Skip to main content

CORRECTION article

Front. Immunol., 09 January 2024
Sec. Cancer Immunity and Immunotherapy

Corrigendum: Immunomodulatory function and anti-tumor mechanism of natural polysaccharides: a review

Yang Ying,,Yang Ying1,2,3Wu Hao,,*Wu Hao1,2,3*
  • 1Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
  • 2Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China
  • 3Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China

A Corrigendum on
Immunomodulatory function and anti-tumor mechanism of natural polysaccharides: a review

By Ying Y and Hao W (2023) Front. Immunol. 14:1147641. doi: 10.3389/fimmu.2023.1147641

In the published article, there was an error in the reference list. The reference list was incorrectly revised after the in-text citations were renumbered to conform with Frontiers journal style.

The correct reference list appears below.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin (2021) 71(3):209–49. doi: 10.3322/caac.21660

PubMed Abstract | CrossRef Full Text | Google Scholar

2. Xie L, Shen M, Hong Y, Ye H, Huang L, Xie J. Chemical modifications of polysaccharides and their anti-tumor activities. Carbohydr Polym (2020) 229:115436. doi: 10.1016/j.carbpol.2019.115436

PubMed Abstract | CrossRef Full Text | Google Scholar

3. Yu Y, Shen M, Song Q, Xie J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr Polym (2018) 183:91–101. doi: 10.1016/j.carbpol.2017.12.009

PubMed Abstract | CrossRef Full Text | Google Scholar

4. Manna DK, Maity P, Nandi AK, Pattanayak M, Panda BC, Mandal AK, et al. Structural elucidation and immunostimulating property of a novel polysaccharide extracted from an edible mushroom Lentinus fusipes. Carbohydr Polym (2017) 157:1657–65. doi: 10.1016/j.carbpol.2016.11.048

PubMed Abstract | CrossRef Full Text | Google Scholar

5. Fan S, Zhang J, Nie W, Zhou W, Jin L, Chen X, et al. Antitumor effects of polysaccharide from Sargassum fusiforme against human hepatocellular carcinoma HepG2 cells. Food Chem Toxicol (2017) 102:53–62. doi: 10.1016/j.fct.2017.01.020

PubMed Abstract | CrossRef Full Text | Google Scholar

6. He R, Zhao Y, Zhao R, Sun P. Antioxidant and antitumor activities in vitro of polysaccharides from E. sipunculoides. Int J Biol Macromol (2015) 78:56–61. doi: 10.1016/j.ijbiomac.2015.03.030

PubMed Abstract | CrossRef Full Text | Google Scholar

7. Moradali MF, Mostafavi H, Ghods S, Hedjaroude GA. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). Int Immunopharmacol (2007) 7(6):701–24. doi: 10.1016/j.intimp.2007.01.008

PubMed Abstract | CrossRef Full Text | Google Scholar

8. Zheng Z, Pan X, Luo L, Zhang Q, Huang X, Liu Y, et al. Advances in oral absorption of polysaccharides: Mechanism, affecting factors, and improvement strategies. Carbohydr Polym (2022) 282:119110. doi: 10.1016/j.carbpol.2022.119110

PubMed Abstract | CrossRef Full Text | Google Scholar

9. Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol (2002) 60(3):258–74. doi: 10.1007/s00253-002-1076-7

PubMed Abstract | CrossRef Full Text | Google Scholar

10. Yin M, Zhang Y, Li H. Advances in research on immunoregulation of macrophages by plant polysaccharides. Front Immunol (2019) 10:145. doi: 10.3389/fimmu.2019.00145

PubMed Abstract | CrossRef Full Text | Google Scholar

11. Li M, Wang X, Wang Y, Bao S, Chang Q, Liu L, et al. Strategies for remodeling the tumor microenvironment using active ingredients of ginseng-A promising approach for cancer therapy. Front Pharmacol (2021) 12:797634. doi: 10.3389/fphar.2021.797634

PubMed Abstract | CrossRef Full Text | Google Scholar

12. Wang D, Cui Q, Yang YJ, Liu AQ, Zhang G, Yu JC. Application of dendritic cells in tumor immunotherapy and progress in the mechanism of anti-tumor effect of Astragalus polysaccharide (APS) modulating dendritic cells: a review. BioMed Pharmacother (2022) 155:113541. doi: 10.1016/j.biopha.2022.113541

PubMed Abstract | CrossRef Full Text | Google Scholar

13. Zhang M, Cui SW, Cheung PCK, Wang Q. Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Technol (2007) 18(1):4–19. doi: 10.1016/j.tifs.2006.07.013

CrossRef Full Text | Google Scholar

14. Maity P, Sen IK, Chakraborty I, Mondal S, Bar H, Bhanja SK, et al. Biologically active polysaccharide from edible mushrooms: A review. Int J Biol Macromol (2021) 172:408–17. doi: 10.1016/j.ijbiomac.2021.01.081

PubMed Abstract | CrossRef Full Text | Google Scholar

15. Yelithao K, Surayot U, Lee C, Palanisamy S, Prabhu NM, Lee J, et al. Studies on structural properties and immune-enhancing activities of glycomannans from Schizophyllum commune. Carbohydr Polym (2019) 218:37–45. doi: 10.1016/j.carbpol.2019.04.057

PubMed Abstract | CrossRef Full Text | Google Scholar

16. Xia S, Zhai Y, Wang X, Fan Q, Dong X, Chen M, et al. Phosphorylation of polysaccharides: A review on the synthesis and bioactivities. Int J Biol Macromol (2021) 184:946–54. doi: 10.1016/j.ijbiomac.2021.06.149

PubMed Abstract | CrossRef Full Text | Google Scholar

17. Chen F, Huang G. Preparation and immunological activity of polysaccharides and their derivatives. Int J Biol Macromol (2018) 112:211–6. doi: 10.1016/j.ijbiomac.2018.01.169

PubMed Abstract | CrossRef Full Text | Google Scholar

18. Xu Y, Wu YJ, Sun PL, Zhang FM, Linhardt RJ, Zhang AQ. Chemically modified polysaccharides: Synthesis, characterization, structure activity relationships of action. Int J Biol Macromol (2019) 132:970–7. doi: 10.1016/j.ijbiomac.2019.03.213

PubMed Abstract | CrossRef Full Text | Google Scholar

19. Guo MQ, Hu X, Wang C, Ai L. "Polysaccharides: structure and solubility". In: Solubility of polysaccharides. London: INTECH (2017). p. 7–20. doi: 10.5772/intechopen.71570

CrossRef Full Text | Google Scholar

20. Ren L, Perera C, Hemar Y. Antitumor activity of mushroom polysaccharides: a review. Food Funct (2012) 3(11):1118–30. doi: 10.1039/c2fo10279j

PubMed Abstract | CrossRef Full Text | Google Scholar

21. Guo MZ, Meng M, Duan SQ, Feng CC, Wang CL. Structure characterization, physicochemical property and immunomodulatory activity on RAW264.7 cells of a novel triple-helix polysaccharide from Craterellus cornucopioides. Int J Biol Macromol (2019) 126:796–804. doi: 10.1016/j.ijbiomac.2018.12.246

PubMed Abstract | CrossRef Full Text | Google Scholar

22. Jimenez-Medina E, Berruguilla E, Romero I, Algarra I, Collado A, Garrido F, et al. The immunomodulator PSK induces in vitro cytotoxic activity in tumour cell lines via arrest of cell cycle and induction of apoptosis. BMC Cancer (2008) 8:78. doi: 10.1186/1471-2407-8-78

PubMed Abstract | CrossRef Full Text | Google Scholar

23. Liao W, Luo Z, Liu D, Ning Z, Yang J, Ren J. Structure characterization of a novel polysaccharide from Dictyophora indusiata and its macrophage immunomodulatory activities. J Agric Food Chem (2015) 63(2):535–44. doi: 10.1021/jf504677r

PubMed Abstract | CrossRef Full Text | Google Scholar

24. Maity P, Sen IK, Maji PK, Paloi S, Devi KS, Acharya K, et al. Structural, immunological, and antioxidant studies of beta-glucan from edible mushroom Entoloma lividoalbum. Carbohydr Polym (2015) 123:350–8. doi: 10.1016/j.carbpol.2015.01.051

PubMed Abstract | CrossRef Full Text | Google Scholar

25. Zhang T, Ye J, Xue C, Wang Y, Liao W, Mao L, et al. Structural characteristics and bioactive properties of a novel polysaccharide from Flammulina velutipes. Carbohydr Polym (2018) 197:147–56. doi: 10.1016/j.carbpol.2018.05.069

PubMed Abstract | CrossRef Full Text | Google Scholar

26. Li WJ, Nie SP, Xie MY, Yu Q, Chen Y, He M. Ganoderma atrum polysaccharide attenuates oxidative stress induced by d-galactose in mouse brain. Life Sci (2011) 88(15-16):713–8. doi: 10.1016/j.lfs.2011.02.010

PubMed Abstract | CrossRef Full Text | Google Scholar

27. Li WJ, Nie SP, Peng XP, Liu XZ, Li C, Chen Y, et al. Ganoderma atrum polysaccharide improves age-related oxidative stress and immune impairment in mice. J Agric Food Chem (2012) 60(6):1413–8. doi: 10.1021/jf204748a

PubMed Abstract | CrossRef Full Text | Google Scholar

28. Yu Q, Nie SP, Li WJ, Zheng WY, Yin PF, Gong DM, et al. Macrophage immunomodulatory activity of a purified polysaccharide isolated from Ganoderma atrum. Phytother Res (2013) 27(2):186–91. doi: 10.1002/ptr.4698

PubMed Abstract | CrossRef Full Text | Google Scholar

29. Yu Q, Nie SP, Wang JQ, Yin PF, Huang DF, Li WJ, et al. Toll-like receptor 4-mediated ROS signaling pathway involved in Ganoderma atrum polysaccharide-induced tumor necrosis factor-alpha secretion during macrophage activation. Food Chem Toxicol (2014) 66:14–22. doi: 10.1016/j.fct.2014.01.018

PubMed Abstract | CrossRef Full Text | Google Scholar

30. Yu Q, Nie SP, Wang JQ, Huang DF, Li WJ, Xie MY. Signaling pathway involved in the immunomodulatory effect of Ganoderma atrum polysaccharide in spleen lymphocytes. J Agric Food Chem (2015) 63(10):2734–40. doi: 10.1021/acs.jafc.5b00028

PubMed Abstract | CrossRef Full Text | Google Scholar

31. Xiang QD, Yu Q, Wang H, Zhao MM, Liu SY, Nie SP, et al. Immunomodulatory Activity of Ganoderma atrum Polysaccharide on Purified T Lymphocytes through Ca(2+)/CaN and Mitogen-Activated Protein Kinase Pathway Based on RNA Sequencing. J Agric Food Chem (2017) 65(26):5306–15. doi: 10.1021/acs.jafc.7b01763

PubMed Abstract | CrossRef Full Text | Google Scholar

32. Zhang J, Tang Q, Zimmerman-Kordmann M, Reutter W, Fan H. Activation of B lymphocytes by GLIS, a bioactive proteoglycan from Ganoderma lucidum. Life Sci (2002) 71(6):623–38. doi: 10.1016/S0024-3205(02)01690-9

PubMed Abstract | CrossRef Full Text | Google Scholar

33. Liu MM, Zeng P, Li XT, Shi LG. Antitumor and immunomodulation activities of polysaccharide from Phellinus baumii. Int J Biol Macromol (2016) 91:1199–205. doi: 10.1016/j.ijbiomac.2016.06.086

PubMed Abstract | CrossRef Full Text | Google Scholar

34. Liu Y, Liu Y, Jiang H, Xu L, Cheng Y, Wang PG, et al. Preparation, antiangiogenic and antitumoral activities of the chemically sulfated glucan from Phellinus ribis. Carbohydr Polym (2014) 106:42–8. doi: 10.1016/j.carbpol.2014.01.088

PubMed Abstract | CrossRef Full Text | Google Scholar

35. Wang Q, Niu LL, Liu HP, Wu YR, Li MY, Jia Q. Structural characterization of a novel polysaccharide from Pleurotus citrinopileatus and its antitumor activity on H22 tumor-bearing mice. Int J Biol Macromol (2021) 168:251–60. doi: 10.1016/j.ijbiomac.2020.12.053

PubMed Abstract | CrossRef Full Text | Google Scholar

36. Zhang Y, Zhang Z, Liu H, Wang J, Wang, Deng Z, et al. Physicochemical characterization and antitumor activity in vitro of a selenium polysaccharide from Pleurotus ostreatus. Int J Biol Macromol (2020) 165(Pt B):2934–46. doi: 10.1016/j.ijbiomac.2020.10.168

PubMed Abstract | CrossRef Full Text | Google Scholar

37. Li X, Xu W, Chen J. Polysaccharide purified from Polyporus umbellatus (Per) Fr induces the activation and maturation of murine bone-derived dendritic cells via toll-like receptor 4. Cell Immunol (2010) 265(1):50–6. doi: 10.1016/j.cellimm.2010.07.002

PubMed Abstract | CrossRef Full Text | Google Scholar

38. Zhang GW, Qin GF, Han B, Li CX, Yang HG, Nie PH, et al. Efficacy of Zhuling polyporus polysaccharide with BCG to inhibit bladder carcinoma. Carbohydr Polym (2015) 118:30–5. doi: 10.1016/j.carbpol.2014.11.012

PubMed Abstract | CrossRef Full Text | Google Scholar

39. Guo Z, Zang Y, Zhang L. The efficacy of Polyporus Umbellatus polysaccharide in treating hepatitis B in China. Prog Mol Biol Transl Sci (2019) 163:329–60. doi: 10.1016/bs.pmbts.2019.03.012

PubMed Abstract | CrossRef Full Text | Google Scholar

40. Chen Y, Li X-H, Zhou L-Y, Li W, Liu L, Wang D-D, et al. Structural elucidation of three antioxidative polysaccharides from Tricholoma lobayense. Carbohydr Polymers (2017) 157:484–92. doi: 10.1016/j.carbpol.2016.10.011

CrossRef Full Text | Google Scholar

41. Xie Y, Wang L, Sun H, Shang Q, Wang Y, Zhang G, et al. A polysaccharide extracted from alfalfa activates splenic B cells by TLR4 and acts primarily via the MAPK/p38 pathway. Food Funct (2020) 11(10):9035–47. doi: 10.1039/D0FO01711F

PubMed Abstract | CrossRef Full Text | Google Scholar

42. Wang J, Bao A, Wang Q, Guo H, Zhang Y, Liang J, et al. Sulfation can enhance antitumor activities of Artemisia sphaerocephala polysaccharide in vitro and vivo. Int J Biol Macromol (2018) 107(Pt A):502–11. doi: 10.1016/j.ijbiomac.2017.09.018

PubMed Abstract | CrossRef Full Text | Google Scholar

43. Shi S, Chang M, Liu H, Ding S, Yan Z, Si K, et al. The structural characteristics of an acidic water-soluble polysaccharide from bupleurum chinense DC and its in vivo anti-tumor activity on H22 tumor-bearing mice. Polymers (Basel) (2022) 14(6):1119. doi: 10.3390/polym14061119

PubMed Abstract | CrossRef Full Text | Google Scholar

44. Park HB, Lim SM, Hwang J, Zhang W, You S, Jin JO. Cancer immunotherapy using a polysaccharide from Codium fragile in a murine model. Oncoimmunology (2020) 9(1):1772663. doi: 10.1080/2162402X.2020.1772663

PubMed Abstract | CrossRef Full Text | Google Scholar

45. Zhang W, Hwang J, Park HB, Lim SM, Go S, Kim J, et al. Human peripheral blood dendritic cell and T cell activation by codium fragile polysaccharide. Mar Drugs (2020) 18(11):535. doi: 10.3390/md18110535

PubMed Abstract | CrossRef Full Text | Google Scholar

46. Zheng YS, Wu ZS, Ni HB, Ke L, Tong ZH, Li WQ, et al. Codonopsis pilosula polysaccharide attenuates cecal ligation and puncture sepsis via circuiting regulatory T cells in mice. Shock (2014) 41(3):250–5. doi: 10.1097/SHK.0000000000000091

PubMed Abstract | CrossRef Full Text | Google Scholar

47. Mazepa E, Noseda MD, Ferreira LG, de Carvalho MM, Goncalves AG, Ducatti DRB, et al. Chemical structure of native and modified sulfated heterorhamnans from the green seaweed Gayralia brasiliensis and their cytotoxic effect on U87MG human glioma cells. Int J Biol Macromol (2021) 187:710–21. doi: 10.1016/j.ijbiomac.2021.07.145

PubMed Abstract | CrossRef Full Text | Google Scholar

48. Wang H, Bi H, Gao T, Zhao B, Ni W, Liu J. A homogalacturonan from Hippophae rhamnoides L. Berries enhance immunomodulatory activity through TLR4/MyD88 pathway mediated activation of macrophages. Int J Biol Macromol (2018) 107(Pt A):1039–45. doi: 10.1016/j.ijbiomac.2017.09.083

PubMed Abstract | CrossRef Full Text | Google Scholar

49. Fang Q, Wang JF, Zha XQ, Cui SH, Cao L, Luo JP. Immunomodulatory activity on macrophage of a purified polysaccharide extracted from Laminaria japonica. Carbohydr Polym (2015) 134:66–73. doi: 10.1016/j.carbpol.2015.07.070

PubMed Abstract | CrossRef Full Text | Google Scholar

50. Perez-Recalde M, Matulewicz MC, Pujol CA, Carlucci MJ. In vitro and in vivo immunomodulatory activity of sulfated polysaccharides from red seaweed Nemalion helminthoides. Int J Biol Macromol (2014) 63:38–42. doi: 10.1016/j.ijbiomac.2013.10.024

PubMed Abstract | CrossRef Full Text | Google Scholar

51. Sun W, Hu W, Meng K, Yang L, Zhang W, Song X, et al. Activation of macrophages by the ophiopogon polysaccharide liposome from the root tuber of Ophiopogon japonicus. Int J Biol Macromol (2016) 91:918–25. doi: 10.1016/j.ijbiomac.2016.06.037

PubMed Abstract | CrossRef Full Text | Google Scholar

52. Wang X, Gao A, Jiao Y, Zhao Y, Yang X. Antitumor effect and molecular mechanism of antioxidant polysaccharides from Salvia miltiorrhiza Bunge in human colorectal carcinoma LoVo cells. Int J Biol Macromol (2018) 108:625–34. doi: 10.1016/j.ijbiomac.2017.12.006

PubMed Abstract | CrossRef Full Text | Google Scholar

53. Chen X, Yu G, Fan S, Bian M, Ma H, Lu J, et al. Sargassum fusiforme polysaccharide activates nuclear factor kappa-B (NF-kappaB) and induces cytokine production via Toll-like receptors. Carbohydr Polym (2014) 105:113–20. doi: 10.1016/j.carbpol.2014.01.056

PubMed Abstract | CrossRef Full Text | Google Scholar

54. Chen H, Zhang L, Long X, Li P, Chen S, Kuang W, et al. Sargassum fusiforme polysaccharides inhibit VEGF-A-related angiogenesis and proliferation of lung cancer in vitro and in vivo. BioMed Pharmacother (2017) 85:22–7. doi: 10.1016/j.biopha.2016.11.131

PubMed Abstract | CrossRef Full Text | Google Scholar

55. Tang X, Huang J, Xiong H, Zhang K, Chen C, Wei X, et al. Anti-tumor effects of the polysaccharide isolated from tarphochlamys affinis in H22 tumor-bearing mice. Cell Physiol Biochem (2016) 39(3):1040–50. doi: 10.1159/000447811

PubMed Abstract | CrossRef Full Text | Google Scholar

56. Gupta PK, Rajan MGR, Kulkarni S. Activation of murine macrophages by G1-4A, a polysaccharide from Tinospora cordifolia, in TLR4/MyD88 dependent manner. Int Immunopharmacol (2017) 50:168–77. doi: 10.1016/j.intimp.2017.06.025

PubMed Abstract | CrossRef Full Text | Google Scholar

57. Wang Y, Wang S, Song R, Cai J, Xu J, Tang X, et al. Ginger polysaccharides induced cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Int J Biol Macromol (2019) 123:81–90. doi: 10.1016/j.ijbiomac.2018.10.169

PubMed Abstract | CrossRef Full Text | Google Scholar

58. He R, Ye J, Zhao Y, Su W. Partial characterization, antioxidant and antitumor activities of polysaccharides from Philomycusbilineatus. Int J Biol Macromol (2014) 65:573–80. doi: 10.1016/j.ijbiomac.2014.01.016

PubMed Abstract | CrossRef Full Text | Google Scholar

59. Zhao H, Li Y, Wang Y, Zhang J, Ouyang X, Peng R, et al. Antitumor and immunostimulatory activity of a polysaccharide-protein complex from Scolopendra subspinipes mutilans L. Koch in tumor-bearing mice. Food Chem Toxicol (2012) 50(8):2648–55. doi: 10.1016/j.fct.2012.05.018

PubMed Abstract | CrossRef Full Text | Google Scholar

60. Yuan P, Fang F, Shao T, Li P, Hu W, Zhou Y, et al. Structure and anti-tumor activities of exopolysaccharides from alternaria Mali roberts. Molecules (2019) 24(7):1345. doi: 10.3390/molecules24071345

PubMed Abstract | CrossRef Full Text | Google Scholar

61. Liu WB, Xie F, Sun HQ, Meng M, Zhu ZY. Anti-tumor effect of polysaccharide from Hirsutella sinensis on human non-small cell lung cancer and nude mice through intrinsic mitochondrial pathway. Int J Biol Macromol (2017) 99:258–64. doi: 10.1016/j.ijbiomac.2017.02.071

PubMed Abstract | CrossRef Full Text | Google Scholar

62. Li S, Gao A, Dong S, Chen Y, Sun S, Lei Z, et al. Purification, antitumor and immunomodulatory activity of polysaccharides from soybean residue fermented with Morchella esculenta. Int J Biol Macromol (2017) 96:26–34. doi: 10.1016/j.ijbiomac.2016.12.007

PubMed Abstract | CrossRef Full Text | Google Scholar

63. Zhang X, Ding R, Zhou Y, Zhu R, Liu W, Jin L, et al. Toll-like receptor 2 and Toll-like receptor 4-dependent activation of B cells by a polysaccharide from marine fungus Phoma herbarum YS4108. PloS One (2013) 8(3):e60781. doi: 10.1371/journal.pone.0060781

PubMed Abstract | CrossRef Full Text | Google Scholar

64. Huang T, Lin J, Cao J, Zhang P, Bai Y, Chen G, et al. An exopolysaccharide from Trichoderma pseudokoningii and its apoptotic activity on human leukemia K562 cells. Carbohydr Polym (2012) 89(2):701–8. doi: 10.1016/j.carbpol.2012.03.079

PubMed Abstract | CrossRef Full Text | Google Scholar

65. Falch BH, Espevik T, Ryan L, Stokke BT. The cytokine stimulating activity of (1–>3)-beta-D-glucans is dependent on the triple helix conformation. Carbohydr Res (2000) 329(3):587–96. doi: 10.1016/S0008-6215(00)00222-6

PubMed Abstract | CrossRef Full Text | Google Scholar

66. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell (2011) 144(5):646–74. doi: 10.1016/j.cell.2011.02.013

PubMed Abstract | CrossRef Full Text | Google Scholar

67. Leibovici J, Itzhaki O, Huszar M, Sinai J. The tumor microenvironment: part 1. Immunotherapy (2011) 3(11):1367–84. doi: 10.2217/imt.11.111

PubMed Abstract | CrossRef Full Text | Google Scholar

68. Kellum JA, Chawla LS. Cell-cycle arrest and acute kidney injury: the light and the dark sides. Nephrol Dial Transplant (2016) 31(1):16–22. doi: 10.1093/ndt/gfv130

PubMed Abstract | CrossRef Full Text | Google Scholar

69. Giono LE, Manfredi JJ. The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol (2006) 209(1):13–20. doi: 10.1002/jcp.20689

PubMed Abstract | CrossRef Full Text | Google Scholar

70. Zhou X, Hao Q, Lu H. Mutant p53 in cancer therapy-the barrier or the path. J Mol Cell Biol (2019) 11(4):293–305. doi: 10.1093/jmcb/mjy072

PubMed Abstract | CrossRef Full Text | Google Scholar

71. Elmore S. Apoptosis: a review of programmed cell death. Toxicologic Pathol (2007) 35(4):495–516. doi: 10.1080/01926230701320337

CrossRef Full Text | Google Scholar

72. Reed JC. Mechanisms of apoptosis. Am J Pathol (2000) 157(5):1415–30. doi: 10.1016/S0002-9440(10)64779-7

PubMed Abstract | CrossRef Full Text | Google Scholar

73. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer (2002) 2(9):647–56. doi: 10.1038/nrc883

PubMed Abstract | CrossRef Full Text | Google Scholar

74. Soares R, Meireles M, Rocha A, Pirraco A, Obiol D, Alonso E, et al. Maitake (D fraction) mushroom extract induces apoptosis in breast cancer cells by BAK-1 gene activation. J Medicinal Food (2011) 14(6):563–72. doi: 10.1089/jmf.2010.0095

CrossRef Full Text | Google Scholar

75. Acharya A, Das I, Chandhok D, Saha T. Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxid Med Cell Longevity (2010) 3(1):23–34. doi: 10.4161/oxim.3.1.10095

CrossRef Full Text | Google Scholar

76. Fuchs-Tarlovsky V. Role of antioxidants in cancer therapy. Nutrition (2013) 29(1):15–21. doi: 10.1016/j.nut.2012.02.014

PubMed Abstract | CrossRef Full Text | Google Scholar

77. Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett (2017) 387:95–105. doi: 10.1016/j.canlet.2016.03.042

PubMed Abstract | CrossRef Full Text | Google Scholar

78. Block KI, Koch AC, Mead MN, Tothy PK, Newman RA, Gyllenhaal C. Impact of antioxidant supplementation on chemotherapeutic toxicity: a systematic review of the evidence from randomized controlled trials. Int J Cancer (2008) 123(6):1227–39. doi: 10.1002/ijc.23754

PubMed Abstract | CrossRef Full Text | Google Scholar

79. Sosa V, Moline T, Somoza R, Paciucci R, Kondoh H, LLeonart ME. Oxidative stress and cancer: an overview. Ageing Res Rev (2013) 12(1):376–90. doi: 10.1016/j.arr.2012.10.004

PubMed Abstract | CrossRef Full Text | Google Scholar

80. Anderson NM, Simon MC. The tumor microenvironment. Curr Biol (2020) 30(16):R921–5. doi: 10.1016/j.cub.2020.06.081

PubMed Abstract | CrossRef Full Text | Google Scholar

81. Liu L, Nie S, Xie M. Tumor microenvironment as a new target for tumor immunotherapy of polysaccharides. Crit Rev Food Sci Nutr (2016) 56 Suppl 1:S85–94. doi: 10.1080/10408398.2015.1077191

PubMed Abstract | CrossRef Full Text | Google Scholar

82. Wang WJ, Wu YS, Chen S, Liu CF, Chen SN. Mushroom beta-glucan may immunomodulate the tumor-associated macrophages in the lewis lung carcinoma. BioMed Res Int (2015) 2015:604385. doi: 10.1155/2015/604385

PubMed Abstract | CrossRef Full Text | Google Scholar

83. Nishimura T, Nakui M, Sato M, Iwakabe K, Kitamura H, Sekimoto M, et al. The critical role of Th1-dominant immunity in tumor immunology. Cancer Chemotherapy Pharmacol (2000) 46(1):S52–61. doi: 10.1007/PL00014051

CrossRef Full Text | Google Scholar

84. Hu H-M, Urba WJ, Fox BA. Gene-modified tumor vaccine with therapeutic potential shifts tumor-specific T cell response from a type 2 to a type 1 cytokine profile. J Immunol (1998) 161(6):3033. doi: 10.4049/jimmunol.161.6.3033

PubMed Abstract | CrossRef Full Text | Google Scholar

85. Lim SM, Park HB, Jin JO. Polysaccharide from Astragalus membranaceus promotes the activation of human peripheral blood and mouse spleen dendritic cells. Chin J Nat Med (2021) 19(1):56–62. doi: 10.1016/S1875-5364(21)60006-7

PubMed Abstract | CrossRef Full Text | Google Scholar

86. Ren L, Zhang J, Zhang T. Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells. Food Chem (2021) 340:127933. doi: 10.1016/j.foodchem.2020.127933

PubMed Abstract | CrossRef Full Text | Google Scholar

87. Zhao L, Dong Y, Chen G, Hu Q. Extraction, purification, characterization and antitumor activity of polysaccharides from Ganoderma lucidum. Carbohydr Polymers (2010) 80(3):783–9. doi: 10.1016/j.carbpol.2009.12.029

CrossRef Full Text | Google Scholar

88. Wang S-Y, Hsu M-L, Hsu H-C, Lee S-S, Shiao M-S, Ho C-K. The anti-tumor effect of Ganoderma Lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int J Cancer (1997) 70(6):699–705. doi: 10.1002/(SICI)1097-0215(19970317)70:6<699::AID-IJC12>3.0.CO;2-5

PubMed Abstract | CrossRef Full Text | Google Scholar

89. Hsu JW, Huang HC, Chen ST, Wong CH, Juan HF. Ganoderma lucidum Polysaccharides Induce Macrophage-Like Differentiation in Human Leukemia THP-1 Cells via Caspase and p53 Activation. Evid Based Complement Alternat Med 2011 (2011) p:358717. doi: 10.1093/ecam/nep107

CrossRef Full Text | Google Scholar

90. Hsu TL, Cheng SC, Yang WB, Chin SW, Chen BH, Huang MT, et al. Profiling carbohydrate-receptor interaction with recombinant innate immunity receptor-Fc fusion proteins. J Biol Chem (2009) 284(50):34479–89. doi: 10.1074/jbc.M109.065961

PubMed Abstract | CrossRef Full Text | Google Scholar

91. Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL, Martinez-Pomares L, et al. Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med (2002) 196(3):407–12. doi: 10.1084/jem.20020470

PubMed Abstract | CrossRef Full Text | Google Scholar

92. Palma AS, Feizi T, Zhang Y, Stoll MS, Lawson AM, Diaz-Rodriguez E, et al. Ligands for the beta-glucan receptor, Dectin-1, assigned using "designer" microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J Biol Chem (2006) 281(9):5771–9. doi: 10.1074/jbc.M511461200

PubMed Abstract | CrossRef Full Text | Google Scholar

93. Lee JS, Hong EK. Immunostimulating activity of the polysaccharides isolated from Cordyceps militaris. Int Immunopharmacol (2011) 11(9):1226–33. doi: 10.1016/j.intimp.2011.04.001

PubMed Abstract | CrossRef Full Text | Google Scholar

94. Li WJ, Tang XF, Shuai XX, Jiang CJ, Liu X, Wang LF, et al. Mannose receptor mediates the immune response to ganoderma atrum polysaccharides in macrophages. J Agric Food Chem (2017) 65(2):348–57. doi: 10.1021/acs.jafc.6b04888

PubMed Abstract | CrossRef Full Text | Google Scholar

95. Hsu HY, Hua KF, Lin CC, Lin CH, Hsu J, Wong CH. Extract of Reishi polysaccharides induces cytokine expression via TLR4-modulated protein kinase signaling pathways. J Immunol (2004) 173(10):5989–99. doi: 10.4049/jimmunol.173.10.5989

PubMed Abstract | CrossRef Full Text | Google Scholar

96. Mazgaeen L, Gurung P. Recent advances in lipopolysaccharide recognition systems. Int J Mol Sci (2020) 21(2):379. doi: 10.3390/ijms21020379

PubMed Abstract | CrossRef Full Text | Google Scholar

97. Liu GK, Yang TX, Wang JR. Polysaccharides from Polyporus umbellatus: A review on their extraction, modification, structure, and bioactivities. Int J Biol Macromol (2021) 189:124–34. doi: 10.1016/j.ijbiomac.2021.08.101

PubMed Abstract | CrossRef Full Text | Google Scholar

98. Zhou L, Liu Z, Wang Z, Yu S, Long T, Zhou X, et al. Astragalus polysaccharides exerts immunomodulatory effects via TLR4-mediated MyD88-dependent signaling pathway in vitro and in vivo. Sci Rep (2017) 17(7):44822. doi: 10.1038/srep44822

CrossRef Full Text | Google Scholar

99. Li W, Hu X, Wang S, Jiao Z, Sun T, Liu T, et al. Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation. Int J Biol Macromol (2020) 145:985–97. doi: 10.1016/j.ijbiomac.2019.09.189

PubMed Abstract | CrossRef Full Text | Google Scholar

100. Wang Y, An E-K, Kim S-J, You S, Jin J-O. Intranasal Administration of Codium fragile Polysaccharide Elicits Anti-Cancer Immunity against Lewis Lung Carcinoma. Int J Mol Sci (2021) 22(19):10608. doi: 10.3390/ijms221910608

CrossRef Full Text | Google Scholar

101. Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res (2017) 27(1):109–18. doi: 10.1038/cr.2016.151

PubMed Abstract | CrossRef Full Text | Google Scholar

102. Bullard DC. "Cr3". In: The complement factsBook. Barnum S, Schein T, editors. San Diego, CA: Academic Press (2018). p. 435–50. doi: 10.1016/B978-0-12-810420-0.00041-9

CrossRef Full Text | Google Scholar

103. Xiao Z, Zhou W, Zhang Y. Chapter ten - fungal polysaccharides. In: Du G, editor. Advances in pharmacology. San Diego, CA: Academic Press (2020). p. 277–99. doi: 10.1016/bs.apha.2019.08.003

CrossRef Full Text | Google Scholar

104. Lu CC, Hsu YJ, Chang CJ, Lin CS, Martel J, Ojcius DM, et al. Immunomodulatory properties of medicinal mushrooms: differential effects of water and ethanol extracts on NK cell-mediated cytotoxicity. Innate Immun (2016) 22(7):522–33. doi: 10.1177/1753425916661402

PubMed Abstract | CrossRef Full Text | Google Scholar

105. Huang Q, Li L, Chen H, Liu Q, Wang Z. GPP (Composition of ganoderma lucidum poly-saccharides and polyporus umbellatus poly-saccharides) enhances innate immune function in mice. Nutrients (2019) 11(7):1480. doi: 10.3390/nu11071480

PubMed Abstract | CrossRef Full Text | Google Scholar

106. Ma Y, Wu X, Yu J, Zhu J, Pen X, Meng X. Can polysaccharide K improve therapeutic efficacy and safety in gastrointestinal cancer? a systematic review and network meta-analysis. Oncotarget (2017) 8(51):89108–18. doi: 10.18632/oncotarget.19059

PubMed Abstract | CrossRef Full Text | Google Scholar

107. Chan SL, Yeung JH. Effects of polysaccharide peptide (PSP) from Coriolus versicolor on the pharmacokinetics of cyclophosphamide in the rat and cytotoxicity in HepG2 cells. Food Chem Toxicol (2006) 44(5):689–94. doi: 10.1016/j.fct.2005.10.001

PubMed Abstract | CrossRef Full Text | Google Scholar

108. Wan JM-F, Sit W-H, Louie JC-Y. Polysaccharopeptide enhances the anticancer activity of doxorubicin and etoposide on human breast cancer cells ZR-75-30. Int J Oncol (2008) 32(3):689–99. doi: 10.3892/ijo.32.3.689

PubMed Abstract | CrossRef Full Text | Google Scholar

109. Wan JM, Sit WH, Yang X, Jiang P, Wong LL. Polysaccharopeptides derived from Coriolus versicolor potentiate the S-phase specific cytotoxicity of Camptothecin (CPT) on human leukemia HL-60 cells. Chin Med (2010) 5:16. doi: 10.1186/1749-8546-5-16

PubMed Abstract | CrossRef Full Text | Google Scholar

110. Li J, Bao Y, Lam W, Li W, Lu F, Zhu X, et al. Immunoregulatory and anti-tumor effects of polysaccharopeptide and Astragalus polysaccharides on tumor-bearing mice. Immunopharmacol Immunotoxicol (2008) 30(4):771–82. doi: 10.1080/08923970802279183

PubMed Abstract | CrossRef Full Text | Google Scholar

111. Zong A, Cao H, Wang F. Anticancer polysaccharides from natural resources: a review of recent research. Carbohydr Polym (2012) 90(4):1395–410. doi: 10.1016/j.carbpol.2012.07.026

PubMed Abstract | CrossRef Full Text | Google Scholar

112. Fritz H, Kennedy DA, Ishii M, Fergusson D, Fernandes R, Cooley K, et al. Polysaccharide K and Coriolus versicolor extracts for lung cancer: a systematic review. Integr Cancer Ther (2015) 14(3):201–11. doi: 10.1177/1534735415572883

PubMed Abstract | CrossRef Full Text | Google Scholar

113. Yamasaki A, Onishi H, Imaizumi A, Kawamoto M, Fujimura A, Oyama Y, et al. Protein-bound polysaccharide-K inhibits hedgehog signaling through down-regulation of MAML3 and RBPJ transcription under hypoxia, suppressing the Malignant phenotype in pancreatic cancer. Anticancer Res (2016) 36(8):3945.

PubMed Abstract | Google Scholar

114. Li X, He Y, Zeng P, Liu Y, Zhang M, Hao C, et al. Molecular basis for Poria cocos mushroom polysaccharide used as an antitumour drug in China. J Cell Mol Med (2019) 23(1):4–20. doi: 10.1111/jcmm.13564

PubMed Abstract | CrossRef Full Text | Google Scholar

115. Zeng P, Guo Z, Zeng X, Hao C, Zhang Y, Zhang M, et al. Chemical, biochemical, preclinical and clinical studies of Ganoderma lucidum polysaccharide as an approved drug for treating myopathy and other diseases in China. J Cell Mol Med (2018) 22(7):3278–97. doi: 10.1111/jcmm.13613

PubMed Abstract | CrossRef Full Text | Google Scholar

116. He Y, Zhang L, Wang H. The biological activities of the antitumor drug Grifola frondosa polysaccharide. Prog Mol Biol Transl Sci (2019) 163:221–61. doi: 10.1016/bs.pmbts.2019.02.010

PubMed Abstract | CrossRef Full Text | Google Scholar

117. Liu YH, Qin HY, Zhong YY, Li S, Wang HJ, Wang H, et al. Neutral polysaccharide from Panax notoginseng enhanced cyclophosphamide antitumor efficacy in hepatoma H22-bearing mice. BMC Cancer (2021) 21(1):37. doi: 10.1186/s12885-020-07742-z

PubMed Abstract | CrossRef Full Text | Google Scholar

118. Chen J, Pang W, Kan Y, Zhao L, He Z, Shi W, et al. Structure of a pectic polysaccharide from Pseudostellaria heterophylla and stimulating insulin secretion of INS-1 cell and distributing in rats by oral. Int J Biol Macromol (2018) 106:456–63. doi: 10.1016/j.ijbiomac.2017.08.034

PubMed Abstract | CrossRef Full Text | Google Scholar

119. Opanasopit P, Aumklad P, Kowapradit J, Ngawhiranpat T, Apirakaramwong A, Rojanarata T, et al. Effect of salt forms and molecular weight of chitosans on in vitro permeability enhancement in intestinal epithelial cells (Caco-2). Pharm Dev Technol (2007) 12(5):447–55. doi: 10.1080/10837450701555901

PubMed Abstract | CrossRef Full Text | Google Scholar

120. Wang Y, Bai X, Hu B, Xing M, Cao Q, Ji A, et al. Transport mechanisms of polymannuronic acid and polyguluronic acid across caco-2 cell monolayers. Pharmaceutics (2020) 12(2):167. doi: 10.3390/pharmaceutics12020167

PubMed Abstract | CrossRef Full Text | Google Scholar

121. Hisada N, Satsu H, Mori A, Totsuka M, Kamei J, Nozawa T, et al. Low-molecular-weight hyaluronan permeates through human intestinal Caco-2 cell monolayers via the paracellular pathway. Biosci Biotechnol Biochem (2008) 72(4):1111–4. doi: 10.1271/bbb.70748

PubMed Abstract | CrossRef Full Text | Google Scholar

122. Lee DY, Park K, Kim SK, Park RW, Kwon IC, Kim SY, et al. Antimetastatic effect of an orally active heparin derivative on experimentally induced metastasis. Clin Cancer Res (2008) 14(9):2841–9. doi: 10.1158/1078-0432.CCR-07-0641

PubMed Abstract | CrossRef Full Text | Google Scholar

123. Gao Y, He L, Katsumi H, Sakane T, Fujita T, Yamamoto A. Improvement of intestinal absorption of water-soluble macromolecules by various polyamines: intestinal mucosal toxicity and absorption-enhancing mechanism of spermine. Int J Pharm (2008) 354(1-2):126–34. doi: 10.1016/j.ijpharm.2007.11.061

PubMed Abstract | CrossRef Full Text | Google Scholar

124. Gao Y, He L, Katsumi H, Sakane T, Fujita T, Yamamoto A. Improvement of intestinal absorption of insulin and water-soluble macromolecular compounds by chitosan oligomers in rats. Int J Pharm (2008) 359(1-2):70–8. doi: 10.1016/j.ijpharm.2008.03.016

PubMed Abstract | CrossRef Full Text | Google Scholar

125. Bernkop-Schnürch A, Kast CE, Guggi D. Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems. J Control Release (2003) 93(2):95–103. doi: 10.1016/j.jconrel.2003.05.001

PubMed Abstract | CrossRef Full Text | Google Scholar

Keywords: polysaccharides, anti-tumor, tumor, immunomodulatory, immune response

Citation: Ying Y and Hao W (2024) Corrigendum: Immunomodulatory function and anti-tumor mechanism of natural polysaccharides: a review. Front. Immunol. 14:1361355. doi: 10.3389/fimmu.2023.1361355

Received: 25 December 2023; Accepted: 29 December 2023;
Published: 09 January 2024.

Approved by:

Frontiers Editorial Office, Frontiers Media SA, Switzerland

Copyright © 2024 Ying and Hao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Wu Hao, d3VfaGFvQHpqdS5lZHUuY24=

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.