, such as rs2228570,

rs1544410, rs7975232, and rs731236. This indicates that the VDR

controls AD by regulating epidermal function or affecting the

local immune response (60). Langerhans and inflammatory

dendritic epidermal cells (IDEC), both located in the epidermis

of patients suffering from AD, expressing FcϵRI (high-affinity IgE
receptor) and sensing allergens. Herrmann et al. explained that

active vitamin D3 could downregulate the receptor at the protein

and mRNA levels of its a-chain, impairing IgE-mediated

inflammatory processes afterward (118). Cristi et al. also

concluded that vitamin D sufficiency lowers the allergic

phenotype of circulating DCs in AD children (119). As

Mansour et al. suggested, vitamin D supplementation can be

regarded as an effective treatment, decreasing the risk of severe

atopic dermatitis symptoms, adding it to the existing studies

already confirming vitamin D adjuvant therapy to be beneficial

in mild to moderate cases (120).
Rheumatoid arthritis

Rheumatoid arthritis (RA) is an autoimmune disease of

connective tissue that mainly affects synovial joints, causing

grueling pain and reducing life expectancy (121). Although the

exact cause is not entirely understood, researchers have suggested

that genetic and environmental factors contribute to the

RA pathogenesis (122). Considering the suppressant effects of
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vitamin D and the possible association between vitamin D

deficiency and autoimmune disorders (123), it has been studied

as a potential aid to the pathogenesis of autoimmune diseases,

including RA (124). Studies have shown that many autoimmune

disorders are correlated with lacking vitamin D (125, 126). This is

confirmed that 1,25-(OH)2 D3 reduces the production of IL-12

production through NF-kB downregulation, inhibits the secretion

of IFN-g, and limits the expression of IL-6 receptor; in vivo

administration of 1,25-(OH)2 D3 appears to have preventive

effects on autoimmune diseases (77, 127, 128). Also, by inhibiting

the expression of macrophage aromatases, vitamin D can reduce the

conversion of androgens to estrogens which play a significant part

in the activation of B lymphocytes and consequently the

autoimmune response in RA (62).

The activity of vitamin D depends on VDR, and the activation

of VDR can inhibit pro-inflammatory T cells and DC

differentiation. In addition, VDR agonists induce T-regulator and

NK cells and thus suppress self-immunity (63). It has been proved

that VDR polymorphism accelerates RA sensitivity (129). One of

these polymorphisms is TaqI or rs731236, located within Exon 9 at

the 3′ end of the VDR gene. Probably the TT genotype of this

polymorphism is a risk factor for RA (130). Studies have indicated

that high levels of vitamin D absorption can reduce the risk of

rheumatoid arthritis by 24% (131). In addition, vitamin D

deficiency in these patients can lead to a more severe and active

course of the disease; thus, vitamin D serum level may be a

predictive factor for one-year disability and disease progression

(132, 133). But not all evidence is in favor of the preventative effects

of vitamin D. A recent study on RA patients concluded no

significant differences between vitamin D-deficient and -non-

deficient patients considering criteria such as swollen joints count

(SJC), VAS-pain, tender joints count (TJC), and DAS28 scores

(134). Further investigations can shed light on various features of

the relationship between RA and vitamin D.
Multiple sclerosis

The pattern of MS occurrence varies throughout the world: its

prevalence shows a steep slope over the equator, and the disease is

more prevalent in areas near the poles (135). This can be associated

with the level of UVB exposure (136) and can support the theory

that environmental factors frequently influence the MS risk in early

life. Studies have determined a relationship between the serum level

of 25-OH D3 and MS risk development, namely, and there is a

negative association between vitamin D levels and MS (137, 138).

Obesity and smoking remain the two other MS risk factors

correlated with vitamin D deficiency (139, 140). Although

smoking and obesity may affect the MS risk by changing the

vitamin D level, they may also affect the risk of MS in a vitamin

D-independent way (141, 142). The association between MS and

five loss-of-function mutations on the CYP27B1 gene encoding the

25-OH vit-D-1a-hydroxylase enzyme strongly indicates vitamin D’s

critical role in MS etiology has been confirmed that these mutations

decrease the level of vitamin D (143). However, three subsequent

attempts to repeat this finding were unsuccessful. Now it seems that
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although these variants are associated with the risk of developing

MS, their contribution to MS inheritance is small (144–146).

Furthermore, the expression of HLA-DRB1*1501, the most potent

genetic marker for MS, is regulated through the VDRE (vitamin D

response element) in the promoter region (147, 148). Further

investigations have revealed that vitamin D receptor gene

polymorphisms could affect vitamin D absorption and increase

MS susceptibility in various populations (148, 149). According to

the meta-analysis conducted by Imani et al., Taql and Bsml

polymorphisms, despite Apal polymorphism, lead to MS risk

enhancement (150). Another risk reduction theory was explained

in the study by Spanier et al. It stated that CTLA-4 functions as a

mediator for MS prevention and, in the presence of vitamin D, its

expression is significantly increased inside intracerebral myeloid

cells (151).

More than 200 SNPs were detected out of the HLA region

during the GWAS studies which are significantly related to MS

disease. Among them, some SNPs are associated with genes

responsible for vitamin D metabolisms such as rs2248359,

CYP24A1, rs2248137, rs12368653, rs703842, rs10876994,

CYP27B1, rs201202118, rs703842, and rs701006 (152, 153). These

observations indicate that vitamin D relates to the transcription of

the genes associated with MS and alters their mechanism of action

(154). This important nutrient is assumed to have a key role in

repairing genes expression, especially MYH, OGG1, MTH1, and

NRF2 in MS patients (155).
Parkinson disease

Parkinson’s disease (PD) is a motor disorder characterized by

tremor, stiffness, acne, and loss of local reflexes, leading to

immobility and frequent corrosion. There were pieces of evidence

that manifested vitamin D deficiency can increase the prevalence of

PD (156–158). Interestingly, people with high concentrations of

vitamin D in their serum show a reduction in Parkinson’s risk (159).

This is also related to exposure to ultraviolet radiation (160). Many

studies have proved that vitamin D is critical for the growth and

function of the brain. VDRs and 1-alpha-hydroxylase, the enzyme

responsible for vitamin D activation, are observed in the substantia

nigra and the hypothalamus’s principal neurons and glial cells

(161). Mice whose VDRs have been knocked out have developed

muscular and motorized dysfunctions (162). In addition, higher

levels of 1,25-(OH)2 D3 and VDR FokI CC genotypes are associated

with mild forms of Parkinson’s disease (163). Different VDR

polymorphisms such as the DHCR7/NADSYN1 locus and the

CYP2R1 gene can affect clinical symptoms of PD through an

impaired mechanism of turning vitamin D into valuable

chemicals (164).

Recent studies have demonstrated the association between BsmI

and FokI polymorphisms in VDR and PD sensitivity (165, 166).

The BsmI bb genotype is more common in PD and causes the

alteration in the VDR expression levels of mRNA. In patients with

PD, FokI CC and TC genotypes are more prevalent than TT. In

those regions with higher UV radiation, an association between UV

and TaqI and ApaI has been found. The PD risk is reduced in the
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homozygous form of the TT TaqI genotype and the homozygous

form of the GG ApaI genotype (167).
Infection-related disorders

Vitamin D plays an important role in regulatory actions of the

immune system. This is essential for controlling infection-related

disorders. Prior investigations indicated that respiratory

infections, human immunodeficiency virus (HIV), and

Mycobacterium tuberculosis (TB) were strongly associated with

low levels of vitamin D in the circulation (168). The major

antimicrobial protein, cathelicidin, is known to be necessary in

the defensive actions of monocytes against the invading pathogens

(66). Vitamin D receptor signaling crosstalks with the production

of cathelicidin in these cells (169). Also, vitamin D-cathelicidin

axis is vital in intestinal inflammation preventing gastrointestinal

infections (170). The enhancement of the Paneth cells in response

to the vitamin D receptor signaling was also studied very much

(171). Toll-like receptors 1/2 (TLR 1/2) have been identified to be

activated by 1,25-dihydroxy-vitamin D (vitamin D3) inducing the

antimicrobial effects of tissue macrophages (27). By means of

mammalian target of rapamycin (mToR) signaling, this

micronutrient is also capable of inflammation attenuation in

airway systems through enhancing cell autophagy (67).

Vitamin D supplementation and prevention of the infections

such as coronavirus disease (COVID-19) has recently been

investigated by many scientists (172–174). The results are still

conflicting. Regarding TB infection, a large randomized clinical

trial was conducted with a sample size of 8,851 children. The

conclusion stated that vitamin D had no superior effect on TB

infection risk than placebo (173). On the other hand, some studies

demonstrated that vitamin D supplementation had a promising

lowering impact on the risk of upper respiratory infections (172,

174). There remains a huge demand for larger and more accurate

studies in order to assess the net effect of vitamin D on the incidence

of various infection types.
Cancer

Cancers are among the most common and important immune

system-related disorders in the world. They emerge from the

dysfunction occurring in cell proliferation, differentiation, and

apoptosis (9, 175). The association between the serum level of

vitamin D and the risk of various cancers has been investigated

several times in the past. Colorectal cancer (176), breast cancer

(177), skin cancer (178), prostate cancer (179), liver cancer (180),

and head and neck cancers (181) are some of the examples.

According to Ma et al.’s study, high blood levels of vitamin D was

correlated with a 33% reduction in the risk of colorectal cancer

(182). Regarding head and neck neoplasms, high vitamin D serum

levels decreased the incidence by 32% and also lowered the

mortality risk in these patients (183).

VDR is upregulated in many tumor cells of different types of

cancers. For instance, epigenetic studies indicated that in colorectal
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cancers, the adipose tissue overexpressed VDR. As we probably

know, adipose tissue dysfunction is a vital mechanism underlying

the emergence of colorectal cancer (184). This overexpression has

been observed in prostate and ovarian cancers, too (179, 185).

However, prior investigations have suggested that in some cases

more VDR expression in tumor cells might lead to a better prognosis

and treatment response (186, 187). Inflammation and immune

response remained a matter of discussion in cancer progression

and spreading (188). As mentioned, vitamin D has been identified

to have a major impact on the regulation of inflammation, especially

in microenvironments. The signaling might be activated or inhibited

through two main pathways: MAP Kinase Phosphatase 5 (MKP5)

and Nf-kB (9). The existing evidence revealed that vitamin D might

upregulate the MKP5 in tumor cells causing MAPK inhibition and,

following that, decreased production of IL-6 (189, 190). This resulted

in the regulation of inflammatory response of the immune cells.

Additionally, previous articles have stated that this important

micronutrient could inhibit the activity of Nf-kB as the upstream

compounds of another pro-inflammatory cytokine, IL-8, production

(191). Also, the binding of Nf-kB to the DNA might be disturbed in

the presence of vitamin D (68).

Concerning the use of vitamin D supplementation in

preventing or treating distinct types of cancers, many randomized

or non-randomized clinical trials have been conducted (9). A large

randomized clinical trial with 25,871 patients revealed that vitamin

D supplementation did not influence the incidence of invasive

cancers (192). Also, another study on healthy postmenopausal

women confirmed the inability of vitamin D in cancer prevention

(193). On the other hand, some studies have suggested that vitamin

D might improve the survival rate in patients suffering from cancer.

Akiba et al. achieved favorable results regarding non-small cell lung

cancers (194). Further large multicenter trials are absolutely

required in order to finally build a consensus about this major issue.
Diabetes mellitus

Type 1 diabetes (T1D) is a prevalent disease across the globe

with a combination of factors (genetic and environmental) as its

causes. It is considered an autoimmune disease induced by a T cell-

mediated mechanism in which dendritic cells (DC) and different

pro-inflammatory cytokines play vital roles (195–197). On the other

hand, studies are getting increasingly confident in the role of

vitamin D deficiency in different autoimmune diseases (198–200).

Therefore, vitamin D is discussed in many studies as a protective

factor in developing T1D (201, 202).

The seasonal pattern of T1D and its various prevalence

depending on latitude degree and ultraviolet B (UVB) irradiance

support this association theory (203–209). Epidemiological studies

show a trend of higher T1D incidents in adults and children suffering

from vitamin D deficiency (196, 210–212). In addition, it is stated that

there is an association between several polymorphisms of VD-related

genes and T1D (196). Polymorphic expression of genes encoding

vitamin D metabolizing enzymes, CYP27B1 as well as CYP2R1 and
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7-dehydrocholesterol reductase (DHCR7), unlike CYP24A1 gene

expression, has been suggested to be associated with T1D

susceptibility (213–215). Although there is conflicting evidence

regarding the association of VDR polymorphism with T1D (216,

217), Zhang et al. indicated that at least one of four VDR gene

polymorphisms is linked with a higher possibility for T1D (218).

Multiple factors are involved in the vitamin D level impacting

the immunopathogenesis of T1D and affecting both innate and

acquired immunity (17, 195). During T1D development, islet

autoantigens appear at the antigen-presenting cells (APCs)

surface, including DCs and macrophages, which induce a

cytotoxic T cell response (196). Vitamin D is produced by

dendritic cells (DC) and also applies immunomodulatory effects

toward self-tolerance in these cells (69, 219). As a matter of fact,

almost all of the immune system cells express the VDR (220). The

active form of vitamin D prevents the maturation of DCs. As a

result, surface expression of major histocompatibility complex

(MHC)-II and co-stimulatory molecules is hampered, and antigen

presentation and T cell activation are stopped (70). Furthermore,

this active form induces mature DCs apoptosis. Also, it

differentiates them into a tolerogenic state. Therefore,

regulatory T cells (Treg) are induced to a greater extent (221–

223). Moreover, Mauf et al. suggested that 25-OH D3 shows its

immunomodulatory effects by differentiating monocytes less into

DCs and more into intermediate cells with similar phenotypes to

those of tolerogenic DCs (69). Besides this indirect effect of

vitamin D on T cells, they can be targeted directly, too (196). It

is worth mentioning that vitamin D can also directly affect

pancreatic beta cells and their insulin secretion, therefore

making them more resistant (196).

As mentioned, vitamin D deficiency is considered an

environmental risk factor for developing autoimmune diseases

like T1D (212, 224). Therefore, many studies have evaluated its

potential preventive or therapeutic effect (199, 210). It is

demonstrated in animal models that the active form of vitamin D

can perform immune modulation in diabetes-prone mice in several

ways. Increasing Tregs, triggering a Th1/Th2 shift in the islets and

the pancreatic draining lymph nodes, preserving defective T cell

selection in the thymus, and eliminating apoptosis-resistant T cells

are all parts of that immunomodulatory action (225–229). Apart

from this non-antigen-specific immunomodulation, antigen-based

immunotherapies for T1D are also reported (224). Several studies

have discussed the protective immunological effect of vitamin D3 in

T1D patients, especially T cell modulation (212, 230). Gabbay et al.

reported a significant increase in Tregs upon 12 months of vitamin

D3 supplementation in patients with recent-onset T1D (231). Also,

Treiber et al. observed a significant increase in the suppressive

function of Tregs after vitamin D3 supplementation for 12 months

(232). Contradictory to these results, some studies show no

meaningful protective effect of vitamin D (202, 233–236). That

makes it crucial for future studies to better evaluate the disease

intervention by assessing the administering of vitamin D, its exact

compound choice, the dosage needed, and the ideal treatment

regimen (224).
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Inflammatory bowel disease

Inflammatory bowel diseases (IBD) are a group of chronic

immune-mediated diseases, with ulcerative colitis and Crohn’s

disease being the most renowned ones. Several studies have

shown that the prevalence of vitamin D deficiency in patients

with IBD is higher than in a healthy population (237–242).

Although it has not been precisely determined that this difference

is a cause or consequence of the disease, it has drawn attention to

the possible impacts of vitamin D on the etiology and course of the

disease. In addition to human studies, in vitro and in vivo model

analysis put forward three possible mechanisms that vitamin Dmay

affect the onset and progression of IBD.

Gut microbiota may be another target for vitamin D to

ameliorate the IBD course or even prevent its onset (243, 244).

These bacteria exert their effects through different metabolites.

Butyrate is one of these metabolites, which, in addition to being an

energy substrate for mucosal cells, accelerates epithelium healing

(245, 246). Lithocholic acid, another bacterial metabolite, suppresses

IL-2 production and subsequently decreases inflammation (247). It is

worth noting that vitamin D and microbiota have a bidirectional

interaction which means microbiota can also utilize vitamin D

downstream pathways (248–250).

Vitamin D can target B cells, T cells, dendritic cells, and

macrophages throughout innate and acquired immune systems,

considering they all express VDR (251). In vivo and in vitro studies

suggest that vitamin D is able to enhance the expression of IL-10 in

dendritic cells and the production of cathelicidin bymacrophages (71,

252). In contrast, toll-like receptors and IL-12 expression in

macrophages and dendritic cells are inhibited by the activated form

of vitamin D (29, 253). This inhibition leads to less dendritic cell-

induced activation of T cells. Besides, vitamin D can directly suppress

B and T cell proliferation (50). Vitamin D was able to interfere in

inflammatory/anti-inflammatory production balance, resulting in

reduced production of T cell-inflammatory cytokines, including IL-

2, interferon (IFN)-g, IL-17, and TNF-a, and enhanced anti-

inflammatory cytokines production such as IL-10 by regulatory T

cells and IL-4 by Th2 cells (50, 254–256). Overall, the induction of

regulatory cells like Tregs and CD8aa was increased (255, 257).

Various human studies have suggested a positive effect on

different outcomes from vitamin D supplementation in IBD

patients. Reduced disease activity, decreased risk of postoperative

endoscopic recurrence, lower clinical activity score, lower relapse rate,

and improved odds of remission were reported by different studies

(258–263). One study even reported vitamin D effects on all-cause

mortality (264). However, not all evidence is in favor of the

preventative effects of vitamin D (265). One RCT concluded no

difference in CRP, fecal calprotectin, Crohn’s disease activity index

(CDAI), and quality of life between supplemented and control groups

(266). At the same time, another RCT showed only a non-significant

lower relapse rate in the experimental group (267). Three meta-

analyses of different RCTs were conducted. Two established that

vitamin D supplementation improves clinical and biochemical

disease activity scores, while the third did not report such
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improvements (261, 268, 269). Further investigations can reveal

more aspects of the complex relationship between IBD and

vitamin D.
Conclusion

Studies have shown a strong correlation between vitamin D and

the innate and adaptive immune systems, suggesting that low

vitamin D levels may contribute to immune response

dysregulation. However, in recent years, the precise function of

the alternate pathways of vitamin D and its receptor has not yet

been sufficiently elucidated. We all need to be aware of what these

signaling pathways do in various immune system components.

Reviews of the literature revealed that, during the past 40 years, a

number of studies have been conducted to suggest the protective

effect of vitamin D in autoimmune illnesses. Randomized controlled

clinical trials are still lacking, though, in this area. Larger clinical

investigations will now be necessary to determine the precise impact

of vitamin D supplementation on the pathophysiology of different

diseases. Of the immunomodulatory treatments now on the market,

they might be as effective as the others. Additionally, the right

supplement dosage and manner of administration must be

determined. But for present approaches to preventing diseases

brought on by compromised immune-homeostasis, vitamin D has

emerged as a potential and relatively safe supplement.
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