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Multicellular organisms live in environments containing diverse nutrients and a

wide variety of microbial communities. On the one hand, the immune response

of organisms can protect from the intrusion of exogenous microorganisms. On

the other hand, the dynamic coordination of anabolism and catabolism of

organisms is a necessary factor for growth and reproduction. Since the

production of an immune response is an energy-intensive process, the

activation of immune cells is accompanied by metabolic transformations that

enable the rapid production of ATP and new biomolecules. In insects, the

coordination of immunity and metabolism is the basis for insects to cope with

environmental challenges and ensure normal growth, development and

reproduction. During the activation of insect immune tissues by pathogenic

microorganisms, not only the utilization of organic resources can be enhanced,

but also the activated immune cells can usurp the nutrients of non-immune

tissues by generating signals. At the same time, insects also have symbiotic

bacteria in their body, which can affect insect physiology through immune-

metabolic regulation. This paper reviews the research progress of insect

immune-metabolism regulation from the perspective of insect tissues, such as

fat body, gut and hemocytes. The effects of microorganisms (pathogenic

bacteria/non-pathogenic bacteria) and parasitoids on immune-metabolism

were elaborated here, which provide guidance to uncover immunometabolism

mechanisms in insects and mammals. This work also provides insights to utilize

immune-metabolism for the formulation of pest control strategies.
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1 Introduction

Microbes and animals have a long-term association that is

widely distributed in nature, and plays a vital role in animal

adaptation and evolution. Immunity and metabolism are two

different biological systems that have traditionally been studied

independently, however, recent studies discover that these two

processes are interlinked in animal physiology, and has opened

up an exciting area of research called immunometabolism (1). More

than a century ago, Elie Metchnikoff one of the founders of

immunology, observed metabolic changes associated with

inflammation phenotypes (2). Further studies have revealed that

many metabolic diseases including type 2 diabetes and obesity are

partly because of chronic inflammation further demonstrating the

importance of immune-metabolic interactions in animal physiology

(3–5). The occurrence of an immune response is an energy

consuming process. When organisms are infected with pathogens,

the immune system is activated, which is closely related to the

body’s metabolic switch, including the redistribution of energy

resources and increase of glycolysis and glucose consumption by

the immune system (6, 7).

Immune-metabolic interactions are an evolutionary conserved

phenomenon in all multicellular organisms from vertebrates to

invertebrates, and studies have found similar immune-metabolic

phenotypes. For example, Drosophila melanogaster infection with

parasitic wasps or bacteria results in delayed development and

increased carbohydrate mobilization resulting in hyperglycemia-

like phenotype, while the energy requirements of immune cells

increase from 10% of total glucose consumption to nearly one-third

(8, 9). Furthermore, infection induces activation of immune

responses leads to a decrease in the overall metabolic rate (10–

13), and slow host development and loss of energy reserves during

chronic infection (9, 14). Despite the important impact of immune-

metabolic interactions on the physiology of the organism, there is

currently a large gap in understanding of immune-metabolic

interactions. Here, we focus on the metabolic regulations during

immune responses in insects, from D. melanogaster a genetically

tractable insect model to other important agricultural insects. In

view of bacteria and parasitic wasps which are two major groups

interacting with insects, this paper reviews the research progress of

immunometabolic regulation in their interactions with insects. In

addition, some classical studies on the effects of parasites on

immunometabolism of insects are also included.
2 Metabolic regulation

Organisms adapt to changes in external and internal

environments through various metabolic regulation. Insulin/IGF

signaling (IIS) is a core pathway regulating the balance between

anabolic and catabolic processes in the body (15). IIS activity is

systematically regulated by insulin-like peptides (ILPs). D.

melanogaster contain eight ILPs (DILP1-8), however, there are

only two known receptors, dInR (Drosophila insulin receptor)

and Lgr3 (leucine-rich G-protein-coupled receptor) for them (16–
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20). Activited dInR promotes a conserved intracellular signaling

cascade transmitted through Chico, a homologue of mammalian

insulin receptor substrates (IRS1-4) (21). Together with

phosphatidylinositol-3-kinase (PI3K) and protein kinase B (PKB

or AKT), IIS affects gene expression through AKT-mediated

phosphorylation of FoxO, and subsequent cytoplasmic retention

of FoxO, leading to downregulation of its target genes (22–24)

(Figure 1). Without immune stimulation, insulin signaling cascade

regulates energy and nutrient use for storage, growth and other

non-immune processes. The inhibition of IIS has been established

as an evolutionary conserved mechanism that promotes diapause in

invertebrates and prolong lifespan in both invertebrates and

vertebrates in response to environmental challenges (25, 26). The

mutation of InR substrate Chico flies with suppressed insulin

activity, not only extend longevity when live in normal condition

but increase pathogen resistance when infected by Gram-negative

bacteria Pseudomonas aeruginosa and gram-positive bacteria

Enterococcus faecalis (27). However, when infected with the

insect-pathogenic Photorhabdus luminescens and non-pathogenic

Escherichia coli, there was no apparent difference in survival

between Chico mutant flies and controls, furthermore, after

infection Chico mutant flies had lower bacterial loads at most

time points (28). In addition, transcriptional sequencing analysis

of the insulin-resistant fat body of D. melanogaster also revealed a

correlation between IIS and immune response (29).
3 Insect innate immunity

Insects occupy a wide range of ecological niches where they

inevitably face frequent contact with microorganisms in the

surrounding environment, a small number of which can cause

diseases. Although, insects lack an adaptive immune system similar

to that of vertebrates, they have a variety of ways to fight off infection

by pathogens. The first line of defense in insects depends on

behavioral adaptations and body barriers; Behavioral adaptations

include insect hygienic behaviors, reduced social contacts, and

selective foraging; Body barriers include exoskeleton, trachea and

intestinal epithelium and intestinal peritrophic matrix (30–32). The

innate immune system is able to distinguish between self and non-

self. Insects are able to detect different types of microorganisms by

recognizing microbe-associated molecular patterns (MAMPs)

through pattern recognition receptors (PRRs) (33). Insect innate

immune system contain two different types of immune responses,

mainly humoral responses including secretion of antimicrobial

effectors such as antimicrobial peptides (AMPs) and lysozyme, and

cellular responses such as phagocytosis, encapsulation and

nodulation (33). Insect cellular response mainly mediated by

hemocytes which contains different types of cells responsible for

distinct functions. The D. melanogaster larvae contains three major

hemocyte cells including plasmatocytes, crystal cells, and lamellocytes

that participate in phagocytosis, PO cascade, and encapsulation,

respectively (33). While the humoral immunity is mainly regulated

by Toll and immunodeficiency (IMD) pathways (33–35). The D.

melanogaster Toll and IMD pathways share significant similarities
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with the mammalian TNF-a pathway and the Toll-like receptor

pathway (TLR), respectively (36–38). The IMD pathway activates in

immune tissues throughout the body, and recognizes diaminopimelic

acid (DAP) type peptidoglycans present on cell walls of most Gram-

negative bacteria and some Gram-positive bacteria (39). In contrast,

the Toll pathway activates primarily in the fat body or hemolymph or

immune cells, and respond toMAMPs fromGram-positive and fungi

containing lysine-type peptidoglycans and b-glucans, respectively
(40). In response to pathogen infection, the Toll and IMD signaling

pathways ofD. melanogaster activate the p65-like transcription factor

Dif and p105-like transcription factor Relish, respectively; The

transcription factor then enters the nucleus and induces the

expression of antimicrobial peptide (AMP) by binding to the kB
binding site in the AMP gene promoter region (33, 36, 41) (Figure 1).

During non-infectious stage, the immune system remains

inactivate, consuming the minimum energy for basic functioning
Frontiers in Immunology 03
(42). These immune responses during pathogenic infection require

timely and precise energy allocation in appropriate cells or tissues

for effective self-protection and elimination of pathogens (1).

Activation of immune system consumes substantial amount of

energy and therefore competes for energy resources needed by

other biological processes in the body and this energy competition is

well documented in eco-physiological studies of insects (43).

Present studies on immunometabolism of insects are mainly in

the gut, fat body and hemolymph. This is elaborated below.
4 Gut

The gut is the most important part of the insect digestive

system, and the insect gut epithelium is generally considered to

be the only way for insects to obtain nutrients (44, 45). On the one
FIGURE 1

Classical immune and metabolic signaling pathways in insects. Specific explanation is described in the text. The acronyms in the picture are
explained below: dILP, Drosophila insulin like peptide; InR, insulin receptor; Chip, insulin receptor substrate; PI3K, phosphoinositide 3-kinase; AKT,
Akt kinase; TOR, target of rapamycin; FoxO, forkhead box O transcription factors; Slif, Amino acid transporter; S6K, phosphorylates S6 Kinase; 4E-BP,
eIF4E-binding protein; Spz, Spätzle, ligand for Toll pathway activation; Toll, recepter of Toll pathway; Dif/Dorsal, transcription factor of Toll pathway;
PGRP-LC, recepter of IMD pathway; IMD, canonic component of the immune deficiency pathway; Rel, transcription factor of IMD pathway; JNK, c-
Jun N-terminal kinase cascade.
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hand, gut coordinates defenses against microbial penetration of the

intestinal epithelium, on the other hand, it uses digestive enzymes

and transporters to transport nutrients to the internal organs (46).

Therefore, the link between metabolism and immunity is especially

evident in the gut.
4.1 Gut structure and function

In contrast to many multicellular organisms, the intestinal

epithelium of insects is simple, consisting of a single cell layer

surrounded by a layer of muscle, and in most insects includes only

two differentiated cell types: the enterocytes and the endocrine cells

(47). The midgut is the main site for food digestion, nutrient

absorption, and energy substrate storage (45). The D.

melanogaster midgut is composed of four different types of cells,

including intestinal stem cells (ISCs) and undifferentiated ISC

daughter cells referred as enteroblasts (EBs) (48), which can

differentiate into intestinal enterocytes (ECs) or enteroendocrine

cells (EEs) (49–51). ISCs usually occur singly or in small groups and

are often located in the basal lamina (50, 52). Some midgut cells of

other insects also include cells with specialized functions for ion

transport, such as goblet cells of Lepidoptera and cuprophilic cells

of Diptera, which have the function of maintaining highly alkaline

and acidic conditions in the intestinal lumen, respectively (53, 54).

In addition, the insect gut has the peritrophic membrane as its

physical barrier, establishing a first line of defense against

pathogens, and preventing them from contacting intestinal

epithelial cells (55). The peritrophic membrane is a rectangular

grid-like structure composed of chitin polymers and proteins such

as peritrophin (56, 57). The peritrophic membrane acts like a sieve,

limiting the passage of not only pathogens but also toxins and food

particles (57). In vertebrates, a mucus layer composed of

polysaccharides and proteins (mucins) separates the intestinal

epithelium from the outside environment, and the mucus layer

keeps bacteria confined to the intestinal lumen (58). The peritrophic

membrane of insects acts like a vertebrate mucous layer. In D.

melanogaster, the peritrophic membrane is lined up along the

epithelial cells of the midgut, just like a mucous layer (59).

Annotated information of more than 30 D. melanogaster genomes

indicated the presence of genes encoding mucilage layer proteins

(60). With the development of mucilage material staining technique

(cyclic acid Schiff method), the mucilage layer of D. melanogaster

was identified (58), but its function remains to be further studied.

Transcriptomic data show that genes for both peritrophic

membrane metabolism and mucus production are altered in the

midgut of Erwinia carotovora subsp. carotovora 15 (Ecc15) infected

flies, suggesting that both barriers are remodeled during

infection (61).
4.2 Gut immunity

Current research on gut immunity mainly focuses on the IMD

signaling pathway and the ROS production. The production of

reactive oxygen species (ROS) is the first immune response against
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pathogens in gut, and activated by dioxygenase (DUOX), a member

of the nicotinamide adenine dinucleotide phosphate oxidase

(NADPH) family (62). Bacterial-derived uracil can induce the

formation of calcineurin 99C (Cad99C)-containing endosomes

that serve as a phospholipase Cb (PLCb)-dependent calcium

mobilization platform that is critical for DUOX activation (63). In

the midgut, the production of AMPs is regulated by the IMD

pathway. The IMD pathway in the gut is activated by two upstream

receptors, the cell membrane surface-bound receptor PGRP-LC

which acts in the foregut, midgut and hindgut and the intracellular

receptor PGRP-LE acts only in the midgut (64, 65). PGRP-LC and

PGRP-LE can recognize diaminopimelic acid (DAP) type

peptidoglycans present on cell walls of most Gram-negative

bacteria and some Gram-positive bacteria (66, 67). When the

IMD pathway in the gut is triggered by pathogenic bacteria,

intestinal enteroblast ECs release humoral immune factors such

as AMPs (47).
4.3 Regulation of gut’s immunometabolism
caused by pathogenic bacteria

The pathogenic bacteria can affect gut homeostasis by directly

disrupting epithelial tissue, or indirectly by altering the structure of

gut microbial populations (58, 68). Therefore, maintenance of gut

homeostasis requires the synergy of antimicrobial and metabolic

responses in order to fight pathogenic infection. Recently, the link

between the production of ROS and metabolism have been reported

by Lee et al. (69). Their study found that the activation of DUOX is

depended on tumor necrosis factor (TRAF3). Further, the activation

of TRAF3 can inactivate AKT and activate AMPK, and the

inactivation of AKT leads to decrease TOR activity then influence

the activity of downstream kinases S6K and ATG1 (69). ROS

production can lead to S6K inactivation and ATG1 activation,

inactivated S6K resists anabolism, and activated ATG1 promotes

catabolism, thereby regulating the transition from lipogenesis to

lipolysis in the gut epithelia (69). The maintenance of DUOX

activity relies on lipolysis to increase NADPH production, thus,

the interaction of lipolytic signaling with host immune signaling

ensures an effective antimicrobial response (69). When insect-

pathogenic bacteria Pseudomonas entomophila infects D.

melanogaster, the production of bacterial’s toxins and host’s ROS

can inhibit TOR pathway and cause complete termination of

protein synthesis, thereby preventing tissue repair and

antimicrobial peptide production, ultimately accelerating infection

to hosts death (70). Wang et al. showed that Plasmodium

falciparum, the deadliest parasite in humans, could induce

activation of P38-MAPK in the midgut of its insects vector

Anopheles stephensi to weaken the insect’s immune system

including inhibition the production of mitochondrial ROS and in

turn, enhancing protein synthesis and metabolism (71). Therefore,

the triggered p38-MAPK signal in the gut of A. stephensi

contributes to both the survival of the parasite and avoids the

damage of the host by immune overreaction (71).

The two-component system of Vibrio cholerae contains

carboxylic acid regulator and sensor CrbRS which activates
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transcription of gene acs1 encoding Acetyl-CoA synthase (ACS-1)

to deplete acetate in the gut (72, 73). Oral infection with Vibrio

cholerae induces intestinal acetate depletion in D. melanogaster,

systemically inhibits the insulin pathway, promotes fat

accumulation in intestinal ECs cells, and accelerates infection-

induced host death (73). IMD mutant flies have significantly

improved survival after oral infection with V. cholerae compared

to wild-type, and this phenotype is dependent on the interaction of

V. cholerae’s type 6 secretion system (T6SS) and the gut commensal

bacteria Acetobacter pasteurianus to cause immune hyperactivity of

wild-type hosts (74). The systemic infection by non-pathogenic

bacteria Escherichia coli, the extracellular bacterial pathogen

Photorhabdus luminescens, and the facultative intracellular

pathogen Photorhabdus asymbiotica cause accumulation of lipid

droplets in the midgut of D. melanogaster (75). The specific

mechanism is that systemic infection leads to mediate the midgut

IMD activation through the receptor PGRP-LC, which in turn leads

to a decrease in the synthesis of tachykinin TK, which ultimately

leads to an increase in midgut fat anabolism; Deliberately reducing

TK synthesis in gut can increase the survival time of host under P.

asymbiotica infection, but make host more sensitive to P.

luminescens infection (75). In addition, oral infection with V.

cholerae can also cause lipid metabolism disorders in the host gut

and accumulation of triacylglycerols (TAGs) and sterols in

intestinal epithelial cells of enterocytes (44).

In Anopheles gambiae, phenylalanine hydroxylase (PAH) which

is involved in the conversion of phenylalanine to tyrosine, is a key

pathway in amino acid metabolism, and it has been found that

silencing of PAH destroys phenylalanine metabolism, resulting in a

decrease in tyrosine content, leading to a marked impairment of the

gut melanin-dependent encapsulation response to the rodent

malaria parasite Plasmodium berghei (76, 77). These studies

indicate that when pathogenic microorganisms invade the gut, the

energy demand for immune responses increases to resist microbial

invasion by coordinating with the IIS and TOR pathways.
4.4 Effects of gut commensal microbiota
on host immunity and metabolism

The animal gut plays vital role to interact with the

microenvironment. Gut-microbe interactions can have important

effects on the host, both through microbial-associated molecular

patterns (MAMPs) on microbial surfaces and through the

metabolites they produce (78, 79). Although members of the

microbiota are often referred to as commensals, symbiosis

between the microbiota and its host encompasses various forms

of relationship, including mutualistic, parasitic, or commensal (80).

The presence of gut commensal microbes is essential for

establishment and maintenance of immune system of

multicellular organisms (80–82). Moreover, gut microbes also

have important effects on the metabolic processes of their host

animals, such as directly providing the host with essential nutrients

(such as vitamins B and K) or indirectly fermenting indigestible

carbohydrates, as well as enhancing the activity of host metabolic

pathways (78, 79, 83, 84). The study showed that germ-free mouse
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epithelial cells expressed fewer metabolic key enzymes than normal

mice, and significantly down-regulated nicotinamide adenine

dinucleotide (NADH)/NAD+ and ATP levels illustrating gut

microbes affect epithelial metabolism (85). Several studies using

16S rRNA analysis to determine the common bacterial diversity of

D. melanogaster showed that both wild and laboratory-raised

populations exhibited low bacterial diversity (1-30 species) in the

gut (48, 86–88). Furthermore, these bacteria are not essential for

host development or survival, as germ-free D. melanogaster can be

maintained for generations under adequate dietary conditions in

the laboratory (89).

The recognition of gut commensal bacterium Lactobacillus

plantarum (WJL) by the IMD pathway induces intestinal

peptidase expression, and elevated levels of intestinal peptidase

promote the body to digest proteins, increase the host’s amino acid

levels, and promote the TOR pathway in D. melanogaster larvae (90,

91). In line with this, transcriptional studies on germ-free, IMD

mutants and enteric IMD-constitutively activated D. melanogaster

confirmed the effects of IMD on intestinal metabolic processes,

including the expression of digestive peptidase (92–95). In addition,

L. plantarum can promote host growth by secreting N-acetyl-

glutamine as a byproduct, and hosts in turn improve the

environmental adaptability of their symbionts (96, 97). The

studies found that the intestinal innate immune NF-kB/Relish

transcription factor is a key point for coupling nutrition-

immunity-metabolism, Relish regulates the association between

diet and host-Lactobacillus by restricting 4E-BP/Thor, adjusting

the species composition of gut microbes (96–98). Acetobacter

pomorum, another major gut commensal bacterium of D.

melanogaster, could promote the growth of larval and adult by

increasing the insulin signaling (IIS) pathway (99). Specifically, A.

pomorum produces acetic acid via alcohol dehydrogenase (PQQ-

ADH), a bacterial-derived short-chain fatty acid that affects health

and homeostasis in many biological models (100–104). The increase

in intestinal acetate levels activate signaling through the host IIS

cascade, affecting host growth, energy metabolism, and intestinal

stem cell activity (99). Additionally, microbial-derived acetate can

activate the IMD pathway of enteroendocrine cells, and the

enhancement of IMD signaling can promote the expression of

tachykinin (TK) gene to increase the content of TK (105). TK

plays an important role in larval growth and development, lipid

metabolism and insulin signal transduction (105–107). Sannino

et al. showed that the essential vitamin thiamine provided by A.

Pomorum is essential for the growth and development of D.

melanogaster (108). Previous work showed that germ-free D.

melanogaster store more triglyceride than conventionally reared

flies and this phenotype can be rescued by recolonization of

Acetobacter fabarum or Lactobacillus brevis (109, 110). The

population structure of symbionts in wild Drosophila species are

further complicated by differences in geographical populations and

food sources (88, 111–114). A study showed that Acetobacter

bacteria isolated from wild D. melanogaster can stably colonize in

the gut of lab stock and promote larval growth (115). Therefore, the

gut commensal microbes, as an additional source of systemic or

local immune signals, may be directly involved in regulating the

energy homeostasis and growth metabolism of the organism.
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Microbe-associated molecular patterns (MAMPs) also exist in

commensal microorganisms, and can be recognized by the host

immune system (116). The cell walls of both Acetobacter and

Lactobacillus, which dominate the gut flora of D. melanogaster,

contain DAP-type peptidoglycan, therefore, can be recognized by

the gut immune responses (86). Moreover, it was found that the

expression AMPs was significantly reduced in germ-free D.

melanogaster gut, suggesting that commensal microbiota can

induce the IMD pathway (68, 86). PGRP-SC2 is a negative

regulator of the D. melanogaster IMD pathway and is

homologous to the vertebrate anti-inflammatory proteins

PGLYRP1-4 (117, 118). A study reveal that decreased expression

of PGRP-SC2 leads to activation of the IMD transcription factor

Relish, resulting in altered commensal microbial community

composition and increased division of ISCs (119). These studies

demonstrate the importance of IMD pathway activity for the

composition of gut commensal microbiota.

Duox is a member of the NADPH oxidase family whose activity

can be partially activated in the gut by commensal microorganisms

and food-derived yeasts, respectively (62, 120). In the presence of

gut commensal microbiota, the activity of p38-MAPKs is down-

regulated by MAPK phosphatase 3 (Mkp3), thus attenuating Duox

activity and maintaining it at a low-level (121). Interestingly, the

intestinal epithelial cells of Drosophila contain a second NADPH

oxidase, the nitrogen oxidase (Nox), which can be activated by gut

commensal bacteria Lactobacillus to produce ROS as a local

signaling molecule, which had no deleterious effects on both

bacteria and intestinal epithelium cells (122).

Although commensal and pathogenic microorganisms involve

in activation of similar gut immune mechanisms, the level of

immune response activated by the intestinal commensal

microbiota and the degree of damage to intestinal epithelial cells

were much lower than that of pathogenic microorganisms (61). Gut

commensal microbiota can induce innate immune signals in

intestinal epithelial cells, while negative feedback mechanisms

limit the expression of immune factors such as AMPs and ROS

that regulate bacterial composition in the gut lumen (86, 121, 123).

Honeybee (Apis mellifera) exposure to a certain concentration of

neonicotinoid insecticide (nitenpyram) causes imbalance of gut

microbiota that leads to the alternation of metabolism and

immune-related genes in the gut (124). These findings reveal that

the insect gut immune system not only eliminate pathogenic

microbes but also maintain commensal microbes to regulate

metabolism. Therefore, the gut commensal microbes properly

coordinate with the host’s immunity and metabolism establishing

a long microbiota-insect evolutionary interaction.
5 Cross-talk of humoral immunity
with metabolism in fat body

Insect fat body is the major organ that provide energy for

metabolism and induce humoral immune responses. On the one

hand, it is responsible for storing energy including glycogen,

triglycerides etc., on the other hand, it provides energy essential

for all life activities including immune responses (33, 125). Under
Frontiers in Immunology 06
the influence of a pathogenic infection, the fat body initiates

humoral immune responses including production of AMPs and

other immune molecules, restricting energy flow to other processes

including anabolism (126).

The fat body’s function of D. melanogaster is analogous to

mammalian liver, adipose tissues and immune organs (127, 128), it

provides a simple and accessible system for studying molecular

integration of immune and metabolic pathways in the presence of

microorganisms. In D. melanogaster, metabolism and growth is

regulated by insulin-like peptides that bind to insulin receptors on

the fat body cells, activate AKT and TOR, and promote protein

synthesis and storage of sugar as triglycerides and glycogen in the

fat body (125). Fat body responds to systemic infection of different

pathogens through Toll and IMD pathways, driving expression of

AMPs to eliminate pathogens (34, 35). Additionally, Eiger/TNF-a,
JNK and JAK-STAT are also important immune signals in the fat

body in response to various immune stimuli (129). These immune

signaling pathways are activated upon infection and regulate a wide

range of immune response as well as affect metabolism at various

levels. Therefore, they can be considered as key components of

immune-metabolism integration. Keeping in view the significance

of fat body in immunometabolism, several key pathways are

discussed below.
5.1 IMD and Toll

IMD pathway is an important NF-kB signaling pathway in the

fat body immune regulation. Over-expression of the IMD

transcription factor Relish in the fat body does not affect insulin

activity (130). However, over-expression of the active form of IMD

protein in the fat body suppresses systemic IIS activity and exhibits

many phenotypes similar to insulin loss-of-function (131). MEF2

(Myocyte enhancer factor 2) plays a bidirectional regulatory role in

fat body anabolism and catabolism through phosphorylation and

dephosphorylation (132). MEF2 mediates a metabolic switch under

conditions of Gram-negative bacterial infection, shifting the fat

body from anabolism to activation of IMD signaling (131). Under

normal condition, phosphorylated MEF2 can activate the

expression of genes involved in anabolic processes, however,

infection leads to dephosphorylation of MEF2, which reduces

anabolic processes, while dephosphorylated MEF2 can activate

the expression of AMPs (131).

DiAngelo et al. performed selective activation of the Toll

signaling pathway in the fat body using genetics and infection to

induce immunity and energy redistribution in D. melanogaster (130).

The study revealed that activation of Toll signaling in the fat body not

only decrease the levels of AKT phosphorylation and attenuated

insulin signaling in the fat body, but also suppresses insulin signaling

throughout the body resulting in decreased nutrient storage and

growth retardation (130). Overexpressing the antimicrobial peptide

Drosomycin that responds to the Toll pathway reduced glycogen and

triglyceride storage of D. melanogaster (133), and this suggests that

inducing the expression of AMPs may indeed cause the body’s energy

burden. Activation of Toll in the fat body reduces triglyceride storage

and has systemic effects on body growth, suggesting that immune
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activation in the fat body can lead to a systemic metabolic switch by

reducing insulin signaling (129, 132). Roth et al. further showed that

growth inhibition induced by overexpression of Toll in the fat body

could be rescued by the expression of phosphorylated AKT (134).

Activation of Toll signaling in the fat body of D. melanogaster larvae

can cause a shift in lipid metabolism, shifting fatty acids from neutral

lipid storage to phospholipid synthesis, a shift that supports immune

responses in the short term but increases host mortality in the long

term (135). Furthermore, the activation of fat body Toll signaling by

genetic or bacterial stimulation results in not only tissue-autonomous

reductions in triglyceride storage, but the membrane phospholipid

synthesis is induced, as manifested by increased levels of

phosphatidylcholine and phosphatidylethanolamine in the fat body,

this shift facilitates the synthesis and secretion of AMPs (134).

Additionally, Toll activation has also been shown to block S6K-

mediated phosphorylation of MEF2, leading to a switch from

anabolism to immunity in the fat body (132).

From Drosophila to mammals, Hippo signaling pathway plays a

vital role in regulating tissue growth, organ size and homeostasis

(136–138). In mammals, the Hippo signaling pathway is involved in

the regulation of islet cells. Inactivation of Hippo in islet cells can

damage islet cells and promote their apoptosis, thereby affecting

insulin secretion, causing metabolic disorders and dysfunction, and

leading to the occurrence of diabetes (139, 140). Liu et al.

demonstrated that the Hippo signaling pathway has an important

role in response to Gram-positive bacterial infection in D.

melanogaster and that Hippo activation in the fat body can

promote the expression of AMPs (141). Activation of the hippo-

Yorkie signaling pathway through the Toll-Myd88-Pelle cascade

can induce the degradation of the subunit Cka of the Hpo-

inhibitory complex, and then Warts-mediated Yorkie inactivation

increases Dif activity by limiting Cactus levels and enhances AMPs

gene expression (141). Aforementioned results manifest a strong

relationship between the Toll signaling pathway and the growth

metabolism pathway: IIS and hippo pathway in the immune

metabolism of the fat body.
5.2 JNK

JNK (c-Jun N-terminal kinase) signaling can affect metabolism

and immunity in many different ways (43). As a stress and

inflammatory signaling pathway, JNK signaling can systemically

antagonize IIS by activating FoxO to down-regulate the expression

of Dilp2 in IPCs (insulin-producing cells), promoting stress

tolerance and prolonging lifespan (71). Moderate JNK signaling

activity facilitates the management of energy resources under

stressful conditions, but excessive JNK activity in vertebrate

adipose tissue has been found to cause type II diabetes (142–144).

Therefore, tight regulation of the interaction between the stress

signal JNK and the insulin signal (IIS) is necessary for the body to

ensure its own homeostasis to adapt environmental challenges.

Activation of JNK signaling in the fat body can compensate for the

cytoplasmic retention of FoxO caused by IIS overexpression,

allowing FoxO to enter the nucleus to regulate target gene

expression and antagonize IIS-mediated cell overgrowth (145).
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Drosophila NLaz is a secreted protein homologous to vertebrate

apolipoprotein D (ApoD) and retinol binding protein 4 (RBP4)

(146). Oxidative stress or activation of JNK can induce the

transcription of NLaz gene. NLaz mediates the antagonism

between JNK and Insulin signaling to negatively regulate insulin

signaling, thereby improving hunger tolerance and regulating

metabolism and growth, enabling the body to respond to

environmental challenges (147). The study found that NLaz is not

important for immune resistance to gram-positive E. faecalis

infection, but another lipocalin, Karl, released from blood cells,

helps the host resist E. faecalis infection (147).
5.3 Eiger

Eiger is the homolog of tumor necrosis factor (TNF) in D.

melanogaster, and members of the TNF family are important

pleiotropic cytokines that play important roles in regulating

infection, inflammation, autoimmune disease, and tissue

homeostasis (148, 149). Evidence show that Eiger affect immune

responses and metabolism and is a link between immune activation

and systemic metabolism (128, 150, 151). Under low-protein diet

conditions, Eiger is released from the fat body into the hemolymph

and then into the brain, where it inhibits Dilp2 and Dilp3

expression by activating JNK signaling in IPCs by binding to the

tumor necrosis factor receptor (128). Under immune stimulation,

Eiger can be expressed in both blood cells and fat bodies, and

influence the immune response under infection. The release of Eiger

from the fat body under the condition of low protein diet can inhibit

the expression of Dilp2-3 in IPCs (128), and the release of Eiger

possible has the same effect under the condition of infection, which

can change the body from anabolism to anti-infection by inhibiting

IIS. Eiger expression in the fat body has a positive effect on host

survival against extracellular pathogen infection, but loss of Eiger

improves host survival when infected with intracellular pathogens,

and this difference may stem from Eiger being required for

phagocytosis (152, 153). Tang et al. showed that infected housefly

Musca domestica by Escherichia coli or Staphylococcus aureus

increased Eiger like gene (Mdeiger) expression resulting in

decreased mortality, and knockdown of Mdeiger expression by

RNAi downregulate expression of JNK and Dorsal, but upregulate

the expression of Relish (154). These studies demonstrate that Eiger

can enhance Toll-mediated immune responses, but in contrast to

the IMD-Relish-mediated immune response, Eiger inhibits Relish

activity by activating JNK, a result that is consistent with the Eiger

mutant producing more IMD-regulated AMPs than wild-type

(153, 154).
5.4 JAK

Cytokine Unpaire-dependent (Upd) activation of JAK-STAT

signaling in Drosophila is similar to JAK-STAT signaling activated

by type 1 cytokines such as IL-6 in mammalian systems (155, 156).

In D. melanogaster adults, a high-fat diet stimulated blood cells to

secrete Upd3, which in turn activated JAK-STAT signaling in
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muscle and gut and caused decreased insulin sensitivity (156).

Deletion or specific silencing of the Upd3 gene in blood cells

reduces JAK-STAT activation and increases insulin sensitivity and

lifespan of D. melanogaster under high-fat diet conditions, while fat

storage is not affected (156). The release of Upd from blood cells on

a high-fat diet can cause decreased insulin sensitivity in peripheral

tissues, similar to the role of its mammalian homolog, the

proinflammatory cytokine IL-6, in insulin resistance (157, 158).

Previous research showed that activation of JAK-STAT in muscle

by cytokines Upd2 and Upd3 released from blood cells helps D.

melanogaster to resist parasitic wasp infection (159). At the same

time, this parasitic wasp infection can cause decreased insulin

signaling in the muscle and fat body (160). However, the

relationship between JAK-STAT and IIS is not well understood.

The study on high-fat diet seems to provide insights into the

relationship between Upd-JAK-IIS under infection condition

(156), that is, under infection of parasitic wasps, Upd3 released

by blood cells may reduce insulin sensitivity of the muscle and fat

body by activating JAK/STAT, thus reducing the anabolism of the

muscle and fat body and saving energy for blood cell’s cellular

immunity to against parasitic wasp infestation. Agaisse et al. found

that bacterial infection can also trigger blood cell-specific expression

of Upd3, which in turn activates TotA-mediated fat body immune

responses via JAK-STAT-Rrelish (161). However, specific

downregulation of the JAK-STAT pathway transcription factor

Stat92E in the fat body did not affect the body’s triglyceride

storage, suggesting that JAK-STAT does not autonomously

regulate energy metabolism in the fat body (162). The roles of

Upd cytokines and JAK-STAT on insulin signaling and their

relationship with metabolism in Drosophila immune response

remain to be further elucidated.
5.5 Others

As the main component of insect blood sugar, trehalose is

synthesized by trehalose-6-phosphate synthase (TPS) and trehalose

phosphatase in insect fat body. Studies in houseflies Musca

domestica show that trehalose-6-phosphate synthase (TPS) is

involved in immune defense against pathogens by regulating the

synthesis of trehalose (163). Studies have shown that systemic

infection of pathogenic bacteria E. coli or Staphylococcus aureus

can cause the increase of TPS transcription and trehalose content in

the host, and the reduction of TPS content by RNA interference can

lead to the increase of mortality of the host under infection

condition, and this phenotype can be partially compensated by

feeding trehalose (163).

Female parasitic wasps introduce various virulence factors into

host insects during oviposition and realize parasitism by influencing

host immunity and physiology. Recent studies have shown that

female parasitic wasps Pachycrepoideus vindemiae use a novel

venom protein, glucose-6-phosphate dehydrogenase (PvG6PDH),

which affects carbohydrate metabolism by inhibiting the activity of

glucose-6-phosphate (G6P) in host Drosophila to help achieve

parasitism (164). However, the effect of PvG6PDH on the immune

response of host insects during parasitism needs further study.
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The fat body is an important site for energy reserves in insects,

and infection with Mycobacterium marinum leads to progressive

depletion of fat and glycogen in Drosophila, in part due to systemic

AKT inactivation and FoxO dysregulation (14). Metabolic depletion

phenotype similar to that described above after infection with

Listeria monocytogenes (11). These metabolic phenotypes imply

that the occurrence of systemic immunity will have an important

impact on the body’s energy metabolism. These studies of core

immune pathways demonstrate a direct link between metabolism

and immune responses in the fat body energy redistribution at the

molecular level (Figure 2).
6 Hemolymph

6.1 Hemolymph immune cell types
and functions

In contrast to mammals which contain the closed circulatory

system, the body cavity of insects is an open space filled with

hemolymph (165). Insect hemolymph contains hemocytes and

plasma, hemocytes are mainly macrophage-like plasmatocytes,

which are involved in the cellular immune response (166). Insect

hemocytes can be classified according to functional characteristics.

In D. melanogaster hemocytes can be divided into three types: (1)

plasmatocytes, the most abundant cell type in hemolymph, have

phagocytosis and further differentiate into two other subtypes; (2)

crystal cells that produce phenoloxidase (PO) and are involved in

melanization; (3) Lamellocytes, flat adherent cells responsible for

encapsulation of large foreign particles (16, 167–170). In some

insects, granulocytes have the ability to adhere to foreign surfaces,

similar to the Lamellocytes of D. melanogaster; in addition,

spherulocytes have been found to transport components of the

stratum corneum (171).

In D. melanogaster larvae, about 10% of the body’s glucose is

needed to maintain quiescent hemocytes, and when cellular

immunity is triggered, such as phagocytosis, the hemocytes

expends more energy (8, 172). Immunometabolism mechanisms

in vertebrate blood cells is not the focus of this review, and have

been extensively discussed elsewhere (173–175). It is well

understood that activated immune cells often need to switch from

fatty acid oxidation to glycolysis, a phenomenon known as the

Warburg effect, providing energy for rapid cellular proliferation and

synthesis of antimicrobial effectors (173, 174). Once the physical

barrier such as insect skin or intestinal membrane is compromised,

and pathogens enter into insect body cavity, blood cells eliminate

the invading pathogens through encapsulation, phagocytosis,

nodulation, and melanization (176).
6.2 Immune cells and
immunometabolism interactions

6.2.1 Mammalian immune cells
To gain a clear understanding of cellular immunity in insects, it

is necessary to understand the metabolic reorganization of
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mammalian immune cells. In mammals, when immune cells are

activated, it results in a metabolic switch within immune cells that is

dependent on the supply of large amounts of glucose and glutamine

(177). When immune cells are inactivated, they use glycolysis to

produce pyruvate which enters the mitochondria and converted to

aceytyl-CoA. Acetyl-CoA is also produced by b-oxidation of fatty

acids used in the tricarboxylic acid (TCA) cycle linked to oxidative

phosphorylation (OXPHOS) to generate ATP in the most efficient

manner. Thus, glycolysis and b-oxidation synergies with oxidative

phosphorylation (OXPHOS) to produce ATP for energy supply to

quiescent immune cells (178). While this is a very metabolically

efficient form of ATP production, the rate at which is too slow to

meet cellular energy demands in an immune-activated state. Upon

immune stimulation, immune cells switch from a state of low

nutrient uptake to an optimized metabolic state, rapidly

producing ATP and synthesizing a large number of new

molecules, ATP production is mainly through glycolysis, albeit

not very efficiently (only 2 ATP per glucose molecule), but

produces ATP much faster than the glycolysis-TCA-OXPHOS

(43). Glucose carbons which produced through glycolysis are

used to a greater extent by activated immune cells to produce

new immune-effector macromolecules, and are less lost as carbon

dioxide (CO2) through the oxidative phosphorylation pathway

(OXPHOS). The pentose phosphate pathway (PPP) is a branch of

glycolysis that generates ribose for nucleotide synthesis and

NADPH for ROS (179–181). But mitochondrial metabolism is
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significantly altered in activated immune cells, pyruvate is

diverted from the TCA cycle, which is disrupted in the citrate

step, and glutamine is metabolized by the interstitium in

mitochondria, replenishing TCA intermediates, thus become

another important metabolite of activated immune cells (181,

182). In short, massively increased glycolysis (supplying PPP,

lipid synthesis, and leading to lactate production) following

immune cell activation is associated with rewired mitochondrial

metabolism (breaking the TCA cycle and inhibiting OXPHOS),

which makes activated immune cells dependent on high-dose

glucose and glutamine supply (177).

6.2.2 Metabolic remodeling in insect blood cells
Metabolic reprogramming of activated immune cells has been

studied primarily in mammalian systems, and although the

bactericidal function of insect macrophages (hemocytes) is highly

conserved with mammals, the metabolic remodeling of insect

macrophages remains poorly understood. Nevertheless, the

Warburg effect has also been found in insect cancer cells as well

as in activated immune cells (183–186). Myc is an important

regulator of immune cell metabolic remodeling, and in mammals,

the metabolic reorganization of proliferating T lymphocytes is

associated with Myc activation (187, 188). In insects, Myc is

strongly expressed in blood cells of the highly proliferating Hop

lethal mutant line (hop tuml) (189). Hypoxia-inducible factor 1a
(HIF-1a) was originally found to regulate cellular metabolism by
FIGURE 2

Systematic molecular regulation of immune and metabolic pathways in Drosophila. The red line represents metabolic regulation under normal
conditions; The black lines represent signal regulation in the state of immune activation. Within pathways activity regulation, the arrow represents
facilitation and the Bar represents inhibition roles. Refer to the text for the interaction of each pathway.
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participating in mitochondrial oxidative phosphorylation under

hypoxia (190). In mammals, activation of Toll-like receptors and

NF-kB signaling leads to increased expression and enhanced

stability of HIF-1a (191, 192). Krejčová et al. used adult D.

melanogaster to study the metabolic changes of macrophages

during the acute and remission phases of Streptococcus-induced

sepsis and found that macrophage activation, bactericidal and

fighting infection depends on the help of HIF-1a and lactate

dehydrogenase homologues (193). This demonstrate the existence

of a cellular metabolic mechanism in insects that is conserved with

mammals, namely that macrophages induce systemic metabolic

changes through aerobic glycolysis (193). Metabolic pathway

studies during D. melanogaster plasmatocytes activation revealed

that peroxisomes, an organelle related to lipid metabolism and

oxidation reactions in plasmatocytes, are required for phagosome

formation and antimicrobial peptide production, and this role

conserved with mouse macrophages (194). Wasps such as

Leptopilina boulardi parasitize D. melanogaster larvae by laying

eggs that are too large to be phagocytosed (195). The D.

melanogaster kill the invading parasite’s eggs by encapsulation

them with lamellocytes, a type of differentiated hemocytes (196).

During parasitoid infestation of Drosophila larvae, lamellocytes

proliferation and differentiation are associated with increased

blood cell-specific glycolytic gene expression, accompanied by

increased glucose consumption and lactate production (8). In

addition, similar findings have been made in other insects. For

example, activation of phagocytes in Blaberus giganteus produces

metabolic changes similar to the Warburg effect (172). The

transcriptome analysis of immune-activated hemocytes in

mosquitoes and Spodoptera exigua also revealed associations with

glycolytic and LDH genes (150, 197–200). At present, studies based

on a variety of insects have found that activated immune cells can

significantly increase glucose consumption, glycolysis and lactic

acid production, but the relationship between insect immunity and

metabolism is still not as clear as that of mammals, and further

investigation is needed.

During the immune response, metabolic regulation ensures that

sufficient energy is available for an effective immune response, but

since energy is finite, so immune responses must be properly

regulated to accommodate the energy demands of other

physiological characteristics. Like many immune responses,

activation of lamellocyte requires reallocation of resources to fuel

the differentiation and activation of blood cells (7). To this end,

blood cells secrete extracellular adenosine (e-Ado), which enables

other tissues to release stored glucose to provide energy for the

activation of lamellocyte (8). However, the release of e-Ado must be

regulated because the increased energy (glucose) of the blood body

cavity is also available to pathogens. Later in infection, immune cells

express the adenosine deaminase (ADGF-A) to regulate e-Ado

levels and prevent pathogens from exploiting host resources (9).

Interestingly, high levels of e-Ado were detected in human sepsis,

suggesting that e-Ado has a similar effect in mammals (201, 202).

Lin et al. found that adenosine receptor signaling (AdoR) is

involved in the regulation of metabolic remodeling after budding

virus (AcMNPV) infection in silkworm Bombyx mori, which can

promote virus clearance and antiviral protein gloverin production
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(203). The study on another lepidopteran insect model Spodoptera

frugiperda Sf-21 cells proved that in the metabolic regulation of Sf-

21 cells after infection with baculovirus, adenosine signal

transduction activates the host’s energy synthesis, supporting the

innate immune response against infection, showing that glycolysis

regulated by adenosine signaling pathway is a conserved

mechanism (203). Another study on the regulation of adenosine

metabolism showed that the symbiotic virus (SmBV) of the

parasitic wasp Snellenius manilae was able to downregulate the

extracellular adenosine (e-Ado) of the host Spodoptera litura,

thereby inhibiting host metabolic switching and attenuating its

immune response (204). This study provides us with a new

perspective that the parasitoid symbiotic virus regulates the host’s

adenosine pathway, allowing the eggs and larvae of S. manilae to

evade the immune response of the host Spodoptera litura (Figure 2).

PGRP-SA and Spätzle, produced by hemocytes, are critical for

the activation of Toll in fat, and their expression increased in

response to pathogen infection (129, 205, 206). Because Toll

activation leads not only to the expression of AMPs but also to

the inhibition of insulin signaling, it implies that blood cells play a

role in the activation of humoral immunity associated with

metabolic switches through the expression of PGRP-SA and

Spätzle. Cytokines released by blood cells have also been

implicated in the control of metabolic homeostasis in D.

melanogaster raised on a high-fat diet increased the expression of

the Upd3 cytokine in blood cells, leading to systemic activation of

JAK/STAT and decreased sensitivity to insulin (207). Under

infection conditions, blood cells can not only participate in

immune regulation but also regulate body metabolism by

releasing cellular factors such as Eiger and Upd (150, 159).

6.2.3 Immunometabolic regulation of insect
hemolymph symbionts

The microbiota in insects is controlled by the host, i.e. the

abundance, composition and location of microorganisms must all

be within a certain range (208). For microorganisms, hemolymph is

rich in nutrients, has a balanced ionic composition, and has a PH

value close to neutral, which is very beneficial for their survival (208).

However, the hemolymph is protected by the immune system,

including blood cells and a variety of soluble effectors (antibacterial

peptides, reactive oxygen species, phenoloxidases, etc.) that can kill,

phagocytose, and encapsulate invading microorganisms to varying

degrees (33). For a long time, research believed that in healthy insects,

the hemolymph had little or no microorganisms (33). But recent

studies have shown that various non-pathogenic microorganisms can

stably or transiently inhabit within the hemolymph of a wide variety

of insects (209). The most widely reported hemolymph

microorganisms in insects are spiroplasmas of firmicutes, and these

bacteria are mostly distributed in Hymenoptera, Hemiptera,

Lepidoptera, Coleoptera and Diptera (209–211). Spiroplasmas are

mainly found in the hemolymph or intestinal lumen, but can also be

present in the fat body and ovary to cause intracellular infections

(212). For example, the bacteria of spiroplasma in the hemolymph of

D.melanogaster combine with yolk granules released from adipocytes

and are transformed into developing oocytes through hemolymph to

achieve vertical transmission (213). Moreover, a large number of
frontiersin.org

https://doi.org/10.3389/fimmu.2023.905467
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.905467
bacterial members of the enterobacteriaceae (gamma-proteobacteria)

are present in the hemolymph of insects, especially the three

symbiotic bacteria found in aphids: Serratia Symbiotica and

Hamiltonella defensa and Regiella insecticola, also known as

secondary symbiotic bacteria (209). In some insects, the

hemolymph microbiome also includes obligate intracellular

symbiotic bacterial groups, such as Wolbachia and Rickettsia of the

order Rickettsiales (alpha-proteobacteria), which are very common in

insects (214, 215).

MAMPs of bacterial cell wall are target molecules recognized by

insect immune receptors, and the interaction between hemolymph

symbionts and the immune system depends on the extent of bacterial

genome alterations. Genome sequencing of insect symbionts revealed

that they suffer deletions in their gene sequences including virulence

genes and bacterial cell wall element genes (216–219). Gene expression

profiling of D. melanogaster with and without spiroplasma found no

significant differences in the expression of various immune-related

genes, including those expressing antimicrobial peptides (212, 220,

221). The reason behind this could be that Spiroplasma lacks the

peptidoglycan cell wall of most bacteria and thus is not recognized by

the host’s pattern recognition receptors to activate the insect’s immune

response (33). Analysis of the hemolymph of D. melanogaster

colonized with and without Spiroplasma showed increased amino

acid concentrations and decreased lipid titers (triacylglycerol TAG and

Diacylglycerol DAG), however, sugar and sterol levels and storage of

the main carbohydrate glycogen were not significantly altered (213).

This study further demonstrated that these host metabolic differences

are mediated by Spiroplasma consumption of DAG, and reduced the

production of insect lipoproteins (lipoproteins that transport DAG in

hemolymph) by RNAi can significantly reduce the amount of DAG

and Spiroplasma populations in insect hemolymph; Furthermore, in

mutant flies that block fat mobilization from the fat body (specifically

double mutations in the Brummer lipase and adipokinetic hormone

receptor genes), Spiroplasma titers are not affected (213). These results

suggest that DAG utilized by Spiroplasma are truncated dietary-

derived lipids rather than stored lipids mobilized from the fat body

and other organs. Spiroplasma has been shown to protect Drosophila

melanogaster and Drosophila hydei from parasitic wasps (222, 223).

Additionally, Spiroplasmas also protects Drosophila neotestacea from

parasitic wasps and nematodes (Howardula aeronymphium),

protecting the pea aphid (Acyrthosiphon pisum Harris) from

pathogenic fungi (222–225). Among them, the protective effect of

Spiroplasmas on host from parasitism was attributed to the influence

of host metabolism, especially the competitive utilization of DAG by

spiroplasmas in D. melanogaster (226).

To understand the metabolic effects of symbionts in host

hemolymph of pea aphid, a comparative metabolomic analysis

was conducted between aphid with secondary symbionts (Serratia

symbiotica, Hamiltonella, Regiella) and without them (227). The

results showed that there were significant differences in metabolites

between the aphid with and without symbiosis, but the

metabolomics characteristics of the aphid with different species of

secondary symbiosis were highly similar, and the levels of amino

acids in aphid samples containing secondary symbiotic bacteria

increased compared to controls, while the levels of sugars and sugar

alcohols decreased (227). These results suggest that the hemolymph
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symbiotic bacteria can affect host metabolism of aphid. Research on

the effects of secondary symbiotic bacteria on the immune system of

aphid mainly focused on cellular immune response. Laughton et al.

used Serratia symbiotica, Hamiltonella defensa and Regiella

insecticola to colonize aphid respectively, demonstrating increased

hemocytes density in hemolymph samples from aphid colonized

with Hamiltonella defensa and enhanced hemocytes response of

encapsulation to Sephadex beads from aphid hemolymph colonized

with Regiella insecticola, suggesting that the innate immune system

of host insects can recognize these hemolymph symbiosis bacteria

(228, 229). These findings suggest that the symbiotic bacteria in

aphid hemolymph can affect the metabolism and immunity of the

host, but whether there is a direct link between immune-

metabolism remains to be further investigated.

Wolbachia were first identified in the mosquito’s germline over

a century ago, and as an endosymbiont, they are surprisingly diverse

and can co-exist with up to 66% of insect species (230). It can be

stably inherited in the host population and influence the evolution,

immunity, physiology and development of the host (231). Three

major surface proteins have been identified in Wolbachia: wsp and

its two analogs, wspA and wspB, which are associated with

important pathogenic bacteria such as Ehrlichia and Neisseria

membrane proteins with antigenic function are homologous

(232–234). Studies in vertebrates have shown that after infection

with Wolbachia-containing Filarial nematodes, the host can elicit

an immune response by recognizing the Wolbachia membrane

protein wsp (235), suggesting that Wolbachia may play a role in

redirecting immune responses in vertebrates. In D. melanogaster,

Wolbachia infection is widespread. Research has compared the

differences in IIS-related phenotypes in the presence and absence

of Wolbachia in IIS mutant flies. They show the absence of

Wolbachia in IIS mutant flies further reduces IIS activity and

indicating the role of Wolbachia in normal could increase host

IIS activity and promote grow of host flies (236). In conclusion, the

presence of the endosymbiotic Wolbachia can improve the IIS

activity of the host, contrary to the influence of the pathogenic

pathogen on the host IIS activity (236). Meanwhile, studies on the

Wolbachia surface protein Wsp in vertebrates also showed that the

Wolbachia can induce the host immune response (235).
7 Regulation of immunometabolism
in other tissues

Muscle is a major energy consuming organ, Zhao et al. found

that feeding Pe (Pseudomonas entomophila) bacteria can induce

differential expression of NF-kB signal in epidermal muscle tissue

between individual D. melanogaster populations (237). D.

melanogaster with restricted expression of NF-kB/IMD signal not

only exhibited longer life span, but also showed increased

defecation phenotype. In these individual’s muscle tissue,

glutamate dehydrogenase (Gdh) expression is significantly

upregulated in NF-kB signaling was mildly activated, leading to

an increase in circulating glutamate content; glutamate can

participate in vitamin metabolism mediated by sodium-dependent

multivitamin transporter (svmt) after transported by glutamate
frontiersin.org

https://doi.org/10.3389/fimmu.2023.905467
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.905467
transporter (dmGlut) into adipose tissue, ultimately leading to

enhanced lipid mobilization and intestinal defecation response

(237). These findings suggest that modest activation of NF-kB
signaling in muscle tissue contributes to improved host survival

under oral infection by mobilizing lipolysis in the fat body. Zhao

et al. showed that oral bacterial infection can remotely regulate

immune and metabolic reactions in the muscle and fat body to help

the host eliminate bacteria (237), suggesting that such

communication between organs is crucial to host homeostasis

regulation under infection. Yang et al. also found multi-organ

communication under oral bacterial infection, the IMD response

of D. melanogaster is activated sequentially from the gut to the fat

body under the mediating of the polyol pathway of sugar alcohols

(238). The gut IMD activation leads to an increase in sorbitol

concentration in the hemolymph, which in turn activates

metalloproteinase 2 (Mmp2), and the activated Mmp2 cleaves

PGRP-LC to activate the IMD response in the fat body (238).
8 Conclusion

Insects go through different developmental stages such as eggs,

larvae, pupa, and adults throughout their lives. The interaction

between microorganisms and insects exists in different

developmental stages. Therefore, the coordinated regulation of
Frontiers in Immunology 12
immunity and metabolism is essential for the normal growth,

development, and survival of insects. Toll, Imd, Eiger/TNF-a, JNK
and JAK-STAT are the most important signals in the immune

response, and they are activated by various immune stimuli. In

addition to being critical for inducing immune responses, they also

affect metabolism at various levels. Although immune-metabolism

research in other invertebrates have not been extensively and

comprehensively carried out, some existing examples are listed here

(Table 1). At the same time, we summarized the molecular regulatory

networks of immunity and metabolism in existing studies (Table 2).

Although current research has clarified the relationship between

immunity and metabolism, the specific physiological functions of

the interaction between the two, the differences in the immune-

metabolism interaction between different sexes of insects, the effect

of the brain on vertebrates and invertebrates between different

organs and signal coordination remains to be further explored (69).

The brain has extensive regulation of the body’s eating behavior and

metabolism (251, 252), and studies have also confirmed the

coordination of the brain’s immune response (253). Therefore,

the regulation of the brain’s immunity and metabolism cannot be

ignored. The advancement of technology makes personalized

medicine possible; the above research issues should be paid more

attention in future research. Insect, as an ancient and simple

research model, especially D. melanogaster is a convenient means

of genetic manipulation, so that we can use insect model research,
TABLE 1 Immune-metabolic interactions in insects.

Host
Microorganism/

Parasites
Location in

hosts
Role

Immune phe-
notype of hosts

Metabolic phenotype
of hosts

Reference

Sitophilus
zeamais

(Coleoptera:
Curculionidae)

Sitophilus primary
endosymbiont (SPE)

Bacteriocytes
Oocytes

Endosymbionts
AMP-coleoptericin A
(ColA) (+)

Nutrient acquisition (-);
Energy metabolism (-)

(239, 240)

Aphis gossypii
Glover

(Hemiptera:
Aphididae)

Lysiphlebia japonica
Ashmead

(Hymenoptera:
Braconidae)

Hemocoel Endoparasitic

Serine protease;
SerpinB (+); Two SOD
(+); Two lectins (+);
Two galectins (+)

Biosynthes of proteins (+);
Glutamine metabolism (+);
Energy and carbohydrate

production (+); Lipid metabolism
(+)

(241)

Helicoverpa
armigera

(Lepidoptera:
Noctuidae)

Microplitis mediator
(Hymenoptera:
Braconidae)

Hemocoel Endoparasitic Immune response (+)
Carbohydrate, fatty acid, amino
acid metabolism (6 h post-

parasitism) (+)
(242)

Pieris rapae
(Lepidoptera:
Pieridae)

Pteromalus puparum
(Hymenoptera:
Pteromalidae)

Hemocoel Endoparasitic Immune response (+)

Alanine, aspartate, glutamate,
starch, sucrose, arginine and
proline metabolism pathway in
hemolymph of host were changed
after PpAmy3 injection.

(243)

Bombyx mori
(Lepidoptera:
Bombycidae)

Bombyx mori
nucleopolyhedrovirus

(BmNPV)

Systemic
infection

Pathogenic
microorganisms

Be killed Expression of BmFoxO (-) (244)

Plagiodera
versicolora
(Coleoptera:

Chrysomelidae)

Gut microbiota Gut Endosymbionts

Immunity-related
genes (peptidoglycan-
recognition protein,

defensin, and
prophenoloxidase) in

larvaes gut (+)

The glycometabolism metabolism
in larvae (-)

(245)

(Continued)
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TABLE 1 Continued

Host
Microorganism/

Parasites
Location in

hosts
Role

Immune phe-
notype of hosts

Metabolic phenotype
of hosts

Reference

Hermetia
illucens
(Diptera:

Stratiomyidae)

Escherichia coli and
Staphylococcus aureus

Systemic
infection

Pathogenic
Microorganisms

Systemic immune
response (+)

Alanine, aspartate, glutamate,
arginine, proline, purine and
pyruvate metabolism were
impacted.

(246)

Diaphorina
citri Kuwayama
(Hemiptera:
Psyllidae)

Candidatus Liberibacter
asiaticus (CLas)

Alimentary
canal/ Salivary

glands/
hemolymph/

Filter chamber/
Midgut
Fat body
Muscle
Ovary

Vector of CLas
Synthesize and release

immune-related
proteases (-)

The vitamin B6,
glycerophospholipid and purine

metabolism pathway (+);
The pantothenate, CoA
biosynthesis, cysteine and

methionine metabolism pathways
(-)

(247, 248)

Glossina
fuscipes fuscipes

(Gff)
(Diptera:
Muscidae)

Spiroplasma
Reproductive
Digestive tissue
Hemolymph

Endosymbionts

Resistance to infection
with trypanosomes

(+);
Toll pathway activity
in the male gonads (+)

Circulating level of TAG in
females hemolymph (-)

(249)

Aedes fluviatilis
(Diptera:
Culicidae)

Wolbachia pipientis Oocytes Endosymbionts

IMD and Toll
pathways activity in
the ovaries post blood

meal (+)

Proteolysis and cytosolic PEPCK
transcript levels in the ovaries
between 24 h and 48 h post

blood meal (+)

(250)

Anopheles
stephensi
(Diptera:
Culicidae)

Plasmodium falciparum Midgut
Vector of P.
falciparum

p38-MAPK pathway
activity (+); The
production of

mitochondrial reactive
oxygen species (-)

Mitochondrial biogenesis,
oxidative phosphorylation
(OXPHOS), antioxidant
biosynthesis, and protein

translation (+)

(71)

Bombyx mori
(Lepidoptera,
Bombycidae)

Autographa californica
nucleopolyhedrovirus

(AcMNPV)

Systemic
infection

Pathogenic
Microorganisms

The production of the
antivirus protein and

gloverin (+)

Adenosine signaling activity (+);
The level of ATP production(+);
The level of hemolymph glucose

at 48 h post infection (-).

(203)

Spodoptera
litura

(Lepidoptera,
Noctuidae)

Snellenius manilae
bracoviruses, SmBVs

Snellenius
manilae injected
egg and SmBVs
into hemocoel
of Spodoptera

litura

SmBVs is symbiont
virus of S.manilae;
S.manilae is an

endoparasitic wasp
of Spodoptera litura

SmBVs inhibited the
expression of immune

gene of S. litura.

SmBVs inhibited the content of
the extracellular adenosine of S.

litura; Glycolysis and
carbohydrate mobilization in the
hemocyte of infected larvae were

inhibited;
Carbohydrate mobilization,

glycogenolysis, and ATP synthesis
(-).

(204)
F
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“+” represents up-regulated; “-” represents down-regulated.
TABLE 2 The immunity and metabolism networks of host.

Species Immune signaling Metabolic signaling Mechanism Reference

Pathogenic bacteria
Toll/IMD

IIS Toll ⊣ AKT ⇥ Foxo → AMPs /catabolism (130)

Hippo
Toll → Pelle → Dif → AMPs

(141)
Toll → Pelle →WTS ⊣ Yorkie

MEF2

Health condition: S6K → MEF2-P → anabolism

(131, 132)Stimulation: IMD/Toll ⊣ S6K ⇒ MEF2-TBP ⊣ anabolism

IMD/Toll ⊣ S6K ⇒ MEF2-TBP → AMPs

TK PGRP-LC → IMD ⊣ TK → Lipogenesis (75)

ROS/Duox TRAF3 TRAF3 ⊣ AKT ⊣ TOR ⊣ S6K (69)

(Continued)
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not only to provide guidance for the study of immunometabolic

diseases in vertebrates including humans, but also to provide

strategies from the perspective of immunometabolism for the

control of agricultural insect pests. The more hypotheses and

proposals for future are shown as the Table 3.
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TABLE 3 The hypotheses and proposals for future in our review.

Hypotheses and proposals for future

• It is necessary to further investigate the distribution and diversity of microbial species in insect hemolymph.

• Investigate the correlation between the abundance and proliferation rate of hemolymph microbes and the nutritional status and immune response intensity of insects.

• Investigate the effects of hemolymph microorganisms on core metabolic pathways such as insulin signaling pathways of host insects.

• Identify the molecular mechanisms of interactions between specific effectors and host receptors in bacteria and determine how these interactions translate into effects on
host insect immunometabolism.

• In addition to the core metabolic pathways, the convenient genetic manipulation techniques of Drosophila can be used to further explore the influence of specific
microbial effectors in specific downstream metabolic pathways.

• The mechanism of microbial regulation of host immunometabolism in other insects also needs to be further studied, providing reference for a more comprehensive
understanding of the effects of microorganisms on host physiology and biochemistry.

• Sex as an important factor should be given more attention in the future about immunometabolic studies.

• With the advancement of technology, it is more beneficial to explore the systematic coordination mechanism of immune metabolism regulation within and between
tissues by using cell sorting and metabolomics etc. technology in the future.

• Future immunometabolic studies should coordinate the regulation mechanism between nervous system with other tissues in both vertebrates and invertebrates.
TABLE 2 Continued

Species Immune signaling Metabolic signaling Mechanism Reference

TRAF3 → AMPK ⊣ TOR → ATG1 → Catabolic

P38-MAPK → Protein synthesis
(71)

P38-MAPK ⊣ ROS

Nonpathogenic
bacteria

IMD

IIS
Acetate → IIS (99)

Acetate → PGRP-LC → Relish → TK ⊣ Lipid Accumulation (105, 107)

TOR
Lactobacillus plantarum → IMD → Intestinal peptidase →

TOR
(90, 91)

ROS/Duox MKP3 MKP3 ⊣ P38-MAPK → Low-level Duox (121)
“→” represents activation; “⊣” represents repression; “⇥” represents derepression; “⇒” represents induction.
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