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Cell death proteins play a central role in host immune signaling during sepsis.

These interconnected mechanisms trigger cell demise via apoptosis,

necroptosis, and pyroptosis while also driving inflammatory signaling. Targeting

cell death mediators with novel therapies may correct the dysregulated

inflammation seen during sepsis and improve outcomes for septic patients.
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Introduction

Programmed cell death (PCD) networks are fundamental components of the host

response to infection (1, 2). These front-line defense mechanisms both eliminate infected

cells and trigger inflammation, and they are increasingly recognized as significant

contributors to the dysregulated immune environment of sepsis (3–7). Importantly,

these networks display significant overlap and interplay with one another, and attempts

at manipulating PCD cascades must contend with diverse and complex signaling outcomes.

This review will highlight core mediators of PCD pathways and examine current and

potential future therapeutic strategies to target cell death proteins in sepsis.
Key PCD components

Caspases

The caspases are a family of highly evolutionarily conserved proteases that cleave

peptide bonds within proteins by hydrolysis. Perhaps best known as mediators of apoptosis

(Figure 1), caspases are now understood to also support inflammatory signaling, and

distinct groups of pro-inflammatory and apoptotic caspase members have been well

described (8, 9).

Inflammatory caspases (also called “Group I caspases”) cleave inactive mediators into

their functional forms (9). Caspase-1 (CASP1) was first identified as the enzyme

responsible for the conversion of pro-interleukin-1b (IL-1b) to IL-1b, and it plays a
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similar role in the maturation of IL-18. Group I also includes

CASP4 and CASP5. These proteases do not participate in IL-1b
production, but rather, in concert with CASP1, hydrolyze and

activate gasdermin-D (GSDMD), a pore-forming molecule that

perforates cell membranes to release cytokines and damage

associated molecular patterns (DAMPs) in the lytic cell death

mode of pyroptosis (Figure 1). Importantly, CASP4/5 (and the

murine equivalent, CASP11), also bind directly to cytosolic

lipopolysaccharide (LPS) which causes auto-activation,

demonstrating that inflammatory caspases also function as direct

pathogen sensors (10).

Apoptotic caspases include both initiator and effector varieties

(“Group II” and “Group III” caspases, respectively) (9). When

activated, these enzymes cleave hundreds of target sequences

within cell proteins, facilitating homeostatic tissue turnover and

non-inflammatory cell death by apoptosis (9). Unlike pyroptosis,

apoptosis does not disrupt cell membrane integrity, and cell

components are broken down and packaged into apoptotic bodies

for orderly clearance by phagocytes. A plethora of stimuli promote

apoptotic caspase signaling, including mitochondrial stress, DNA

damage, and infection (11).

Sepsis induces broad and diverse caspase activity, and the

resulting impact on septic immune dysfunction is complex and

context-dependent. Initial descriptions of apoptotic caspases in

sepsis noted pronounced death of immune cells and gut epithelial

cells (12), and later studies revealed that transgenic animals with
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inhibited apoptotic machinery consistently display improved sepsis

survival (13–15). Inflammatory caspases support robust cytokine

production early in sepsis and may trigger pyroptosis in infected

patients, though whether these signaling outcomes are beneficial or

detrimental to the host cannot be uniformly stated (16–19).

Moreover, it must be emphasized that substantial crosstalk occurs

between caspase subfamilies and other cell death machinery, and

any therapeutic approach based on caspase modulation must

consider complicated signaling dynamics (8). For instance,

caspase-8 actively protects cells against stimulation of receptor

interacting protein kinase 3 (RIPK3) which would cause cell

death by necroptosis, and correspondingly, inhibition of RIPK3

function may predispose cells to death by caspase-mediated

apoptosis (Figure 2) (20–22). Such trap door mechanisms abound

in PCD signaling and must be carefully anticipated to avoid

unintended cellular toxicity.
Receptor interacting protein kinases

The receptor interacting protein (RIP) kinases are a group of

ubiquitously expressed proteins that regulate diverse cell functions.

Each member of the RIPK family contains a homologous kinase

domain and variable structural domains that dictate involvement

with a range of cell signaling networks. RIPK1, for example, was

first identified by virtue of death domain interactions with the cell
FIGURE 1

Overview of diverse PCD signaling outcomes. Depending on cellular conditions, flux through PCD signaling pathways has variable outcomes.
Apoptotic caspases drive non-inflammatory cell death via apoptosis, while RIPK1, RIPK3, and MLKL support inflammatory membrane rupture via
necroptosis. As part of inflammasomes, pro-inflammatory CASP1 promotes cleavage of GSDMD and cell death by pyroptosis. Importantly, in some
contexts, these molecules may also induce inflammatory gene transcription and cytokine production that occurs without causing cell death.
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surface receptor CD95 and was therefore referred to as “receptor

interacting protein”. RIPK1 and RIPK3 are directly relevant to

septic immune dysfunction, as each play a central role in mediating

cell inflammation as well as death by necroptosis (23).

Necroptosis is a lytic and highly inflammatory mode of cell

death and is similar to pyroptosis in its explosive release of

intracellular contents (24). However, necroptotic membrane pores

are formed by the pseudokinase mixed lineage kinase domain like

(MLKL), a protein with general kinase structure that lacks ability to

perform phosphorylation (25). Importantly, the two most well

characterized upstream activators of MLKL are RIPK1 and

RIPK3. In the context of TNF signaling, RIPK1 phosphorylates

RIPK3, and RIPK3 in turn phosphorylates MLKL which then

oligomerizes into channels that perforate the cell (Figure 2) (24).

This RIPK1-RIPK3-MLKL sequence is but one example of many

paths that lead to necroptosis, some of which proceed directly

through RIPK3 and do not require RIPK1 (26). Additionally,

activation of upstream regulators does not guarantee RIPK3-

mediated cell death. Functional caspase-8 restricts necroptosis,
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highlighting the interconnectedness of these pathways and

emphasizing that ultimate signaling outcomes are highly

dependent on cellular conditions (22, 24).

Crucially, RIPK1 and RIPK3 also each facilitate signaling

responses that are independent of cell death. The somewhat

confusingly titled “death domain” on RIPK1 allows participation

in protein complexes that govern signaling outcomes independent

of cell death, such as pro-survival cytokine production (23).

Furthermore, RIPK1 and RIPK3 each contain a RIP homotypic

interaction motif (RHIM), a domain that forms b-amyloid-like

binding with other RHIM-expressing proteins. This motif expands

the function of these proteins as scaffolds in other death-

independent signaling cascades including cytokine production

and cell cycle progression (Figure 2) (23, 27).

Given the complex array of potential signaling outcomes

downstream of RIPK1 and RIPK3, the understanding of their role

in sepsis remains incomplete and is actively evolving. Though

necroptosis was initially posited as a driver of multiple

inflammatory pathologies, including sepsis, evidence of
FIGURE 2

Apoptotic and necroptotic crosstalk. CASP8 interacts with RIPK1 via death domain (DD) binding. Downstream of TNF receptor signaling, CASP8
drives apoptosis while inhibiting necroptosis. RIPK1 and RIPK3 binding is stabilized by RHIM-RHIM interactions, and under conditions of CASP8
inhibition, the RIPK1 kinase domain (KD) phosphorylates RIPK3 which phosphorylates MLKL, causing cell death by necroptosis. RIPK1/RIPK3 RHIM
interactions also support cytokine production that is independent of both apoptosis and necroptosis, and destabilization of RIPK1 or RIPK3 may
trigger caspase-mediated apoptosis.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1347401
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2023.1347401
widespread necroptosis in septic humans is lacking, and the hope of

limiting septic inflammation by narrowly targeting the RIPK1 or

RIPK3 kinase domain is likely misplaced (27, 28). However, cohorts

of septic patients do display increased expression of RIPK1, RIPK3

and MLKL (29–31), implying these mediators may be involved in

sepsis progression. Additionally, animal data suggests the RIPK3

RHIM is a potent driver of septic inflammation independent of its

cell death function (3), and loss of RIPK3, but not MLKL, improves

control of viral infection (32). Thus, receptor interacting proteins

are likely to contribute to host inflammatory signaling during sepsis,

though perhaps via mechanisms that extend beyond necroptosis.
Inflammasomes

Inflammasomes are cytosolic multi-protein complexes that

facilitate inflammatory caspase activity, thus stimulating IL-1b
production and pyroptosis (33). Inflammasome formation is

based upon recognition of distinct danger signals through various

pattern recognition receptors (PRRs). These PRRs bind to distinct

pathogen-associated molecular patterns (PAMPs) or DAMPs, thus

triggering inflammasome protein oligomerization and the

recruitment of an adapter termed “apoptosis-associated speck-like

protein containing CARD” (ASC). “CARD” refers to “caspase

recruitment domain”, and it is this region of ASC that ultimately

allows recruitment and activation of CASP1 (33). Inflammasomes

can therefore be viewed as having several variable building block

components: families of receptor proteins to detect danger signals,

adapter proteins to form signaling complexes, and caspase-1 to

cleave downstream targets (34). As mentioned previously, CASP4/5

may function as a direct sensor of LPS and is therefore termed a

“non-canonical” inflammasome (35). As with other PCD

mediators, the outcome of inflammasome signaling is dependent

on cell conditions, and inflammasome activity cannot be assumed

to result exclusively in IL-1b production or GSDMD cleavage and

subsequent pyroprotis (36).

When activated during infection, inflammasomes represent a key

component of the host immune response and are often protective, as

loss of inflammasome function worsens bacterial and fungal infections

in mice (37, 38). Likewise, in some human sepsis patients, sustained

inflammasome activation is associated with improved survival (39).

However, this finding is not consistent across sepsis models or patient

cohorts, as enhanced inflammasome signaling in some instances

correlates with increased mortality (40, 41), and deletion of

inflammasome components may actually improve septic animal

survival (42). The variability in these data may well reflect the

heterogeneity within septic cohorts themselves. Broad analyses of

inflammatory activity within septic patient populations have identified

both hyper- and hypo-inflammatory endotypes, and these findings

support the intuitive hypothesis that it is possible to have both too

much and too little inflammation when battling infection (43–45).

Thus, while increased inflammasome activity may be detrimental to a

hyper-inflammatory endotype, it may prove beneficial in patients with

more hypo-inflammatory or immunosuppressed phenotypes. The

impact of inflammasome signaling on septic outcomes, as with

other PCD mediators, is likely context dependent.
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Nucleic acid sensors

Detection of non-self nucleic acid sequences is a highly

conserved form of innate immunity, and PRRs that bind DNA

and RNA are intimately involved with host PCD signaling

mechanisms (46, 47). Recognition of immunostimulatory nucleic

acids by these receptors triggers both cytokine production and host

cell death, depending on cell conditions. Circulating levels of DNA

and RNA – released either from pathogens or from damaged host

nuclei and mitochondria – increase during sepsis, and the impact of

this antigen load on the overall immune response during sepsis is

increasingly appreciated (48–50).

Nucleic acid sensors with particular relevance to bacterial sepsis

include the cGAS-STING pathway, Toll-like receptor (TLR) 9, and

z-DNA binding protein 1 (ZBP1). Cyclic GMP-AMP synthase

(cGAS) is a sensor found in both the cytoplasm and sub-cellular

compartments that binds to DNA and activates an endoplasmic

reticulum protein termed “stimulator of interferon genes” (STING)

(51). STING activation causes production of Type I interferons and

inflammatory mediators and may trigger an array of cell death

outcomes including apoptosis, pyroptosis, necroptosis, and

autophagy, the breakdown of cellular components mediated by

lysosomes (47, 51, 52). TLR9 recognizes unmethylated CpG DNA

common in bacterial pathogens to stimulate inflammatory

responses (53, 54), while RHIM-containing ZBP1 binds z-form

nucleic acid structures and mediates diverse signaling outcomes

including cell death (52). Each of these sensors and pathways are

now understood to support inflammatory responses during

bacterial infections, though how they might contribute to

immune dysregulation in overt sepsis remains an open question.

One intriguing possibility is that these mechanisms perpetuate a

feed-forward cycle of host damage and continuous immune

stimulation. In this scenario, PCD signaling causes cell death or

damage and release of DNA and RNAmolecules, and these are then

sensed by PRRs, creating even more inflammation perpetuating

host damage. Interestingly, knockout of TLR9 or treatment with

circulating DNA scavengers reduces inflammation and improves

septic animal survival, suggesting these pathways may indeed

contribute to dysregulated immune signaling in sepsis and merit

ongoing investigation (48, 55).
Current and future therapies

Caspase and RIP kinase inhibitors

Several synthetic caspase inhibitors have been developed with

the hope of treating diverse disease processes. Both specific and

non-specific inhibitors have been evaluated in clinical trials and

have previously been reviewed in detail (56). The pan-caspase

inhibitor z-VAD-FMK effectively suppresses broad caspase

activity and has been instrumental in detailing necroptotic

signaling that arises when CASP8 function is compromised (56,

57). Treatment of septic mice with z-VAD-FMK limits sepsis-

induced lymphocyte apoptosis and improves survival (5), as does

local thymus injection with another broad caspase inhibitor z-
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LEHD-FMK (58). More specific CASP1 inhibitors have also shown

promise in inflammatory disease models (56). Despite these

findings, limited animal data and toxicities in human trials have

withheld caspase inhibitors from widespread clinical adoption (56).

Given their emerging role in host inflammatory responses,

RIPK1 and RIPK3 have also been targeted with the development

of several small molecule kinase inhibitors. Necrostatin-1 (Nec-1) is

an allosteric RIPK1 kinase inhibitor that prevents RIPK1-RIPK3

complex formation and inhibits kinase-mediated necroptotic

signal ing through RIPK1 (59). Though Nec-1 blocks

phosphorylation of RIPK3 by RIPK1, it does not block RIPK3

autophosphorylation or necroptotic signaling that proceeds directly

through RIPK3-MLKL (60–62). Nec-1 limits inflammation and cell

death following LPS challenge (63), but treatment of polymicrobial

sepsis in mice with Nec-1 surprisingly resulted in worsened

mortality and increased inflammation (64). Such seemingly

paradoxical findings have also been documented with use RIPK3

kinase inhibitors. Though pharmaceutical blockade of the RIPK3

kinase domain efficiently restricts necroptosis, it also unleashes

caspase-mediated apoptosis, counteracting protective effects of

necroptosis inhibition (21, 62). Genetic mutation of the RIPK3

kinase domain may also trigger unintended apoptosis via RHIM

signaling, indicating manipulation of these mediators must be

approached with care (21). Additionally, it should be emphasized

that RIP kinase inhibition would not necessarily limit RHIM-

dependent signaling outcomes and as evidenced may actually

enhance these signal flux through kinase-independent pathways

(3, 4). Ultimately, our limited understanding of the discrete

mechanistic contributions of the RIP molecules to septic

inflammation limits the therapeutic potential of isolated kinase

domain inhibition in sepsis.
RNA interference

RNA interference (RNAi) is a conserved phenomenon across

multicellular organisms whereby specific non-coding nucleic acid

molecules inhibit translation of messenger RNA (mRNA) into

functional protein, thus silencing gene expression (65). This

highly-specific process serves not only as a homeostatic

mechanism, but also as an arm of host defense, preventing

translation of exogenous genetic material from invading microbes

(66). Since its discovery, the concept of RNAi has been harnessed as

a therapeutic tool to allow silencing of unwanted gene expression in

disease states. This approach often utilizes small interfering RNA

(siRNA), which are short, double-stranded RNA sequences that

engage native RNAi machinery and suppress expression of the gene

of interest (67).

Several siRNA-based therapies have been developed, and at

least 10 are either approved or in late-stage clinical trials, treating

conditions ranging from amyloidosis to acute kidney injury (68).

These agents are not intended to treat sepsis, though preclinical

models suggest targeting host PCD machinery may be beneficial, as

si-RNA inhibition of BIM, a pro-apoptotic protein, limits

lymphocyte apoptosis and improves overall survival in septic

mice, and similar results are achieved by repressing CASP8 (69–
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71). Inhibition of RIPK3 with siRNA limits gut epithelial

necroptosis and protects against colitis, an approach that could

theoretically limit the gut barrier damage of sepsis and prevent

ongoing immune stimulation (72, 73). Additionally, siRNA

knockdown of high mobility group box protein 1 (HMGB1), a

key DAMP released during necroptosis and pyroptosis (57, 74),

rescues mice from septic mortality (75). These data indicate that

targeting signal transduction distal to actual cell death events may

be a useful strategy to combat PCD-driven inflammation. Despite

these promising findings, significant hurdles remain in developing

viable siRNA treatments for human septic patients, and no siRNA

approaches are being studied in active sepsis clinical trials.

Importantly, siRNA therapy would not eliminate existing proteins

or prevent them from relaying signals, but rather would only stop

new gene expression sometime after administration. Thus, therapies

intended to limit early PCD events in sepsis like lymphocyte

apoptosis would only be effective if given prior to the septic event

(71, 75), and siRNA-mediated inhibition of the initial inflammatory

surge of sepsis may not be feasible. Rather, siRNA-based therapies

may be better directed at immunosuppressive proteins acting later

in the course of sepsis, stopping their production before it occurs.

Knowledge regarding the role of PCD proteins in late-phase sepsis

is limited, and it remains to be seen if previous success of septic

siRNA therapies can be translated to clinical applications.
Messenger RNA

In contrast to therapies using RNAi, which prevents expression

of a given protein, therapies based on messenger RNA (mRNA)

delivery induce protein expression by directing mRNA sequences

into cells for translation by host ribosomes (76). This approach

permits expression of essentially any chosen protein, creating

substantial opportunity to modulate cell signaling for therapeutic

benefit. Numerous clinical trials evaluating mRNA-based vaccines

against viruses and malignancies are actively underway, and mRNA

strategies have already proven effective and well tolerated in the

widespread use of vaccines against SARS-CoV-2 (77). Considering

this success, future mRNA-based sepsis therapies could conceivably

be directed at host PCD machinery.

Given their central role in host defense, PCD proteins have been

evolutionary targets of invading pathogens seeking to aid infection

(78–80). As a result, several microbe-derived molecules that directly

inhibit PCD signaling have been identified. E. coli expresses a

protease that specifically cleaves RHIM domains, limiting RIPK1

and RIPK3-mediated necroptosis, and cytomegalovirus (CMV)

infection produces proteins that restrict both RHIM interactions

and caspase-8 function (79, 81–83). In theory, these PCD inhibitors

could be coded into mRNA and delivered as a therapy. mRNA for

the CMV protein M45, a RHIM inhibitor, does reduce cytokine

production from infected macrophages in vitro, though it is

unknown how such an approach would impact the widespread

inflammation associated with sepsis (3). mRNA technology is

rapidly evolving, with novel refinements being made to improve

the efficacy and specificity of delivery, and preclinical animal

models demonstrate the feasibility of combating infection with
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mRNA-based tools (84). Considering exogenous mRNA can be

translated into protein within hours of delivery, it seems feasible

that deleterious effects of host PCD signaling could be interrupted

by timely administration of future mRNA therapies. However,

mRNA therapies for sepsis have yet to be evaluated in trials, and

ongoing studies will need to more clearly define how possible

immunostimulatory effects of mRNA delivery will impact the

dysregulated immune state of sepsis.
CRISPR/Cas systems

CRISPR/Cas technology has revolutionized gene editing and

has been extensively reviewed elsewhere (85–87).While the

CRISPR-associated (Cas) protein Cas9 cleaves DNA at specific

sites to allow permanent gene editing (which would not be a

viable approach for human sepsis patients), mutated “dead” Cas9

proteins (dCas9) have been developed that lack enzymatic activity

and cannot cut DNA but still bind to target sequences (86). Coupled

with promotor or suppressor proteins, dCas9 fusion proteins can

function as specific and temporary silencers or inducers of gene

expression (86, 88). Cas9 proteins can be delivered as intact,

functional proteins, but they can also be delivered in the form of

mRNA precursors that are then translated into active dCas9

molecules (89, 90). Though this novel technology is still in its

infancy, Cas9 systems have been utilized to suppress inflammasome

function in skin disease (90), and it is conceivable that similar

approaches could someday be incorporated into clinical trials

aiming to fine-tune pathologic PCD signaling in septic patients.
Conclusion

Programmed cell death mediators and their associated networks

are central components of the host immune response during sepsis,

dictating cell fate and directing inflammatory cascades. Several PCD

mechanisms show promise as therapeutic targets in sepsis, though

the substantial interconnectedness within PCD signaling arms

requires ongoing analysis and a more complete description before
Frontiers in Immunology 06
preclinical findings can be translated to clinical use. As our

understanding of these pathways increases, novel biotechnologies

will offer unprecedented an ability to manipulate elements of PCD

machinery and guide inflammatory signaling toward improved

outcomes for sepsis patients.
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