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Therapeutic activity of lipoxin
A4 in TiO2-induced arthritis
in mice: NF-kB and Nrf2 in
synovial fluid leukocytes and
neuronal TRPV1 mechanisms
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Background: Lipoxin A4 (LXA4) has anti-inflammatory and pro-resolutive roles in

inflammation. We evaluated the effects and mechanisms of action of LXA4 in

titanium dioxide (TiO2) arthritis, a model of prosthesis-induced joint

inflammation and pain.

Methods: Mice were stimulated with TiO2 (3mg) in the knee joint followed by

LXA4 (0.1, 1, or 10ng/animal) or vehicle (ethanol 3.2% in saline) administration.

Pain-like behavior, inflammation, and dosages were performed to assess the

effects of LXA4 in vivo.

Results: LXA4 reduced mechanical and thermal hyperalgesia, histopathological

damage, edema, and recruitment of leukocytes without liver, kidney, or stomach

toxicity. LXA4 reduced leukocyte migration and modulated cytokine production.

These effects were explained by reduced nuclear factor kappa B (NFkB)
activation in recruited macrophages. LXA4 improved antioxidant parameters

[reduced glutathione (GSH) and 2,2-azino-bis 3-ethylbenzothiazoline-6-

sulfonate (ABTS) levels, nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA

and Nrf2 protein expression], reducing reactive oxygen species (ROS) fluorescent

detection induced by TiO2 in synovial fluid leukocytes. We observed an increase

of lipoxin receptor (ALX/FPR2) in transient receptor potential cation channel
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subfamily V member 1 (TRPV1)+ DRG nociceptive neurons upon TiO2

inflammation. LXA4 reduced TiO2‐induced TRPV1 mRNA expression and

protein detection, as well TRPV1 co-staining with p-NFkB, indicating reduction

of neuronal activation. LXA4 down-modulated neuronal activation and response

to capsaicin (a TRPV1 agonist) and AITC [a transient receptor potential ankyrin 1

(TRPA1) agonist] of DRG neurons.

Conclusion: LXA4 might target recruited leukocytes and primary afferent

nociceptive neurons to exert analgesic and anti-inflammatory activities in a

model resembling what is observed in patients with prosthesis inflammation.
KEYWORDS

lipoxin A4, TiO2, ALX/FPR2, inflammation, TRPV1, ROS
1 Introduction

Total joint replacement recovers joint function, reduces pain, and

improves quality of life (1–4). Total knee arthroplasty is a common

procedure for joint replacement, which is expected to increase in the

coming years (5, 6). In Europe, 2.5 million knee arthroplasties were

recorded from 1975 to 2018 (7), and by the year 2030, 3.5 million

procedures are expected in the United States (8). Despite the success

of arthroplasty, deterioration of prosthetic components is the most

associated complication. This event is characterized by the release of

metallic nanoparticles that promote osteolysis, necessitating

arthroplasty revision (8–10). Titanium is widely used in the

production of orthopedic prostheses (11). However, TiO2 is the

main trigger in prosthesis wear process-induced arthritis. Resident

macrophages are activated and release tumor necrosis factor-alpha

(TNF-a) and interleukin-1 beta (IL-1b) upon TiO2 phagocytosis

(12). Intra-articular (i.a.) administration of TiO2 induces chronic

arthritis and phenocopies the articular inflammation and pain caused

by the release of prosthesis components upon wear (13). The available

therapies for prosthesis-induced arthritis patients include non-

steroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and

opioids. These drugs promote tolerance, but are accompanied by

adverse effects or addiction, affecting life quality and economic cost

(14, 15). Therefore, investigating novel candidates for prosthesis-

induced arthritis treatment is crucial. If a novel therapy presents

different side effects, it might benefit patients whose need are not well-

served by the current treatments due to side effects.

In fact, pain is a debilitating symptom of arthritis with

consequences not only in the productivity, but also in the lifestyle

and social interactions of patients. Pain is also one of the major

reasons that patients seek medical care (16, 17). In peripheral

inflammatory pain, the initiating factor of inflammation can, for

instance, activate tissue-resident cells such as macrophages, which

will produce inflammatory molecules, including cytokines and

reactive oxygen species (ROS) (18). Cytokines such as TNF-a, IL-
1b, and IL-6 as well as ROS such as superoxide anions have a role in

recruiting leukocytes, thus changing the cellular profile in the
02
inflammatory foci (19, 20). Not only do these mediators activate

nuclear factor kappa B (NF-kB); NF-kB also induces their

production (21). Cytokines and ROS can also sensitize the

primary nociceptor sensory neurons causing hyperalgesia (18, 22).

Nociceptor neuron sensitization can involve both enhancement of

the function and increased production of ion channels that facilitate

neuronal firing (23). Transient receptor potential (TRP) channels

such as TRPV1 and TRPA1 are examples of ion channels expressed

in the axons and cell bodies of primary afferent nociceptor neurons.

TRP channels have been studied as targets for novel analgesics in

cancer and neuropathic and chronic pain (24, 25).

Lipoxin A4 (LXA4) is a specialized pro-resolving lipid mediator

(SPM) derived from arachidonic acid (26). This endogenous

molecule plays anti-inflammatory and resolutive roles in

inflammation (27, 28). LXA4 acts in the nanogram range,

diminishing cell recruitment, chemotaxis, and polymorphonuclear

cell adhesion, thus controlling inflammatory tissue damage (29).

For example, in an acute liver failure model, LXA4 reduces pro-

inflammatory cytokine levels and inhibits apoptosis (30). In

addition, LXA4 reduces inflammatory pain by suppressing

mechanical and thermal hyperalgesia (31, 32). LXA4 potently

blocks ROS action via nuclear factor erythroid 2-related factor 2

(Nrf2)-dependent mechanisms in several animal models (33–37).

LXA4 also reduces NF-kB activity, accounting for an essential anti-

inflammatory mechanism (30, 38–40). LXA4 acts through G protein

coupled receptors (GPCR) for LXA4 (ALXR), also known as FPRL1

and FPR2 (41–43). The activation of ALX/FPR2 receptor explains

most of the anti-inflammatory, pro-resolving, and protective

actions of LXA4 (29, 42, 44). The multiple sites of actions and

cellular mechanisms demonstrate that LXA4 has relevant properties

for therapeutic development (29). Some of the LXA4 mechanisms

are relevant in the disease development in TiO2 articular

inflammation such as oxidative stress and cytokine production

(13). Therefore, we reason that LXA4 merits investigation of its

anti-inflammatory and analgesic activities in the context of

prosthesis wearing process-released components like TiO2, which

we pursued in the present study.
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2 Materials and methods

For detailed materials and methods, please refer to the

Supplementary Data 1. Briefly, Figure 1 shows the experimental

protocols in which male Swiss (20–25 g) received the

administration of intra-articular TiO2 (3 mg/10 µl/knee joint) as

previously described (13) to induce aseptic arthritis. The first

experiments were dedicated to determining the disease phenotype

upon LXA4 treatment (Fig ure 1; protocol 1); for this, we performed

the treatment with LXA4 (0.1, 1, or 10 ng) or vehicle (3.2% ethanol/

saline) [100 µl per animal, intraperitoneal (i.p.)] 24 h after TiO2

stimulus. Mechanical hyperalgesia was assessed using an electronic

esthesiometer (45) in different time points for 30 days to perform a

dose–response curve. The most effective dose of LXA4 (10 ng/

animal, every 48 h) was used for succeeding experiments. Edema

was evaluated using measurements of the transverse diameters

using a caliper and thermal hyperalgesia by Hargreaves apparatus.

Knee joint lavages were collected on the 30th day to assess the total

and differential leukocyte recruitment (46). Stomach was collected

to assess myeloperoxidase (MPO) activity (gastric damage) (47) and

blood samples were used to assess serum levels of aspartate

transaminase (AST), alanine transaminase (ALT) (liver damage),

urea, and creatinine (renal damage) (48). Hematoxylin–eosin (HE)

staining was performed on knee joint samples for histopathology

analysis (49).
Frontiers in Immunology 03
Inflammation and pain were present by the 2nd day of TiO2

arthritis and LXA4 activity could be observed. Chronic alterations

were already studied with the experimental approach described in

the previous paragraph. Considering these points, we reasoned that

mechanistic studies could be performed on the 2nd day of TiO2

arthritis to reduce the duration of inflammation to which the

animals were exposed. Therefore, potential mechanisms of LXA4

were studied in the early stages of TiO2-induced pain and

inflammation (Figure 1; protocol 2). To this end, we collected the

knee joint in the 2nd day after stimulus injection to determine

leukocyte recruitment, and to assess the cytokine levels by enzyme-

linked immunosorbent assay (ELISA) (TNF-a, IL-1b, IL-6, and IL-

10 levels). Oxidative stress was measured by reduced glutathione

(GSH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS)

measurement (50–52), and Nrf2 mRNA expression by reverse

transcriptase-quantitative real-time polymerase chain reaction

(RT-qPCR). Synovial fluid leukocytes were collected for p-NFkB
and Nrf2 staining by immunofluorescence (53), and total ROS was

measured using the probe 2’,7’-dichlorofluorescein diacetate (DCF-

DA). Ipsilateral dorsal root ganglia (DRG) (corresponding to L4–L6

segments) were also dissected 2 days after TiO2 to perform calcium

influx imaging using confocal microscopy (54), transient receptor

potential cation channel subfamily V member 1 (TRPV1) mRNA

expression by RT-qPCR, and TRPV1, TRPA1, ALX/FPR2, and p-

NFkB staining by immunofluorescence.
FIGURE 1

Experimental design. Protocol 1 is a 30-day experimental design. Mice were treated for 30 days with LXA4 (0.1, 1, and 10 ng/animal, i.p.) or vehicle
(ethanol) starting 24 h after i.a. injection of TiO2 (3 mg/joint). Mechanical hyperalgesia and edema were evaluated 1, 3, 5, 7, 24 h (day 1), and
subsequently every 2 days until the 30th day. Thermal hyperalgesia was evaluated on day 1 and every 3 days until day 30. On day 30, the knee joint
was collected for histopathological analysis and toxicity assays, and the knee joint wash was collected for leukocyte recruitment. Protocol 2 is a 2-
day experimental design. Mice were treated with a single treatment of LXA4 (10 ng/animal) starting 24 h after i.a. injection of TiO2 (3 mg/joint). On
the 2nd day, knee joint wash was collected for leukocyte recruitment, knee joint cytokine levels, NF-kB phosphorylation, and oxidative stress (GSH,
ABTS, ROS assay, and Nrf2 expression and activation). On the 2nd day of the model, DRG samples (L4–L6) were collected for calcium imaging
(TRPV1 and TRPA1 agonists) and dissected for immunofluorescence (ALX/FPR2 receptor co-stained with TRPV1; TRPV1 and p-NF-kB co-staining
with TRPV1 and TRPA1) and RT-qPCR. Protocol 3 is TiO2-induced peritonitis. Mice were given an i.p. injection of TiO2 (30 mg/500 µl), and after 24 h,
the animals were treated with LXA4 (10 ng/animal) or vehicle (saline) (100 µl per animal, i.p.). Peritoneal washes were collected on the 2nd day to
count total recruited leukocytes, for differential cell counts in stained slices, and for flow cytometry of lymphocytes (CD45+ CD4+), macrophages
(CD45+ F4/80+), and p-NF-kB.
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The limited number of cells in the synovial fluid led us to use a

TiO2-triggered peritonitis model to assess the cellular profile of

recruited leukocytes and NF-kB activation in macrophages. We also

determined if treatment with LXA4 could modulate the responses

triggered by TiO2 via flow cytometry (Figure 1; protocol 3). For this

approach, mice received an i.p. injection of TiO2 (30 mg/500 µl),

and 24 h after TiO2 stimulus (post-treatment), mice were treated

with LXA4 (10 ng) or vehicle (saline) (100 µl per animal, i.p.). After

an additional 24 h, peritoneal washes were collected in FACS buffer

(10 ml per animal), and total leukocyte recruitment was counted,

and flow cytometry (54) for CD45, CD4, F4/80, and p-NFkB
staining was performed. All experimental conditions were

standardized by our laboratory as previously published (13, 49,

54, 55) and in preliminary experiments performed for

this manuscript.

For in vivo experiments, we used 6, 8, or 10 mice in each group

per experiment depending on the methodology (indicated in the

figure legends). In vitro experiments with DRG samples were

performed using an n of 4 pools (10 mice to form 1 pool) per

group. Two-way ANOVA followed by Tukey’s post-test was used to

compare all groups and doses when responses were measured at

different times after the stimulus injection. The analyzed factors

were treatments, time, and time versus treatment interaction.

Parametric results were evaluated by one-way ANOVA followed

by Tukey’s post-test for data from a single time point. Kruskal–
Frontiers in Immunology 04
Wallis followed by Dunn post-test or two-way were used for non-

parametric results. p < 0.05 was considered significant.
3 Results

3.1 Treatment with LXA4 reduces
TiO2-induced articular mechanical
hyperalgesia, thermal hyperalgesia,
and edema in mice

A dose–response curve was performed to assess the potential

analgesic and anti-inflammatory effects of LXA4 in TiO2-induced

arthritis. Treatment started 24 h after i.a. TiO2 injection. We could

still observe significant analgesia by the 24th hour after LXA4

treatment, which was reduced by the 48th hour (data not shown).

Therefore, treatments with LXA4 were performed every 48 h. The

injection of 3 mg/joint of TiO2 induced mechanical hyperalgesia, and

treatment with LXA4 reduced the mechanical hyperalgesia in a dose-

dependent (0.1, 1, or 10 ng/animal, 100 ml i.p.) manner. The most

effective dose was 10 ng/animal, which was chosen for the subsequent

experiments (Figure 2A). TiO2 also induced thermal hyperalgesia that

was reduced by LXA4 10 ng/animal treatment. The reduction of

thermal hyperalgesia was observed from the 4th day onwards, with

complete inhibition from the 7th to the 30th day (Figure 2B).
B

C

A

FIGURE 2

LXA4 inhibits TiO2-induced articular mechanical hyperalgesia, thermal hyperalgesia, and edema in the knee joint. Mice were treated for 30 days with
LXA4 (0.1, 1, and 10 ng/animal, i.p.; 48-h intervals) or vehicle (ethanol) starting 24 h after i.a. injection of TiO2 (3 mg/joint). Mechanical hyperalgesia
(A) was evaluated 1, 3, 5, 7, 24 h (day 1), and subsequently every 2 days until day 30. Thermal hyperalgesia (B) was evaluated on day 1 and every 3
days until day 30. Results are expressed as mean ± SEM, n = 6 mice per group per experiment and are representative of two separate experiments
[*p < 0.05 vs. saline group; #p < 0.05 vs. TiO2 group; **p < 0.05 vs. TiO2 and LXA4 (10 ng) groups; fp < 0.05 vs. TiO2 and LXA4 (10 and 1 ng) groups,
repeated measures two-way ANOVA followed by Tukey’s post-test]. Edema (C) was evaluated 1, 3, 5, 7, 24 h (day 1), and subsequently every 2 days
until day 30.
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We also investigated if the treatment with LXA4 reduces knee

joint edema. A dose of 10 ng/animal of LXA4 significantly reduced

TiO2-induced articular edema 24 h after the first treatment, with

persistent anti-inflammatory effect until the 30th day of arthritis

(Figure 2C). The saline-injected group did not develop

edema (Figure 2C).
3.2 LXA4 reduces TiO2-induced
joint histopathology changes and
inhibits leukocyte recruitment to
the articular space

Mice were treated with LXA4 (10 ng/animal, i.p., every 48h) or

vehicle (3.2% ethanol in saline) 24 h after i.a. TiO2 (3 mg) injection.

On the 30th day, the knee joint was collected for HE histopathology

evaluation (Figures 3A–G). LXA4 reduced TiO2-induced synovial

hyperplasia, inflammatory infiltrates, and vascular proliferation

observed in the histopathological index analyses (Figure 3A).
Frontiers in Immunology 05
Treatment with vehicle showed no effect on TiO2-induced

histopathological changes.

Leukocyte recruitment to the knee joint is a hallmark of arthritis

(56). To investigate the effect of LXA4 on leukocyte recruitment 30

days post-TiO2 stimulus, knee joint washes were collected to

evaluate the total number of leukocytes and mononuclear and

polymorphonuclear cells. The injection of TiO2 significantly

increases the number of leukocytes recruited to the knee joint 30

days after the stimulus (Figures 3H–J). Our results show that the

treatment with LXA4 at 10 ng/animal reduced TiO2-induced

recruitment of total leukocyte (Figure 3H) and mononuclear

(Figure 3I) and polymorphonuclear cells (Figure 3J).
3.3 LXA4 does not induce liver, kidney, or
stomach damage

Thirty days after TiO2 stimulus, serum samples and stomach

were collected to evaluate whether the chronic treatment with LXA4
FIGURE 3

LXA4 reduces TiO2-induced histopathological damage and recruitment in the knee joint. Mice were treated with LXA4 (10 ng/animal, i.p.) or vehicle
(ethanol) 24 h after i.a. TiO2 (3 mg) injection and on alternate days for 30 days. On the 30th day, the knee joints were collected and stained with HE.
Histopathological index (A) and analysis (B–G). The panel shows: saline (B, C), TiO2-injected treated with vehicle (D, E), and TiO2-injected treated
with LXA4 (F, G). The representative image demonstrated the invasive pannus (#), leukocyte infiltration (arrow), angiogenesis (arrowhead), and TiO2

nanoparticles (asterisk). Original magnification 10× (B, D, F) and 40× (C, E, G). Results are expressed as mean ± SEM, n = 12 mice per group per
experiment, two independent experiments (*p < 0.05 vs. saline group; #p < 0.05 vs. TiO2 group, Kruskal–Wallis followed by Dunn’s post-test). On
the 30th day, knee joint washes were collected to count total leukocytes (H), mononuclear (I), and polymorphonuclear cells (J). Results are
expressed as mean ± SEM, n = 6 mice per group per experiment, two independent experiments (*p < 0.05 vs. saline group; #p < 0.05 vs. TiO2

group, one-way ANOVA followed by Tukey’s post-test).
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would induce gastric, hepatic, or renal damage, which are common

side effects of non-steroidal anti-inflammatory drugs (56). Toxicity

was assessed through the concentrations of AST, ALT, urea, and

creatinine, and MPO activity (Figure 4). The treatment with 10 ng/

animal qod of LXA4 did not modify the serum concentration of

AST, ALT (Figures 4A, B), urea, creatinine (Figures 4C, D), or MPO

activity in the stomach compared with positive controls (Figure 4E).

Therefore, our data suggest that chronic treatment does not induce

detectable gastric, hepatic, or renal lesion/damage.
3.4 LXA4 reduces TiO2-induced leukocyte
recruitment, cytokines production, and
NF-kB activation in macrophages

In the following experiments, we opted to reduce the treatment

period to investigate the inflammatory and pain mechanisms of

LXA4. We considered that Figures 2–4 established the beneficial

effect of LXA4 treatment during a chronic period and that

inflammation and pain achieved significant development by the

second day of arthritis. This approach allowed us to reduce the

suffering of animals and investigate the mechanisms involved in

LXA4 post-treatment of ongoing TiO2 arthritis.

Given the role of recruited leukocytes in inflammatory pain and

oxidative burst (57), we next assessed the efficacy of LXA4 in

modulating TiO2-induced leukocyte recruitment after a single

treatment. In this case, recruitment was evaluated on the 2nd day

(Figures 5A–C) to further support that this time point is adequate

and mimics all inflammatory features of TiO2 arthritis together with

the pain and edema observed in Figure 2. The injection of TiO2

significantly increased the number of total leukocytes recruited on

the 2nd day after the stimulus (Figures 5A–C). Our results show

that the treatment with LXA4 at 10 ng/animal reduced TiO2-

induced recruitment of total leukocyte (Figure 5A) and

mononuclear (Figure 5B) and polymorphonuclear cells

(Figure 5C). These data show that most leukocytes recruited to

the joint were mononuclear cells (90%). Compared with the 30th

day data (Figures 5A–C), 10.6-fold more leukocytes migrated in the
Frontiers in Immunology 06
knee joint on the 2nd day, indicating that this time point is suitable

for investigating inflammatory mechanisms. Indeed, on the 2nd

day, higher mononuclear cells than neutrophil counts were already

established. The pathophysiological mechanisms underlying this

unusual cellular profile deserves further investigation in

future studies.

The potential of LXA4 to modulate pro-inflammatory cytokine

(TNF-a, IL-1b, and IL-6) and anti-inflammatory cytokine (IL-10)

production in the joint tissue was evaluated on the 2nd day

(Figures 5D–G). The i.a. injection of TiO2 induced a significant

increase in TNF-a (Figure 5D), IL-1b (Figure 5E), and IL-6

(Figure 5F). A single treatment with LXA4 was enough to reduce

the levels of these pro-inflammatory cytokines induced by TiO2

(Figures 5D–F). Thus, the effect of LXA4 in reducing the production

of essential cytokines represents one of its mechanisms to reduce

pain, edema, and recruitment of leukocytes (58). In addition, IL-10

production was increased by LXA4 (Figure 5G), evidencing this

lipid mediator’s anti-inflammatory and immunoregulatory capacity

with a single treatment.

Synovial fluid leukocytes were collected on the 2nd day, and the

phosphorylated (p) form of NF-kB was determined by

immunofluorescence assay (Figure 5H). Treatment with LXA4

reduced the fluorescence intensity of the p-NFkB p65 subunit

induced by TiO2 (Figure 5H). Therefore, these data suggest that

inhibiting NF-kB activation is, at least, one of the mechanisms by

which LXA4 ameliorates TiO2-induced inflammation and pain.

This underscores the importance of this transcription factor to

cytokine production (Figures 5D–G) and leukocyte recruitment

(Figures 5A–C).

The number of recovered cells in synovial washes was

insufficient to perform a flow cytometry analysis in our hands. To

enable further assessment of the cellular profile of leukocytes

recruited upon TiO2 stimulation, NF-kB activation, and the effect

of LXA4, we standardized a peritonitis model to mimic the TiO2-

induced inflammation. The increased volume of the peritoneal

cavity allows the recruitment of larger numbers of leukocytes

than the knee joint. We performed a TiO2 dose–response (data

not shown) and found that 30 mg per animal induced significant
B C D EA

FIGURE 4

LXA4 chronic treatment does not induce toxicity. Mice were treated for 30 days with LXA4 (10 ng/animal, i.p. q.o.d.) starting 24 h after i.a. injection of
TiO2 (3 mg/joint), and serum and stomach were collected. AST (A), ALT (B), urea (C), and creatinine (D) serum levels and MPO activity in the stomach
(E) were determined to evaluate treatment toxicity. As positive drug control for gastric, hepatic, and renal toxicity, indomethacin (2.5 mg/kg, i.p.,
diluted in tris/HCl buffer, for 7 days), acetaminophen (650 mg/kg, i.p., diluted in saline), and diclofenac (200 mg/kg, p.o., diluted in saline) were used,
respectively. Results are expressed as mean ± SEM, n = 6 mice per group per experiment, two independent experiments (*p < 0.05 vs. all groups,
one-way ANOVA followed by Tukey’s post-test).
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leukocyte recruitment. We performed a single post-treatment with

10 ng of LXA4 (similar to what was performed for the arthritis),

which was sufficient to reduce the leukocyte recruitment

(Figures 6A–C). TiO2 recruited mostly mononuclear cells, so we

evaluated the ratio of recruited macrophages and lymphocytes, and

the modulation by LXA4. Although we observed a similar

percentage of positive cells in all analyzed groups, when we
Frontiers in Immunology 07
corrected the percentages by the total number of cells in the

peritoneal washes, the results revealed significant differences

between the groups (Figure 6D). We show that TiO2 increased

the number of CD45+ F4/80+ macrophages (Figure 6E) and CD45+

CD4+ lymphocytes (Figure 6F), and treatment with LXA4 reduced

the number of recruited CD45+ F4/80+ macrophages (Figure 6E),

but not of CD45+ CD4+ lymphocytes (Figure 6F). The proportion of
B C
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FIGURE 5

LXA4 modulates TiO2-induced leukocyte recruitment, cytokine production, and NF-kB activation. Mice received a single treatment of LXA4 (10 ng/
animal) 24 h after i.a. injection of TiO2 (3 mg/joint), and on the 2nd day, knee joint washes were collected to count total leukocytes (A),
mononuclear (B), and polymorphonuclear cells (C). The knee joint was collected, and TNF-a (D), IL-1b (E), IL-6 (F), and IL-10 (G) were measured by
ELISA. Knee joint washes were used to perform an immunofluorescence assay. (H) shows the representative images of p-NF-kB p65 (red) with
nuclear staining by DAPI and the quantitation. Fluorescence intensity (H) was analyzed by a confocal microscope at 63× magnification. Results are
expressed as mean ± SEM, n = 6 mice per group per experiment, two independent experiments (*p < 0.05 vs. saline group; #p < 0.05 vs. TiO2

group, one-way ANOVA followed by Tukey’s post-test).
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macrophages represents 70% of the total recruited leukocytes, and

lymphocytes represent 10% of the total recruited CD45+ leukocyte

population (Figure 6G). Thus, CD45+ F4/80+ macrophages

represent the majority of leukocytes recruited by TiO2.

Since LXA4 reduced the recruitment of CD45+ F4/80+

macrophages and these are main cell population in the peritoneal

cavity, we reasoned that these cells could be a cellular target of the
Frontiers in Immunology 08
LXA4-mediated reduction in activated NF-kB. To check this

possibility, we performed flow cytometry and show that TiO2

increased NF-kB activation/phosphorylation in CD45+ F4/80+

macrophages (pNF-kB+ F4/80+ cells) (Figure 7B). Quite interestingly,
CD45+ F4/80+ pNF-kB+ macrophages represent 85% of the total NF-

kB+ CD45+ cells (Figures 7A, C), and LXA4 treatment reduced this

activation. Although we have not exhaustively investigated the role of
A B
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C

FIGURE 6

TiO2 increases CD45+ F4/80+ macrophages and CD45+ CD4 + lymphocyte counts that, in part, are down-modulated by LXA4. TiO2 peritonitis was
induced with an i.p. injection of TiO2 (30 mg/500 µl), and after 24 h, the animals received treatment with LXA4 (10 ng) or vehicle (saline) (100 µl per
animal, i.p.). Peritoneal washes were collected on the 2nd day to count total recruited leukocytes (A), mononuclear cells (B), and polymorphonuclear
cells (C). Flow cytometry for total leukocyte cells, CD45+ cells (D), macrophages [CD45+ F4/80+ cells (E)], and lymphocytes [CD45+ CD4 + cells (F)]
corrected by the total recruited leukocytes. (G) shows the representative gates. Results are expressed as mean ± SEM, n = 10 mice per group per
experiment, two independent experiments (*p < 0.05 vs. saline group; #p < 0.05 vs. TiO2 group, one-way ANOVA followed by Tukey’s post-test).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.949407
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Saraiva-Santos et al. 10.3389/fimmu.2023.949407
each cell type in TiO2 inflammation and LXA4 activity, these data show

that CD45+ F4/80+ macrophages are the main mononuclear cell

population in TiO2 inflammation and a target of LXA4 activity with

respect to both cellular recruitment and NF-kB activation.
3.5 LXA4 inhibits oxidative stress improving
antioxidant capacity in mice

Knee joint samples were collected on the 2nd day of TiO2

arthritis, and antioxidant capacity was measured with GSH and

ABTS assays (Figures 8A, B). In other models, TiO2 induces the

production of ROS and, consequently, oxidative stress in various

organs (59–61). Herein, we show that TiO2 stimulus reduced the

levels of endogenous antioxidants in the knee joint tissues as

observed in free radical scavenging ability and GSH levels

(Figures 8A, B). On the 2nd day, a single treatment with LXA4

significantly restored the levels of ABTS and GSH (Figures 8A, B),
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demonstrating that treatment with LXA4 reestablished the

antioxidant ability to scavenge free radicals such as ABTS cationic

radical and positively upregulates the endogenous antioxidant GSH.

GSH is upregulated by the transcription factor Nrf2 (62), and we

observed that LXA4 increases the Nrf2 mRNA expression

(Figure 8C). Then, because these phenomena were observed in

the knee joint tissue and recruited leukocytes have a major role in

those alterations, we analyzed the recruited leukocytes.

ROS production was measured in the synovial fluid leukocytes

using a DCF-DA probe, which, when oxidized, generates a

fluorescence product (DCF) proportional to overall intracellular

ROS levels. We observed that treatment with LXA4 reduced DCF

fluorescence intensity (Figure 8D), demonstrating that treatment

with LXA4 inhibits TiO2-induced production of ROS (Figure 8D).

Articular fluids were collected on the 2nd day, and Nrf2 was

determined by immunofluorescence assay (Figure 8E). Supporting

the qPCR data, we observed that treatment with LXA4 increased the

percentage of Nrf2-positive cells per field (Figure 8E).
A B

C

FIGURE 7

Treatment with LXA4 reduces TiO2-triggered NF-kB activation in CD45+ F4/80+ macrophages. TiO2 peritonitis was induced with an i.p. injection of TiO2

(30 mg/500 µl), and after 24 h, the animals were treated with 10 ng LXA4 or vehicle (saline) (100 µl per animal, i.p.). Flow cytometry for p-NFkB p65 in
total leukocytes [CD45+ p-NFkB+ cells (A)] and macrophages [CD45+ F4/80+ p-NFkB+ cells (B)] corrected by the total number of recruited leukocytes.
(C) shows the representative gates. Results are expressed as mean ± SEM, n = 10 mice per group per experiment, two independent experiments (*p <
0.05 vs. saline group; #p < 0.05 vs. TiO2 group, one-way ANOVA followed by Tukey’s post-test).
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3.6 TiO2 increases the ALX/FPR2 receptor
expression on nociceptive TRPV1+ neurons

LXA4 acts through the receptor ALX/FPR2 in peripheral tissues

and regulates cellular responses of interest in inflammation and

resolution (29). ALX/FPR2 is expressed in tissues and cell types

such as immune cells, fibroblasts, epithelial cells, and astrocytes (29,

32). The effect of LXA4 in reducing mechanical and thermal
Frontiers in Immunology 10
hyperalgesia indicates that it could, eventually, act on nociceptor

neurons. To suggest a neuronal effect of LXA4, it was necessary to

determine (1) if the nociceptor sensory neurons express ALX/FPR2

and (2) whether LXA4 shapes the neuronal profile and activity.

These were our next steps. We investigated the expression of ALX/

FPR2 receptor in the DRG by immunofluorescence staining for

ALX/FPR2 receptor and TRPV1, which is a TRP channel expressed

by nociceptive C-fibers (Figure 9). Our data show that TiO2
B C

D
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FIGURE 8

LXA4 inhibits TiO2-induced oxidative stress, improving antioxidant capacity. Mice received a single treatment of LXA4 (10 ng/animal) 24 h after i.a.
injection of TiO2 (3 mg/joint), and on the 2nd day, the knee joint was collected, and the antioxidant effect of LXA4 was measured using GSH levels
(A) and ABTS (B). Nrf2 mRNA expression was quantitated by RT-qPCR (C). Dihydrofluorescein diacetate (DCF-DA) was added to knee joint wash cells
for 30 min, and intracellular ROS levels from intact cells were analyzed using the scan-dic and green channel in a confocal microscope at 63×
magnification. DCF fluorescence intensity (D) indicates ROS production, which was quantitated. Representative images show DCF fluorescence for
the negative control, TiO2, and LXA4 groups (D). Knee joint washes were used to perform an immunofluorescence assay. (E) shows the
representative images of Nrf2 (red) with nuclear staining by DAPI, and the quantitation by % of positive cells per field. The data (E) were analyzed by
a confocal microscope at 63× magnification with 1.5× zoom. TiO2 nanoparticles are the black pigments. Results are expressed as mean ± SEM, n =
6 mice per group per experiment, two independent experiments (*p < 0.05 vs. saline group; #p < 0.05 vs. TiO2 group, one-way ANOVA followed by
Tukey’s post-test).
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increased the expression of ALX/FPR2 receptor in the DRG of mice

(Figures 9A, C). We also found that TiO2 increases the percent of

double positive ALXR/TRPV1 cells, indicating nociceptor sensory

neurons express ALX/FPR2 receptor, which is enhanced in this

neuronal population in TiO2 inflammation (Figures 9B, C).

Altogether, these results suggest that nociceptive TRPV1+ neurons

are targets of the action of LXA4 during TiO2-induced arthritis.
3.7 LXA4 reduces TiO2-induced TRPV1
activation and expression on DRG neurons

Considering the results of Figure 9, our next step was to assess

neuronal activation. This was quantified using calcium influx as

measured by a fluorescent probe Fluo-4 AM in DRG neurons (63).

We investigated whether DRG neurons from TiO2‐stimulated mice

would present an increase in the baseline calcium levels and

response to capsaicin (TRPV1 agonist) stimulation compared to

saline-injected controls mice, and the ability of LXA4 to modulate

this response (Figure 10). DRG neurons from vehicle-treated mice

presented a higher baseline level of calcium influx than saline mice

or LXA4-treated DRGs (Figures 10A–C). These data suggest that

LXA4 reduces the activation of DRG neurons in TiO2-induced

inflammation because the increase in calcium influx is indicative of

DRG neuron activity (Figures 10A–C). Notably, in addition to the

diminished basal level of calcium, LXA4 treatment also reduced the

responsiveness of DRG neurons to capsaicin, which is a TRPV1

agonist (Figures 10A–C). The treatment with LXA4 reduced by 49%

the capsaicin-responsive neurons compared to the TiO2 + vehicle
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group as per the Venn diagram (Figure 10D). Corroborating with

the reduction of neuronal activation and diminished response to

capsaicin, we demonstrated that treatment with LXA4 inhibited the

increase of TRPV1 (Figure 11B) mRNA expression induced by

TiO2, as well as TRPV1 staining in the DRG (Figures 11A, C).

Therefore, LXA4 inhibits TiO2-induced DRG protein detection,

mRNA expression, and activity of a critical ion channel (TRPV1)

to nociceptor sensory neuron sensitization (64), which resulted in a

functional outcome of reduced neuronal responsiveness and pain

upon LXA4 treatment.

We also investigated whether TRPV1+ neurons co-expressed p-

NFkB in the TiO2-induced DRG as a surrogate marker of neuronal

activation. Immunofluorescence shows that the intra-articular

injection of TiO2 increased the percentage of TRPV1+ neurons

co-stained with p-NFkB, and that treatment with LXA4 can reduce

it (Figures 12A, B). These data further demonstrate that TRPV1+

neurons are activated in TiO2 inflammation and that LXA4

treatment reduces their activation.
3.8 LXA4 reduces TiO2-induced TRPA1
activation on DRG neurons

TRPA1+ neurons in the dorsal root ganglion are involved in

inflammation-induced hyperalgesia in peripheral tissues (65–68).

Therefore, to further explore the neuronal mechanism involved in

the model and the role of LXA4, we investigated whether LXA4

modulates TRPA1 channels in TiO2-induced arthritis. To achieve

this aim, we investigated whether DRG neurons from stimulated
B
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FIGURE 9

TiO2 increases ALX/FPR2 expression on nociceptive neurons. On the 2nd day of the model, DRGs samples (L4–L6) were dissected and
immunofluorescence staining for TRPV1 and ALX/FPR2 was performed. Panels (A, B) show the quantitative analyses of the number of ALX/FPR2
receptor-positive cells per area (A) and co-staining with TRPV1 (as a percent of positive cells) (B). (C) shows the representative images of TRPV1+

cells (green), ALX/FPR2 receptor-positive cells (red), and the merge of double labeling of TRPV1 and ALX/FPR2 on DRG (20× magnification with 1.0
zoom in). Results are expressed as mean ± SEM, n = 8 mice per group per experiment, two independent experiments (*p < 0.05 vs. saline group,
Student’s t-test).
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mice would present increase of calcium levels in response to AITC

(a TRPA1 agonist) stimulation and the modulation by LXA4 (Figure

S1). We observed that LXA4 treatment reduced the increased

responsiveness of DRG neurons to AITC induced by TiO2

(Figures S1A–C). The treatment reduced by 37% the number of

responsive neurons to AITC compared to the TiO2 + vehicle group

as per the Venn diagram (Figure S1D). Moreover, TRPA1 staining

was enhanced in DRG neurons in the TiO2 group, and one

treatment with LXA4 decreased the density of TRPA1 stained

neurons (Figures S2A, C). Co-staining of TRPA1 with p-NFkB
showed that TiO2 did not induce the activation of NF-kB in

TRPA1+ nociceptive neurons (Figures S2B, C). These data show

(Figures 9–12; Figures S1, S2) the importance of the function of

TRPV1 and TRPA1 ion channels in this model of inflammatory

pain and that LXA4 reduced the activity of both TRP ion channels.

These results also show that the transcription factor regulation
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occurring in nociceptive neurons can be different depending on the

neuronal population profile, an observation that merits

further investigation.
4 Discussion

LXA4 administration reduced chronic ongoing TiO2-induced

joint edema, mechanical and thermal hyperalgesia, leukocyte

recruitment, and histopathological changes. LXA4 activity was

explained by a reduction in pro-inflammatory cytokines (TNF‐a,
IL‐1b, and IL-6) and an increase in the anti-inflammatory cytokine

IL-10. Corroborating these data, LXA4 reduced NFkB activation in

synovial fluid leukocytes. In the TiO2 inflammation context, we

demonstrated that CD45+ F4/80+ macrophages are the main

recruited leukocyte type induced by TiO2, and that 85% of NFkB
B
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FIGURE 10

LXA4 reduces TiO2-induced TRPV1 activation on DRG neurons. Mice received a single treatment of LXA4 (10 ng/animal) 24 h after i.a. injection of
TiO2 (3 mg/joint). On the 2nd day, the DRGs (L4–L6) were collected for calcium imaging using Fluo-4 AM probe. The fluorescence intensity traces
of calcium-fluo-4 in representative DRG fields during the 6 min of recording is shown in panel (A). (B) displays the mean fluorescence intensity of
calcium-fluo-4 at baseline (0‐s mark) and that following the stimulus with capsaicin (a TRPV1 agonist, 120‐s mark). Response to KCl (activates all
neurons) begins at the 240‐s mark. (C) shows representative fields of DRG neurons (baseline fluorescence, the fluorescence after capsaicin, and
after KCl). (D) shows a Venn diagram comparing the percent of the neuronal population that is capsaicin-responsive (red) within those neurons that
responded to KCl control (gray). Results are expressed as mean ± SEM, n = 4 DRG seeded plates (each plate is a neuronal culture pooled from 10
mice) per group per experiment, two independent experiments (*p < 0.05 vs. saline group; #p < 0.05 vs. TiO2 group, two-way ANOVA followed by
Tukey’s post-test).
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activation occurs in these cells. LXA4 reduced both cell recruitment

and activation of NFkB in CD45+ F4/80+ macrophages.

Furthermore, a single treatment with LXA4 significantly restored

free-radical scavenging ability (ABTS) and GSH levels. It reduced

the production of ROS, accompanied by increased Nrf2 mRNA

expression in the knee joint tissue and protein staining in synovial

fluid leukocytes, supporting an antioxidant effect. Altogether, this

demonstrates that LXA4 has anti-inflammatory and antioxidant

effects in TiO2-induced arthritis. Moreover, we show that TiO2

injection increased the production of the LXA4 receptor protein,

ALX/FPR2, by TRPV1+ neurons. In DRGs, LXA4 decreased TiO2‐

induced mRNA expression and protein staining of the pain‐related

ion channel TRPV1. In terms of neuronal function, LXA4 reduced

the activation of DRG neurons, as determined by lower baseline

levels of calcium influx in DRG, and reduced responsiveness to

TRPV1 activation by capsaicin stimulation, and to TRPA1

activation by AITC stimulation. Furthermore, treatment with
Frontiers in Immunology 13
LXA4 did not induce gastric, hepatic, or renal damage, indicating

its safety compared to common side effects of non-steroidal anti-

inflammatory drugs.

Intra-articular administration of TiO2 induces a response that

resembles prosthesis joint inflammation and pain (13). Pain is a

cardinal symptom of joint inflammation and is a direct cause of the

decision to seek medical care, limitation of limb function, and

decreased quality of life (69). Therefore, the development of novel

therapeutics that are effective for optimal pain management is

critical in prosthesis wear process-induced arthritis. TiO2 arthritis

is, in principle, an aseptic inflammation and the opposite of septic

arthritis such as that induced by intraarticular injection of

Staphylococcus aureus. Evidence demonstrates that limiting the

endogenous production and action of LXA4 by genetic deletion of

5-lipoxygenase and antagonizing the ALX/FPR2 receptor with

BOC-2, respectively, improve the immune response against S.

aureus by avoiding the downregulation of dendritic cells’
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FIGURE 11

LXA4 inhibits TiO2-induced TRPV1 expression in DRG neurons. On the 2nd day of the model, DRG samples (L4–L6) were dissected for TRPV1
staining by immunofluorescence and for mRNA expression by RT-qPCR. (A) (quantitation) and (C) (representative images) show the number of
positive cells per area TRPV1 (green) with nuclear staining by Hoechst 33342 in DRGs (20× magnification with 1.0 zoom in). (B) shows the DRG RT‐
qPCR data, demonstrating that LXA4 reduced TiO2‐induced TRPV1 mRNA expression. Results are expressed as mean ± SEM, n = 8 mice per group
per experiment, and RT‐qPCR used n = 6 mice per group per experiment, two independent experiments (*p < 0.05 vs. saline group; #p < 0.05 vs.
TiO2 group, one-way ANOVA followed by Tukey’s post-test).
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recruitment by LXA4 (70). However, that context is different from

that of the present study. Here, we demonstrate a beneficial effect of

exogenous LXA4 treatment in aseptic prosthesis arthritis, while that

previous study showed that endogenous LXA4 has a detrimental

role in septic arthritis. Exemplifying aseptic inflammatory

conditions, LXA4 levels were decreased in synovial fluid of

patients with rheumatoid arthritis and osteoarthritis, suggesting

that downmodulation of LXA4 is a permissive factor to aseptic

chronic joint diseases with high and low inflammation profiles (71).

These observations agree with the present findings.

Prosthesis wear process-released particles, such as TiO2, activate

macrophages to produce various pro-inflammatory mediators,

growth factors, and pro-inflammatory lipids (57, 72), and these

molecules orchestrate the inflammatory response (73). LXA4 and

other agonists of ALX/FPR2 can downregulate those inflammatory

mechanisms. LXA4 inhibited synoviocyte proliferation and also

decreased the levels of IL-6, IL-1b, and TNF-a in rheumatoid

arthritis (74). Of interest, LXA4 downregulates TNF-a-directed
neutrophil trafficking (75). The ALX/FPR2 agonist (AT-01-KG)

reduced neutrophilic inflammation, CXCL1, and IL-1b production

and enhanced neutrophil apoptosis in a model of gout arthritis (76).

LXA4 diminishes pain in the non-compressive lumbar disc

herniation model by inhibiting production of pro-inflammatory

cytokines (TNF-a, and IL-1b) and upregulating IL-10 and

transforming growth factor-beta (TGF-b) (38). Treatment with

LXA4 also increases anti-inflammatory cytokine (TGF-b and IL-

10) levels after exposition to ultraviolet light (77). IL-10 restricts the

polarization of M1 macrophages, blocks the IL-33/ST2 axis during

arthritis (78), and inhibits neutrophil recruitment, matrix

metalloproteinases activity, edema (79), and pain (80). We show

that LXA4 reduced TNF-a, IL-1b, and IL-6 levels and increased IL-

10 levels in TiO2-induced arthritis. Thus, reducing pro-

inflammatory cytokines and increasing anti-inflammatory
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cytokines, which orchestrate the inflammatory and nociceptive

responses, might contribute to LXA4 alleviation of leukocyte

recruitment, edema, and mechanical and thermal hyperalgesia. A

limitation of the present study is that we did not identify the cells in

which cytokine production was downregulated by LXA4.

Macrophages and lymphocytes are important cells in the

production of both pro-inflammatory (81) and anti-inflammatory

(82, 83) cytokines. For instance, macrophages produce pro-

inflammatory cytokines in response to TiO2 stimulus (12, 84).

Also, M2 macrophages (85, 86) and regulatory T (Treg) cells (87,

88) produce IL-10 to limit inflammation. LXA4 has differential

actions in M1 and M2 macrophages. LXA4 reduces the gene

expression of pro-inflammatory cytokines in M1 macrophages

and increases the IL-10 mRNA expression in M2 macrophages

derived from THP-1 cells (89). LXA4 also induces M2 polarization

in a model of osteoarthritis (90). Thus, LXA4 can both induce

macrophage polarization towards the M2 profile and stimulate

these cells to produce IL-10. The overexpression of 15-

lipoxygenase in mesenchymal stem cells (MSC) can enhance

LXA4 production, and consequently, MSC overexpressing 15-

lipoxygeanse can shape the balance between Th17/Treg by

increasing Treg and IL-10 production (91). Thus, macrophages

and lymphocytes are potential sources of cytokines and targets of

LXA4 activity.

Administration of TiO2 particles bypasses the wait for

prosthesis wear and reduces the number of animals needed to

investigate mechanisms and novel treatments for this condition.

Chronic inflammation is responsible for peri-prosthetic osteolysis

and aseptic loosening of the prosthesis (92, 93). Macrophage-like

synoviocytes are resident cells in the synovium lining. They are

responsible for the phagocytosis of prosthetic wear particles,

production of pro-inflammatory cytokines such as IL-1b and

TNF-a, triggering inflammation, recruitment of immune cells,
B

A

FIGURE 12

LXA4 reduces TiO2-induced NF-kB activation in TRPV1 positive neurons. On the 2nd day of the model, DRG samples (L4–L6) were dissected for
immunofluorescent TRPV1 and p65 p-NF-kB staining. (A) shows the percent of positive cells co-stained with p65 p-NF-kB. (B) shows representative
images of TRPV1+ cells (green), p65 p-NF-kB positive cells (red), and the merge of double labeling (TRPV1 and NF‐kB) in DRG samples (20×
magnification with 1.0× zoom). DAPI was used for nuclear staining. Results are expressed as mean ± SEM, n = 8 mice per group per experiment, two
independent experiments (*p < 0.05 vs. saline group; #p < 0.05 vs. TiO2 group, one-way ANOVA followed by Tukey’s post-test).
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and activation of fibroblast-like synoviocytes (94, 95). During

aseptic loosening, a significant number of macrophages infiltrate

into peri-implant tissues (96). In our model, total leukocytes in the

synovial cavity were higher in the early stage (2nd day) than in the

late stage (30th day). We also observed higher counts of

mononuclear cells than neutrophils on the 2nd day post-TiO2

administration, which is unexpected considering the leukocyte

recruitment kinetics of most inflammatory responses. We show

that the CD45+ F4/80+ macrophage population is the main (up to

70%) recruited leukocyte type in the TiO2-inflammation and seems

to be an important target of LXA4 anti-inflammatory effects.

Further studies are necessary to investigate the underlying

mechanisms for these specific leukocyte kinetics in TiO2 arthritis.

LXA4 reduced inflammatory cytokine production induced by TiO2,

which lined up well with the reduced p-NFkB staining in synovial

fluid leukocytes. NF-kB exerts its transcription factor activity and

regulates the expression of various genes encoding pro-

inflammatory cytokines, which have been shown to play essential

roles in inflammation. Diminished NF-kB activation reduces the

production of pro-inflammatory cytokines and downmodulates

inflammatory reactions (21). Our findings corroborate prior

evidence that LXA4 inhibits NF-kB in other disease models (97–

99). Furthermore, LXA4 suppresses the LPS-induced proliferation

of RAW264.7 macrophages by targeting the NF-kB pathway (100).

The treatment with LXA4 reduced LPS-evoked TNF-a production

and inhibited NF-kB activation in a coculture system using

RAW264.7 cells and human colon carcinoma cell line (Caco-2)

(101). We observed that TiO2 induced NF-kB activation mostly in

CD45+ F4/80+ macrophages (85% of the total CD45+ pNF-kB+
cells). LXA4 treatment reduced the NF-kB activation in CD45+ F4/

80+ macrophages triggered by TiO2.

Oxidative stress has an essential role in inflammatory pain

(102). Reactive oxygen and nitrogen species (ROS and RNS,

respectively) produced during inflammation contribute directly to

nociceptor neuron activation (103). TiO2 induces lipid

peroxidat ion, DNA damage, and protein breakdown,

corroborating the presence of oxidative stress (104). LXA4

increases antioxidant capacity via Nrf2 in various models (33, 37,

77, 105). Herein, we demonstrated the in vivo antioxidant effect of

LXA4 and induction of Nrf2, explaining the mechanism of

protection against oxidative stress by increasing endogenous

antioxidants as per GSH and ABTS assays. GSH is a downstream

target of Nrf2 activity (106), and our data on GSH together with the

literature (33, 77) guided the choice of investigating Nrf2. In

arthritis, synovial fluid cells are crucial in the production of ROS,

which can increase the level of NF-kB-dependent pro-inflammatory

cytokines and promote the formation of an amplification loop that

feeds back to further elevation of additional ROS (107). Prosthesis

wear particles can induce oxidative stress in macrophage culture

(108). On the other hand, LXA4 treatment increases nuclear

translocation of Nrf2 in cardiomyocytes (109). In cultured

cortical astrocytes exposed to oxygen-glucose deprivation/

recovery insults, LXA4 reduced oxidative stress by enhancing the

Nrf2 pathway (37). We show that LXA4 inhibits TiO2-triggered
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ROS generation and enhances Nrf2 in synovial fluid leukocytes.

Altogether, these data indicate that LXA4 enhances Nrf2 expression,

and reduces cytokine, ROS production, and, importantly, TiO2-

triggered NF-kB activation. The modulation of p-NFkB and Nrf2

by LXA4 may also involve their competition to bind to CREB

(cAMP-responsive element-binding protein) (62).

LXA4 has an analgesic effect in various conditions, ranging from

acute inflammation (31, 32) to neuropathic pain (110). Our data

show that LXA4 has an analgesic effect on ongoing prothesis-

wearing-like chronic arthritis (30 days) at 10 ng/animal. LXA4

reduced mechanical and thermal hyperalgesia and provided 2

days of analgesia per treatment. Other SPMs such as maresin

(MaR) MaR1 and MaR2 and resolvin D1 and D2 reduce

inflammatory pain by inhibiting the expression and/or activity of

DRG neurons’ TRPV1 and TRPA1 (54, 111–113). Thus, some

SPMs can modulate ion channels to induce analgesia, suggesting

that this mechanism should also be investigated for LXA4 in TiO2-

induced arthritis. However, to that end, we first needed to ascertain

if nociceptive neurons express the ALX/FPR2 receptor in TiO2

arthritis. We observed that ALX/FPR2 receptor staining was

increased in TiO2-induced arthritis, and more specifically,

TRPV1+ nociceptive neurons express ALX/FPR2 receptor and

that TiO2 inflammation enhances the percentage of ALXR+/

TRPV1+ neurons. Thus, DRG TRPV1+ neurons are likely more

susceptible to LXA4 action during TiO2 arthritis than when

uninflamed, supporting the analgesic effect of LXA4. A single

post-treatment with LXA4 reduced ongoing DRG neuronal

activation (baseline calcium levels) and prevented capsaicin-

induced TRPV1 activation of DRG neurons. Explaining the

diminished neuronal activation by LXA4, this SPM reduced TiO2‐

induced TRPV1 mRNA expression and protein staining (and co-

stained with p-NFkB p65) in DRG neurons. To our knowledge, this

is the first work to demonstrate that LXA4 reduces TRPV1 channel

mRNA expression and protein staining in DRG neurons. Notably,

this resulted in diminished TRPV1 activity, causing analgesia.

TRPV1 is expressed by approximately 54% of DRG neurons, and

TRPA1 is expressed by approximately 22% of DRG neurons. Most

TRPA1 channels are co-expressed with TRPV1 in DRG neurons

(114) and there is evidence that they can also dimerize as a

mechanism of nociceptor sensitization (115). Those TRPA1

channels that are not co-expressed with TRPV1 represent a sub-

population of neurons involved in neuropathic pain and not in

inflammatory pain (115). Corroborating the literature about the

role of TRPA1 in pain and its interaction with TRPV1 (67, 114,

115), as well as the present results on TRPV1, we also observed that

TiO2 enhances the neuronal activation by a TRPA1 agonist and

TRPA1 staining, both of which were inhibited by LXA4. However,

in contrast to what was observed in TRPV1+ neurons, TiO2 did not

induce an increase of p-NFkB in TRPA1+ neurons, indicating that

the role of the transcription factor NF-kB is likely not the same in all

DRG nociceptor neuron populations. Thus, the mechanism of

action of LXA4 depends, at least in part, on down-modulating the

activity of TRP channels essential to nociceptor neuronal

sensitization and chronic pain (116). Our study also contributes
frontiersin.org

https://doi.org/10.3389/fimmu.2023.949407
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Saraiva-Santos et al. 10.3389/fimmu.2023.949407
to building the concept that targeting ion channels is part of the

mechanisms of action of SPM.

We demonstrated that LXA4 has therapeutic effects against

ongoing chronic TiO2 arthritis, favorably altering knee joint

pathology. Figure 13 is a schematic representation of the

mechanism of action of LXA4 in TiO2-induced arthritis. TiO2

triggered the production of cytokines and ROS to induce

inflammation and pain. The activation of NF-kB and down-

modulation of Nrf2 are mechanisms occurring, at least, in

synovial fluid leukocytes that amplify inflammatory cytokines and

oxidative stress pathways in response to TiO2. LXA4 targets these

pathways. LXA4 could reduce recruitment and NF-kB activation

mainly in CD45+ F4/80+ macrophages. We further observed that

LXA4 attenuated the staining of the nociceptor-neuron-

sensitization-related ion channels TRPV1 and TRPA1, unveiling a

hitherto unknown nociceptor neuron mechanism of LXA4. To sum

up, this study demonstrated that LXA4 is a promising approach to
Frontiers in Immunology 16
treating complications related to prosthesis-induced inflammation

and pain by inhibiting the activation of synovial fluid leukocytes

and primary afferent nociceptor sensory neurons.
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FIGURE 13

Mechanism of action of LXA4 in TiO2-induced arthritis. (1) LXA4 treatment reduces chronic articular pain induced by TiO2. (2) LXA4 reduces leukocyte
recruitment to the knee joint at early and late TiO2-induced arthritis stages, histopathological alterations, oxidative stress, and IL-1b, TNF-a, and IL-6
production, and increases production of endogenous antioxidants and IL-10. These anti-inflammatory findings were supported by the (3) decreased
NF-kB activation in macrophages. (4, 5) LXA4 increases the Nrf2 mRNA expression and activation, which were reduced by TiO2. (6) We also
demonstrated that LXA4 reduces the activation of DRG neurons in TiO2 inflammation by decreasing the baseline neuronal activation and capsaicin/
AITC-induced calcium influx (7) and increasing TRPV1 mRNA expression and protein staining (and co-stained with p-NFkB+), and TRPA1 staining
induced by TiO2. TRPV1

+ nociceptive neurons express ALX/FPR2 receptor, and TiO2 inflammation enhances the ALXR+/TRPV1+ neurons. Finally, all
these mechanisms explain the analgesic (1) and anti-inflammatory (2) effects of LXA4 in this animal model of prosthesis-wearing-process-released
components (e.g., TiO2)-induced arthritis.
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