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High-grade neuroblastoma (HG-NB) exhibits a significantly diminished survival

rate in comparison to low-grade neuroblastoma (LG-NB), primarily attributed to

the mechanism of HG-NB is unclear and the lacking effective therapeutic targets

and diagnostic model. Therefore, the current investigation aims to study the

dysregulated network between HG-NB and LG-NB based on transcriptomics and

metabolomics joint analysis. Meanwhile, a risk diagnostic model to distinguish

HG-NB and LG-NB was also developed. Metabolomics analysis was conducted

using plasma samples obtained from 48 HG-NB patients and 36 LG-NB patients.

A total of 39 metabolites exhibited alterations, with 20 showing an increase and

19 displaying a decrease in HG-NB. Additionally, transcriptomics analysis was

performed on NB tissue samples collected from 31 HG-NB patients and 20 LG-

NB patients. Results showed that a significant alteration was observed in a total of

1,199 mRNAs in HG-NB, among which 893 were upregulated while the

remaining 306 were downregulated. In particular, the joint analysis of both

omics data revealed three aberrant pathways, namely the cAMP signaling

pathway, PI3K-Akt signaling pathway, and TNF signaling pathway, which were

found to be associated with cell death. Notably, a diagnostic model for HG-NB

risk classification was developed based on the genes MGST1, SERPINE1, and

ERBB3 with an area under the receiver operating characteristic curve of 0.915. In

the validation set, the sensitivity and specificity were determined to be 75.0% and

80.0%, respectively.
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Introduction

Neuroblastoma (NB), originating from the embryonic neural

crest, represents the most prevalent extracranial malignant tumor in

pediatric patients. It is characterized by an insidious onset and rapid

progression, contributing to 8% of childhood cancer-related

morbidity and 15% of childhood cancer-related mortality (1, 2).

According to the International Neuroblastoma Staging System

(INSS), NB can be classified into stages 1, 2A, 2B, 3, 4, and 4S

based on an analysis of the primary organ andmetastatic sites. It has

been observed that patients younger than 1 year of age exhibit a

significantly higher 4-year overall survival rate (98.5%) for INSS

stage 1, 2A, 2B, 3 diseases compared to patients with stage 4 disease

(73.1%). Furthermore, in patients older than 1 year, the NB survival

rates at the end of four years were found to be perfect (100%) for

stages 1, 2A, 2B, and 3, while it was recorded as only around half

(48.5%) for those in stage 4 (3). These distinct stages exhibit

significant variations in terms of mortality rates and prognostic

outcomes. Therefore, investigating the disparities between high-

grade neuroblastoma (HG-NB) (stage 4) and low-grade

neuroblastoma (LG-NB) (stages 1, 2, 3) will not only enhance

comprehension of the biological functionality of HG-NB but also

contribute to refining therapeutic strategies for aggressive NB.

The absence of an efficacious therapeutic targets and diagnostic

model for HG-NB constitutes the primary determinant underlying

its significantly inferior survival rate compared to LG-NB (4). Hu

et al. utilized gene chip and reverse transcription-polymerase chain

reaction (RT-PCR) technology to analyze a cohort of clinically

diagnosed pulmonary tuberculosis patients, microbiologically

confirmed pulmonary tuberculosis patients, non-tuberculosis

controls, and healthy controls. They identified candidate lncRNAs

with differential expression and established an early diagnosis

model to facilitate the early identification of pulmonary

tuberculosis (5). Furthermore, in order to identify novel

biomarkers suitable for the diagnosis and treatment of prostate

cancer, Maik et al. conducted a comprehensive genome-wide

transcriptome sequencing analysis on tissue samples obtained

from 40 patients with prostate cancer and 8 individuals with

benign prostatic hyperplasia. Their findings revealed that TAPIR-

1 and -2 play a pivotal role in the pathogenesis of prostate cancer,

thereby offering valuable insights for accurate diagnosis and

targeted therapeutic interventions (6). Therefore, the systematic

investigation of HG-NB to identify its diagnostic biomarkers and

therapeutic targets is anticipated to enhance the survival rate of

patients with HG-NB.

The emergence of omics has significantly contributed to the

advancement of disease diagnosis and treatment, which is highly

noteworthy. The field of metabolomics aims to comprehensively

characterize the entirety of small molecules present in a given

sample, with the ultimate goal of accurately reflecting the intricate

metabolic characteristics associated with disease states. This

approach holds immense potential for unraveling the underlying

pathophysiological processes driving disease progression and

facilitating the discovery of novel biomarkers crucial for disease

diagnosis and prognosis (7). Dong et al. conducted an investigation

into the correlation between pre-diagnostic plasma metabolomics,
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and the risk of colorectal cancer precursors. Their findings suggest

that l ip id metabol i sm and the microbia l metabol i te

phenylacetylglutamine may play a potential role in the early

stages of colorectal cancer development (8). Furthermore, Xu

et al. conducted targeted metabolomics analysis on a cohort of 86

patients with benign breast lesions and 143 patients diagnosed with

breast cancer, aiming to investigate the plasma characteristics

associated with breast cancer. A total of 716 metabolites were

identified, revealing serotonergic synapses as the predominant

differential metabolic pathway (9). Transcriptomics employs high-

throughput sequencing techniques to investigate the complete set of

transcribed mRNAs within specific cells, tissues, or individuals at a

given time and state. This comprehensive approach enables the

identification of disparities in gene expression and structure across

distinct functional states, thereby elucidating underlying molecular

mechanisms (10, 11). Qi et al. employed transcriptome sequencing

technology to analyze 5 pairs of endometrial cancer tissues and

normal endometrial tissues, revealing downregulation of ID1, IGF1,

GDF7, SMAD9, TGF-b, and WNT4 expression alongside

upregulation of GDF5, INHBA, and ERBB4 in endometrial cancer.

Furthermore, alterations were observed in the TGF-b signaling

pathway as well as the PI3K-Akt and estrogen pathways among

others. These findings contribute to a deeper understanding of the

underlying mechanisms driving endometrial cancer (12).

Additionally, transcriptome analysis conducted by Ren et al.

revealed that GPNMB serves as a promising target in gastric

cancer and exerts a crucial positive regulatory role in tumor

progression. Moreover, GPNMB exhibits diverse regulatory effects

on gastric cancer-mediated immunosuppression (13). Furthermore,

the integration of transcriptomics and metabolomics has emerged

as a robust methodology that enhances comprehension of the

potential biological functions and molecular mechanisms

underlying diseases (14). In particular, Ren et al. discovered

metabolic pathway alterations in prostate cancer by combining

metabolomics and transcriptomics, and found abnormal expression

of cysteine and methionine metabolism, nicotinamide adenine

dinucleotide metabolism and hexosamine biosynthesis. In

addition, the metabolite sphingosine exhibited high specificity and

sensitivity in distinguishing prostate cancer from benign prostatic

hyperplasia, promoting the development of new diagnostic

biomarkers and therapeutic targets, which will help to distinguish

prostate cancer from benign prostatic hyperplasia (15).

Additionally, Zhao et al. investigated the anti-tumor mechanism

of tadalafil in human colorectal cancer cells through an integrated

analysis of metabolomics and transcriptomics, revealing that

perturbations in alanine, aspartic acid, and glutamate metabolism

may underlie the primary mode of action for tadalafil’s anti-tumor

effect (16). Therefore, the integration of metabolomics and

transcriptomics holds significant potential for application in HG-

NB, enabling the identification of altered metabolic pathways and

diagnostic biomarkers, facilitating the establishment of early

diagnosis models, and identifying novel therapeutic targets for

HG-NB.

In this study, we conducted a metabolomics analysis of a total of

84 plasma clinical samples and 51 clinical NB tissue samples,

integrating metabolomics data with transcriptomics data to
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perform a comprehensive network analysis of NB. Our aim was to

explore the aberrant pathways associated with HG-NB and develop

a diagnostic model based on potential biomarkers. The innovation

of this study can be summarized as follows (1): Through a

systematic analysis, we evaluated the transcriptomics and

metabolomics differences between LG-NB and HG-NB to unveil

the dysregulated network specific to HG-NB. (2) A noninvasive

plasma-based diagnostic model of HG-NB was established. The

novel discovery of the dysregulation network associated with HG-

NB and the development of the NB diagnostic model are expected

to have significant implications for early diagnosis of HG-NB and

the future advancement of targeted therapies.
Materials and methods

Moral approval

After collection and processing from October 2018 to January

2022, a total of 84 plasma samples (48 cases of HG-NB and 36 cases

of LG-NB) and 51 NB tissue samples (31 cases of HG-NB, 36 cases

of LG-NB) were obtained from Henan Children’s Hospital. The

inclusion criteria included: (1) confirmed pathological diagnosis of

NB; (2) clinical assessment of risk grade based on the INSS

classification; (3) obtaining informed consent from children or

their parents. The exclusion criteria included the following: (1)

presence of complications related to other diseases; (2) absence of

signed informed consent from either the children or their parents.

Plasma samples were collected from NB patients’ fasting plasma in

the morning of surgery and promptly frozen at -80°C for

subsequent metabolomics analysis. Tissue samples from NB

tumors were obtained during surgical resection and immediately

stored in liquid nitrogen for transcriptomics analysis. The results

presented in Supplementary Tables 1, 2 indicate that there were no

statistically significant differences observed in terms of age, gender

andMYCN amplification between HG-NB and LG-NB. However, a

notable distinction was found regarding the gross tumor volume

and radiological risk factors among the HG-NB and LG-NB

samples. This study was reviewed and approved by the

committees of Henan Children’s Hospital.
Metabolomics analysis via high
performance liquid chromatography-
mass spectrometry

The plasma samples were retrieved from storage at -80°C and

promptly thawed in a refrigerator set at 4°C. Following 10 seconds

of vortexing, 150 mL of plasma was transferred to a microcentrifuge

tube with a capacity of 1.5 mL, followed by the addition of 450 mL
acetonitrile maintained at 4°C. After vigorous vortexing for 5

minutes at a speed of 3000 r/min, the mixture was subjected to

centrifugation at 13000 r/min for 15 minutes (at a temperature of

4°C). Subsequently, careful extraction yielded a supernatant volume

of approximately 300 mL. The stability of the overall experimental
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results was assessed by preparing quality control (QC) samples,

which were obtained by combining equal amounts of supernatant

from all samples. An Agilent 6210 time-of-flight MS system

equipped with an Agilent 1100 HPLC, a photodiode array

detector, and a high-resolution-time-of-flight-MS with an

electrospray ionization source was used for the analysis of all

extracts. Chromatographic separation was carried out on an

Agilent Poroshell 120 EC - C18 (2.7 mm, 3.0 × 100 mm) column.

The metabolomics data were collected using the following

conditions: mobile phase consisting of A = 0.1% formic acid in

water and B = 0.1% formic acid in acetonitrile, with elution

conditions as follows: 0 - 3 min, gradient from 5% to 60% B; 3 -

25 min, gradient from 60% to 90% B; 25 - 30 min, gradient from

90% to 100% B; and finally, a constant flow of pure solvent B for the

remaining time (30 - 40 min). Experimental settings included an

injection volume of 10 mL, column temperature maintained at a

constant value of 30°C, and a flow rate set at a steady rate of 0.3 mL/

min. MS was performed under both negative and positive ionization

modes using nitrogen as drying gas at a temperature of

approximately 325°C with a flow rate set at 12 L/min and

atomization pressure maintained at 35 psi. Capillary voltage was

adjusted to 4,000 V for positive mode and 3,500 V for negative

mode while fragmentation voltage was set to 215 V for positive

mode and 175 V for negative mode with separator voltage fixed at

60 V. The mass acquisition range encompassed all negative ions

within the range of 0.05 - 1.5 KDa.

The samples were subjected to HPLC-MS analysis in order to

obtain the raw data files. Agilent Masshunter HPLC-MS software was

utilized for converting the original data files into a standardized

format. XCMS software package, implemented on the R language

platform, was employed for retention time (RT) calibration, peak

identification, noise filtration and peak matching of the

acquired.mzData format files. Additionally, it allowed setting

permissible deviations for both mass-to-charge ratio and RT (mass/

charge ratio tolerance = 0.025DA, RT tolerance = 0.5 min). The

metabolites exhibiting a RT deviation of 0.5 min and a mass number

deviation of 0.025 Da were considered to be identical metabolites.

Subsequently, a data matrix comprising mass/charge ratio, RT, peak

area, and other relevant information was obtained. Metabolite

identification involved the utilization of both primary and secondary

MS techniques. Initially, the acquired primary MS information

underwent targeted secondary MS analysis to acquire supplementary

MS information that served as a reference for subsequent qualitative

analysis. Furthermore, by leveraging the precise mass numbers of

excimer ions such as [M+H]+ ions and high-resolution target MS/MS

spectra in conjunction with fragmentation patterns observed across

various metabolites, potential structures for differential metabolites

were deduced through comprehensive analyses involving online

databases (METLIN: http://metlin.scripps.edu/, HMDB: http://

hmdb.ca/) as well as literature retrieval methods.

The metabolomics analysis was performed using MetaboAnalyst

(https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml), which

included partial least-squares discrimination analysis (PLS-DA),

heatmap, volcano map, enrichment analysis, pathway analysis, and

identification of biomarkers.
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Transcriptomics profiling using RNA-
sequencing analysis

The total RNA was extracted using TRIzol reagent following the

manufacturer’s protocol. RNA purity and quantification were

assessed using the NanoDrop 2000 spectrophotometer (Thermo

Scientific, USA). RNA integrity was evaluated using the Agilent

2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

The libraries were prepared utilizing the TruSeq Stranded mRNA

LT Sample Prep Kit (Illumina, San Diego, CA, USA) according to

the manufacturer’s instructions. Transcriptome sequencing and

analysis were performed by OE Biotech Co., Ltd. (Shanghai, China).

The libraries were sequenced using an Illumina HiSeq X Ten

platform, generating 150 bp paired-end reads. Each sample yielded

approximately 48.349 million raw reads. The raw data (in fastq

format) underwent initial processing with Trimmomatic 18 to

remove low-quality reads, resulting in the acquisition of clean

reads. Approximately 47.459 million clean reads per sample were

retained for subsequent analyses. These clean reads were then

aligned to the human genome (GRCh38) using HISAT2 (17).

Fragments per kilobase of exon model per million mapped

fragments (FPKM) (18) of each gene was calculated using Cufflinks

(19) and the read counts of each gene were obtained by HTSeq-

count (20). Differential expression analysis was performed using the

DESeq (2012) R package (21). The threshold for significant

differential expression was set at P value < 0.05 and | log2 (fold

change) | > 1. Hierarchical cluster analysis was performed to

illustrate the gene expression patterns across different groups and

samples. Open-access databases, such as Gene Ontology (GO),

Kyoto Encyclopedia of Genes and Genomes (KEGG),

MetaboAnalyst, Human Metabolome Database, and National

Center for Biotechnology Information were utilized to identify

metabolic pathways.
Joint analysis of the metabolomics
and transcriptomics

Finally, comprehensive transcriptomics and metabolomics

analyses were conducted using MetaboAnalyst 5.0 to perform

topological analysis through the joint-pathway analysis module.

Official gene symbols and compound names, along with optional

fold changes, were entered to evaluate the potential significance of

individual molecules (i.e., nodes) based on their network position.

Topological analysis assesses the potential significance of a specific

molecule (node) based on its position in the pathway and

determines its impact value. Degree centrality quantifies the

number of connections that are linked to a specific node, while

betweenness centrality measures the quantity of shortest paths from

all nodes to others that pass through a given node. Closeness

centrality gauges the overall distance between a given node and

all other nodes. The hypergeometric test was selected for

enrichment analysis, degree centrality was chosen as the measure

of topology, and combined queries were employed as an

integration method.
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Revealing plasma potential biomarkers
between HG-NB and LG-NB

The 6 differential genes were selected as potential candidate

biomarkers based on transcriptomics results and literature

review. Primers for the identified differential genes were designed

using the National Center for Biotechnology Information

(www.ncbi.nlm.nih.gov) website (Supplementary Table S6). RT-

PCR was conducted following the instructions provided with

HiScript III All-in-one RT SuperMix kit and AceQ qPCR SYBR

Green Master Mix kit (Vazyme, Nanjing). The housekeeping gene

NAGK was chosen as an internal control to normalize mRNA

abundance levels. Fold changes in target gene mRNA expression

were calculated using the formula 2−DDCt.
Develop the risk diagnostic model of NB

The logistic regression analysis was employed to establish the

regression equation for the test set, which consisted of 21 cases of

HG-NB and 20 cases of LG-NB. Subsequently, validation against

the validation set, comprising 20 cases of HG-NB and 10 cases of

LG-NB, was conducted. The data were processed using SPSS 25.0,

while Origin 2021 was employed for mapping purposes.
Results

The research procedure

The general concept of this study is illustrated in Scheme 1.

Metabolomics analysis was conducted on a total of 84 plasma

samples, comprising 48 cases of HG-NB and 36 cases of LG-NB.

Additionally, transcriptomics analysis was performed on 51 NB

tissue samples, including 31 cases of HG-NB and 20 cases of LG-

NB. Through the integration of metabolomics and transcriptomics

data, employing PLS-DA, heatmap visualization, enrichment

analysis, pathway analysis, and other analytical approaches, we

comprehensively investigated the aberrant pathway network

associated with HG-NB and identified potential clinical

therapeutic targets. Meanwhile, a risk diagnostic model was

established to facilitate early detection of HG-NB.
The Metabolome differences between HG-
NB and LG-NB

To investigate the disparities in metabolites between HG-NB

and LG-NB, an initial plasma metabolomics analysis was performed

utilizing a non-targeted approach based on metabolomics.

The principal component analysis (PCA) plot demonstrates the

robustness of our study by revealing distinct clustering patterns

among QC samples in both positive and negative modes, as

depicted in Supplementary Figure S1. In order to visually depict

the metabolic distinctions between LG-NB and HG-NB, a cluster
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analysis was performed on the plasma metabolites of NB based on

compound correlations and presented in the form of a heatmap

(Supplementary Figure S2), illustrating the dissimilarities between

these two groups, effectively. In order to gain insights into the

metabolomics of HG-NB and LG-NB, a preliminary PLS-DA was

conducted to compare HG-NB and LG-NB in both positive mode

(Figure 1A) and negative mode (Figure 1B). The volcano plots

depict the metabolites observed in both the HG-NB and LG-NB

groups, represented in positive and negative modes (Figures 1C, D).

Plasma metabolites exhibiting a fold change > 1.2 (fold change <

0.83) and a statistical significance of P < 0.05 in the volcano plot

were identified as significantly altered metabolites. Therefore, a total

of 26 metabolites exhibited significant changes in positive mode,

comprising 13 up-regulated and 13 down-regulated metabolites

(Table 1). In negative mode, 13 differential compounds were

identified, including 7 up-regulated compounds and 6 down-

regulated compounds (Table 2). Furthermore, in order to further

visualize the differential metabolites, heatmaps of differential

compounds were drawn according to the correlation of

differential compounds (Figures 1E, F). The figure illustrates the

up-regulation of compounds such as PC(18:3(6z,9z,12Z)/0:0) and

the down-regulation of metabolites like SM(d18:2/14:0), indicating

a significant correlation between these compounds and HG-NB.

Consequently, a total of 39 differential metabolites were identified in

the metabolomics analysis, highlighting substantial distinctions

between HG-NB and LG-NB.
The altered pathways and biomarkers
between HG-NB and LG-NB based on
metabonomics approach

In order to identify abnormal metabolic pathways based on the

discovery of abnormal metabolites, we performed enrichment

analysis and pathway analysis. Based on the 39 most significantly

altered metabolites, our enrichment analysis revealed that betaine

metabolism, methionine metabolism, glycine and serine
Frontiers in Immunology 05
metabolism, catecholamine biosynthesis, sphingolipid metabolism,

steroidogenesis, arachidonic acid metabolism, and tyrosine

metabolism were enriched. (Figure 2A). Pathway analysis was

conducted to further explore potential aberrant metabolic

pathways and visualize the findings. Those results revealed

significant alterations in betaine metabolism, methionine

metabolism, sphingolipid metabolism, steroidogenesis, glycine

and serine metabolism, as well as arachidonic acid metabolism

(Figure 2B). Consequently, enrichment analysis revealed 8

significantly altered metabolic pathways, while pathway analysis

identified 6 additional significantly altered metabolic pathways,

thereby enhancing our comprehension of the aberrant NB

pathway network.

To investigate plasma biomarkers associated with HG-NB in

metabolomics and propose a non-invasive approach for risk

stratification of NB, we conducted receiver operating

characteristic (ROC) curve analysis on differential metabolites.

The iconic biomarkers PC(18:3(6z,9z,12Z)/0:0), SM (d18:2/14:0),

Clausarinol and SM(d16:1/16:0) were identified in this study

(Figures 2C–F). The area under the curve (AUC) of the ROC

analysis for all biomarkers exceeded 0.7, suggesting that these

metabolites have potential as biomarkers for HG-NB. In

summary, our enrichment analysis revealed 10 altered metabolic

pathways, while pathway analysis identified 6 altered metabolic

pathways. Additionally, 4 biomarkers were discovered through our

comprehensive biomarker analysis. These findings provide valuable

insights into understanding the aberrant NB pathway network and

offer potential targets for targeted therapy.
Transcriptomics analysis uncovers the
abnormal expression gene between
HG-NB and LG-NB

To further investigate the disparities between HG-NB and LG-

NB, we conducted transcriptomics analysis on 31 HG-NB tissues

and 20 LG-NB tissues. The comprehensive outcomes of total RNA
SCHEME 1

Outline of research method.
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concentration, A260/A280 ratio, A260/A230 ratio, 28S/18S ratio, and

RNA integrity number for the extracted samples are presented in

Supplementary Table S3. All the RNA integrity number values

obtained in this study exceeded 7. The preprocessing results of

sequencing data quality revealed that RawBases values ranged from

6.49G to 7.76G per sample, CleanBases values ranged from 6.00G to

7.22G per sample, and the percentage of Q30 bases varied from

92.59% to 95.18% across all samples. The GC content of each

sample ranged from 47.87% to 49.35% (Supplementary Table S4).

In conjunction with the total number of mRNAs detected in the

samples (Supplementary Figure S3) and FPKM values

(Supplementary Figure S4), it can be inferred that the RNA

quality of both groups adhered to established standards,

rendering them suitable for subsequent analyses. To visually
Frontiers in Immunology 06
represent the transcriptomics disparities between LG-NB and

HG-NB, we conducted hierarchical clustering analysis based on

RNA correlation using tissue RNA samples from NB. The results

were presented in a heatmap (Supplementary Figure S5),

highlighting the evident differences between the two groups.

Differential genes were identified as NB tissue RNAs with P <

0.05 and |log2 (fold change)| > 1 in the volcano plot (Figure 3A). A

total of 1,199 differentially expressed genes were identified,

comprising 893 up-regulated genes and 306 down-regulated genes

(Figure 3B). The up-regulated and down-regulated genes in HG-NB

and LG-NB tissues are presented in Tables 3, 4, respectively. A

cluster analysis heatmap (Figure 3C) was employed to visually

depict the top 100 differentially expressed genes, facilitating a

more comprehensive understanding of the distinctions between
B

C D

E F

A

FIGURE 1

The plasma metabolomics analysis between HG-NB and LG-NB. The PLS-DA results of HG-NB and LG-NB in (A) positive mode and (B) negative
mode. The volcano plot of metabolite of HG-NB and LG-NB in (C) positive mode and (D) negative mode. The heatmap shows clear distinction of
metabolites between HG-NB and LG-NB in (E) positive mode and (F) negative mode.
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HG-NB and LG-NB groups, thereby highlighting their significant

differences. Based on the transcriptome results and relevant

literature on NB (22–27), we selected 6 reported differentially

expressed genes, namely MGST1, SERPINE1, IGF2, CIP2A, CHL1,

and ERBB3 for RT-PCR validation. Our RT-PCR results

demonstrated that the relative expressions of MGST1, SERPINE1,

IGF2, and CIP2A were significantly increased in HG-NB compared

to LG-NB, while the relative expressions of CHL1 and ERBB3 were

significantly decreased in HG-NB compared to LG-NB.

Importantly, our transcriptomics findings were consistent with

the RT-PCR results which further validate their reliability
Frontiers in Immunology 07
(Figure 3D). In summary, our transcriptomics analysis revealed

significant differences between HG-NB and LG-NB.
KEGG and GO analysis between HG-NB
and LG-NB in transcriptomics

To identify aberrant pathways based on differential gene

expression, we conducted GO analysis and KEGG analysis.

Subsequently, GO annotation analysis was performed to elucidate

the metabolic pathways associated with these differentially
TABLE 1 Differential expressed metabolites in HG-NB vs. LG-NB in positive mode.

NO. Metabolites
Mass-to-Charge

Ratio
Retention
Time(min)

VIP
Value

Fold
Change

P Value Regu-lation

1 PC(18:3(6Z,9Z,12Z)/0:0) 517.3162 12.05 2.75 2.13 0.0005 Up

2 SM(d18:2/14:0) 672.5198 26.35 2.60 0.46 0.0012 Down

3 Clausarinol 414.204 12.22 2.59 0.36 0.0013 Down

4 Dodecanoylcarnitine 343.2720 10.84 2.55 0.56 0.0015 Down

5 Bisacurone epoxide 285.1939 8.9 2.49 0.59 0.0020 Down

6 LysoPC(16:1(9Z)) 493.3165 12.2 2.36 1.41 0.0034 Up

7 Montanol 352.2607 18.27 2.19 0.70 0.0069 Down

8 SM(d16:1/16:0) 674.5355 29.44 2.12 0.48 0.0090 Down

9 PE(22:4(7Z,10Z,13Z,16Z)/0:0) 529.3164 14.88 2.10 1.69 0.0096 Up

10 Allyl cinnamate 188.0837 8.64 2.06 1.92 0.0112 Up

11
1-(5Z,8Z,11Z,14Z,17Z-Eicosapentaenoyl)-sn-glycero
-3-phosphocholine

541.3162 11.98 2.01 1.72 0.0132 Up

12 PE(19:0/0:0) 495.3322 13.51 2.00 4.96 0.0143 Up

13 C17 Sphinganine 287.2096 9.2 1.91 0.68 0.0189 Down

14 LysoPC(20:3(8Z,11Z,14Z)) 545.3473 13.8 1.88 1.28 0.02080 Up

15
N-(2,5Dihydroxyphenyl)
pyridinium

187.0634 7.94 1.83 1.22 0.0249 Up

16 Methyl acetyl ricinoleate 354.2769 20.21 1.78 0.73 0.02873 Down

17
DG(14:1(9Z)/22:3
(10Z,13Z,16Z)/0:0)[iso2]

638.4879 38.37 1.77 0.614 0.0301 Down

18 Isoamyl p-anisate 222.1231 9.19 1.75 0.74 0.0324 Down

19
(E,E)-3,7,11-Trimethyl-2,6,
10-dodecatrienyl heptanoate

334.287 20.49 1.65 1.45 0.0409 Up

20 13E-Docosenamide 337.3344 29.58 1.53 1.29 0.016 Up

21 Farnesyl acetone 262.2297 20.33 1.53 0.83 0.0420 Down

22 Metipranolol 309.1937 9.13 1.44 0.54 0.0420 Down

23 Anandamide (20:l, n-9) 375.3111 19.5 1.43 1.51 0.0431 Up

24
(2R,6R,7S,8S)-7-Ethyl-2-propyl-1-azaspiro[5.5]
undecan-8-ol

239.225 27.72 1.41 1.39 0.0446 Up

25 LysoPC(14:0) 467.3009 11.61 1.40 1.27 0.0385 Up

26 Isolinderanolide 336.2662 19.73 1.38 0.77 0.0331 Down
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expressed genes and infer their potential biological functions. The

obtained differential genes were subjected to GO analysis in order to

elucidate the metabolic pathways associated with these genes and

infer their potential biological functions, as depicted in Figures 4A

and Supplementary Figure S6. In terms of biological processes, the

top three regulated expressions comprised the chemokine-mediated

signaling pathway, neutrophil chemotaxis, and inflammatory

response. Regarding cellular components, the top three

significantly regulated expressions were extracellular space,

extracellular region, and integral component of plasma

membrane. Concerning molecular function, the top three

significantly up-regulated expressions included chemokine

activity, oxygen binding, and CCR chemokine receptor binding.

We further conducted KEGG prediction analysis and observed that

the neuroactive ligand-receptor interaction, cytokine-cytokine

receptor interaction, and cAMP signaling pathway exhibited the

three most pronounced alterations. This suggests an alternative

perspective on the biological functions of HG-NB (Figure 4B,

Supplementary Figure S7). The annotation table for each pathway

in Figure 4B is presented in Supplementary Table S5. Consequently,

the molecular mechanisms of HG-NB that impact prognosis

include chemokine-mediated signaling pathways, neutrophil

chemotaxis, inflammatory responses, extracellular space and

extracellular region, integral components of the plasma

membrane, chemokine activity, oxygen binding, CCR chemokine

receptor binding, neuroactive ligand-receptor interactions,

cytokine-cytokine receptor interactions, and cAMP signaling

pathways. Therefore, employing transcriptomics methods has

revealed multiple biological functional differences between HG-

NB and LG-NB, which is expected to provide a theoretical

foundation for exploring the molecular mechanisms underlying

HG-NB.
Frontiers in Immunology 08
Integrated transcriptomics and
metabolomics analyses between HG-NB
and LG-NB

Multi-omics studies employ integrative research approaches to

comprehensively integrate data and regulatory relationships across

multiple levels, enabling a multifaceted exploration of disease

mechanisms (28). To systematically investigate NB, we employed

joint-pathway analysis to establish connections between metabolites

and genes through shared metabolic pathways. Through an

integrated analysis of transcriptomics and metabolomics data, we

identified 10 significantly altered pathways (Table 5). The

dysregulated pathways, such as cytokine-cytokine receptor

interaction, viral protein interaction with cytokine and cytokine

receptor, neuroactive ligand-receptor interaction, etc., exhibiting P

values < 0.05, were visually represented in Figure 5A. The cAMP

signaling pathway, as depicted in Figure 5B, exhibited statistical

significance with P values < 0.05 and an impact coefficient of 0.48.

Notably, this pathway encompassed a set of significantly altered

genes including CGA, ADRB1, GIP, ADCY1, SST, FFAR2, HCN4,

PPP1R1B, PTCH1, HHIP, LIPE, TNNI3, PLN, FXYD1, GRIA1, and

GRIN3A. As depicted in Figure 5C, the PI3K-Akt signaling pathway

exhibited alterations in the expression levels of CSF1, CSF1R, PCK1,

IL6, CHAD and TCL1A between HG-NB and LG-NB. Figure 5D

shows that in TNF signaling pathway, MAPK13, CCL20, CXCL1,

IL18R1, BCL3, SOCS3, JUNB,MMP9, VEGFC, VCAM1, and PTGS2

were altered in HG-NB. Therefore, through integrated

metabolomics and transcriptomics analysis, we identified

significant alterations in the cAMP signaling pathway, PI3K-Akt

signaling pathway, and TNF signaling pathway in MNA NB. These

findings provide a solid theoretical foundation for future

therapeutic strategies targeting HG-NB.
TABLE 2 Differential expressed metabolites in HG-NB vs. LG-NB in negative mode.

NO. Metabolites
Mass-to-Charge

Ratio
Retention
Time(min)

VIP
Value

Fold
Change

P Value
Regu-
lation

1 Asn Leu Pro Ala Lys 587.3225 12.01 2.36 1.676 0.0114 Up

2 Leu Asp Glu Cys 478.1716 8.48 2.36 0.5354 0.0116 Down

3 Thr Cys Glu Pro Ile 561.2453 8.75 2.31 0.5189 0.0134 Down

4 Met Arg Trp Trp 677.3127 13.51 1.95 0.7942 0.0376 Down

5 Methyl acetyl ricinoleate 400.2838 20.17 1.94 0.6938 0.0387 Down

6 Glu Gly Ile Pro Pro 511.2616 9.52 1.89 0.5952 0.0440 Down

7 Phe Lys Asn Arg 563.3227 12.00 1.78 1.4168 0.0591 Up

8 Glycoursodeoxycholic acid 449.3154 10.55 1.77 1.6163 0.0601 Up

9 O-Acetylcyclocalopin A 384.1437 9.06 1.70 0.5888 0.0715 Down

10 Tyr Arg Pro Phe 581.2945 11.71 1.69 1.3034 0.0724 Up

11 PS(19:0/0:0) 539.3229 12.21 1.68 1.3518 0.0747 Up

12 LysoPE(22:5(7Z,10Z,13Z,16Z,19Z)/0:0) 527.302 13.77 1.67 1.3143 0.0774 Up

13 PE(17:0/0:0) 513.3074 11.64 1.57 1.2168 0.0967 Up
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Classification of NB with selected
transcriptome candidate biomarkers

To enhance the low rate of early diagnosis of HG-NB, a more

efficient risk diagnostic model was established as a complementary

approach to existing methods. The 6 candidate genes identified

through transcriptomics and literature were subjected to RT-PCR

analysis in order to identify biomarkers suitable for diagnosis

(Supplementary Table S6).

The results for individual candidate genes were calculated using

equation 2-DDCt, and subsequently the sensitivity and specificity

were determined. However, the findings revealed that the areas

under the ROC curve ofMGST1, SERPINE1 and ERBB3 were 0.736,
Frontiers in Immunology 09
0.717, and 0.819 respectively, indicating a limited detection

performance of these individual biomarkers (Figures 6A–C). The

ROC curves for the remaining 3 biomarkers are presented in

Supplementary Figure S8, with none of them achieving an AUC

greater than 0.7. Consequently, a diagnostic model integrating

MGST1, SERPINE1 and ERBB3 three biomarkers was established

through logistic regression analysis to obtain the regression

equation Y = -3.393 + 0.436 X1 (MGST1) + 0.491 X2 (SERPINE1)

- 0.498 X3 (ERBB3). In the test set, the diagnostic model exhibited a

sensitivity of 71% and specificity of 90%. The ROC analysis yielded

an area under the curve (AUC) value of 0.895 (Figure 6D), with a

cutoff value set at 0.7 (Figure 6E). In the validation set, the

diagnostic model demonstrated a sensitivity of 75% and
B

C D

E F

A

FIGURE 2

The altered pathways and biomarkers in metabolomics. (A) The enrichment analysis of differential metabolism revealed various metabolic changes
between HG-NB and LG-NB. (B) The pathway analysis revealed significant abnormalities in the pathways between HG-NB and LG-NB. The
representative metabolic biomarker ROC curve and boxplot of (C) PC (18:3(6z,9z,12Z)/0:0), (D) SM(d18:2/14:0), (E) Clausarinol and (F) SM
(d16:1/16:0).
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specificity of 80%, while achieving an AUC value of 0.915 in ROC

analysis (Figure 6F), thus confirming its efficacy. Therefore,

MGST1, SERPINE1 and ERBB3 represent viable biomarkers that

can be utilized in combination as a diagnostic model for predicting

the plasma risk classification of NB. This approach holds promise

for non-invasive and cost-effective detection of NB at an early stage.
Discussion

The INSS staging system is a surgical-pathological staging

system that is based on the site of origin and metastasis of NB.

Originally proposed in 1988 and revised in 1993, it serves as a

crucial tool for risk assessment and subsequent management of NB

(29, 30). Except for stage 4S, the risk score of INSS patients increases

progressively from stage 1 to stage 4 (31). However, the early

prediction of NB and the lack of effective therapeutic targets

remain significant challenges in current research. Therefore, we

conducted a comprehensive analysis of the disparities between HG-

NB and LG-NB by integrating metabolomics and transcriptomics.

Our findings revealed significant distinctions in the cAMP signaling

pathway, PI3K-Akt signaling pathway, and TNF signaling pathway.

Furthermore, we identified 3 biomarkers with notable variances
Frontiers in Immunology 10
(MGST1, SERPINE1 and REBB3) and developed a diagnostic

model. These advancements hold immense significance for the

timely detection of HG-NB.

By integrating metabolomics and transcriptomics analysis, we

have identified significant disparities in the cAMP signaling

pathway between LG-NB and HG-NB. Initially discovered over

60 years ago, cAMP is a extensively investigated second messenger

implicated in diverse cellular processes, encompassing growth,

differentiation, and gene transcription (32). Adenylyl cyclase is a

membrane-bound enzyme responsible for the conversion of

adenosine triphosphate into cAMP. cAMP, in turn, exerts its

effects on four effector proteins: exchange protein activated by

cAMP, cyclic-nucleotide gated ion channels, Popeye proteins, and

the cAMP-dependent PKA pathway (33–35). Previous studies have

demonstrated the pivotal role of cAMP in various malignancies,

including prostate cancer, ovarian cancer, and lung cancer (36–38).

ADCY1 serves as a pivotal regulator of the cAMP signaling pathway

and is accountable for catalyzing ATP to cAMP. In the investigation

conducted by Zou et al., it was highlighted that ADCY1 holds

immense significance as a novel biomarker in predicting drug

resistance among patients with lung cancer (38). Our study also

revealed a significant disparity in the transcriptomics of ADCY1

(Fold change = 0.45). Therefore, further investigation is warranted
B

C D

A

FIGURE 3

The NB tissue transcriptomics and validation. (A) The volcano plot shows differentially expressed genes between HG-NB and LG-NB. (B) Number of
differentially expressed genes of HG-NB compared to LG-NB. (C) The heatmap shows segregation of HG-NB and LG-NB based on transcriptomics
analysis. (D) Expression trends of genes in RT-PCR were consistent with transcriptomics results.
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to elucidate the potential impact of ADCY1 on the INSS grade of NB

through modulation of the cAMP signaling pathway. Furthermore,

a robust correlation between cAMP and cell death was observed.

The functional mitochondrial cAMP pathway in neonatal and adult

cardiomyocytes plays a pivotal role in regulating cell death, with

activation of this pathway exerting an inhibitory effect on apoptotic

processes (39). Moreover, the induction of tumor cell death has

been widely acknowledged as an effective therapeutic strategy (40).

Therefore, targeting the cAMP signaling pathway to modulate

cel lular apoptosis may represent a novel avenue for

improving prognosis.

The combined analysis of metabolomics and transcriptomics

revealed that the PI3K-Akt signaling pathway exhibited significant

alterations. The PI3K-Akt signaling pathway is aberrantly activated

during the occurrence and progression of certain cancers. The two

most extensively elucidated mechanisms underlying PI3K-Akt

activation in human cancer involve receptor tyrosine kinase

stimulation and somatic mutations in specific components of

signaling pathways (41). Augmentation and facilitation of the

PI3K-Akt pathway may exert a detrimental impact on cancer

therapy; hence, inhibition of PI3K could impede cancer

development (42). The PI3K-Akt signaling pathway was found to

be significantly dysregulated in HG-NB, which is associated with

tumor growth, angiogenesis, and survival. Loss of function of the

tumor suppressor gene PTEN is a common event in human tumors
Frontiers in Immunology 11
that leads to aberrant activation of the PI3K/Akt pathway (43, 44).

Furthermore, the pivotal role of the PI3K-Akt signaling pathway in

tumor resistance has been well-established. The regulatory effect of

berberine on cell death across various cancer types through

modulation of the PI3K-Akt signaling pathway has also been

elucidated (45, 46). Wu et al. demonstrated that the activation of

the PI3K-Akt signaling pathway can induce cell death by

suppressing autophagy, thereby providing novel insights into the

intricate relationship between the PI3K-AKT signaling pathway and

cellular demise (47). Therefore, a comprehensive investigation into

the underlying mechanisms governing cell death mediated by the

PI3K-Akt signaling pathway will contribute to unraveling disease

pathogenesis and identifying potential targets for clinical

intervention in HG-NB.

Through the integration of metabolomics and transcriptomics

studies, we have identified significant alterations in the TNF

signaling pathway. Tumor necrosis factor (TNF) is a

multifunctional cytokine with immunological effects, playing a

pivotal role in both adaptive and innate immunity as well as the

homeostasis of immune cells. Its action and production are

temporally and spatially regulated (48). Activated macrophages, T

lymphocytes, and natural killer cells that secrete TNF are

distributed systemically via the bloodstream, encompassing

various anatomical regions including the musculoskeletal system

(49). Moreover, it has been proposed that TNF is implicated in
TABLE 3 The top 20 genes significantly up-regulated in HG-NB vs. LG-NB.

NO. Gene Description Fold Change P value

1 CYP17A1 cytochrome P450 family 17 subfamily A member 1 112.848 1.11E-10

2 DEFA3 defensin alpha 3 109.644 7.18E-09

3 HSD3B2 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2 105.903 7.18E-11

4 MMP8 matrix metallopeptidase 8 98.087 1.41E-13

5 CYP11B1 cytochrome P450 family 11 subfamily B member 1 55.990 7.82E-06

6 PRTN3 proteinase 3 55.314 8.29E-10

7 HBD hemoglobin subunit delta 51.879 3.91E-11

8 DEFA4 defensin alpha 4 41.410 2.42E-08

9 CIDEC cell death inducing DFFA like effector c 40.741 6.28E-08

10 H4C3 H4 clustered histone 3 38.945 6.70E-08

11 CEACAM8 CEA cell adhesion molecule 8 37.945 3.24E-07

12 MS4A3 membrane spanning 4-domains A3 37.691 9.09E-09

13 WDR72 WD repeat domain 72 35.055 1.24E-10

14 PLIN1 perilipin 1 32.315 6.25E-10

15 H4C2 H4 clustered histone 2 29.826 0.001338

16 TRARG1 trafficking regulator of GLUT4 (SLC2A4) 1 28.888 6.38E-06

17 PCOLCE2 procollagen C-endopeptidase enhancer 2 27.376 3.01E-12

18 SULT2A1 sulfotransferase family 2A member 1 26.360 0.000365

19 MC2R melanocortin 2 receptor 26.289 0.000393

20 C14orf180 chromosome 14 open reading frame 180 26.137 3.88E-08
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TABLE 4 The top 20 genes significantly down-regulated in HG-NB vs. LG-NB.

NO. Gene Description Fold Change P value

1 HES3 hes family bHLH transcription factor 3 0.150 0.030653

2 H2BC13 H2B clustered histone 13 0.149 0.011684

3 UTS2 urotensin 2 0.148 2.22E-05

4 PAX3 paired box 3 0.144 0.000821

5 LOC102724265 uncharacterized LOC102724265 0.135 0.000599

6 NTSR2 neurotensin receptor 2 0.125 2.98E-05

7 UCN3 urocortin 3 0.119 4.64E-07

8 PKLR pyruvate kinase L/R 0.118 4.80E-05

9 POU5F2 POU domain class 5, transcription factor 2 0.115 0.00107

10 ADCYAP1 adenylate cyclase activating polypeptide 1 0.113 3.36E-06

11 CHRNB3 cholinergic receptor nicotinic beta 3 subunit 0.113 0.007814

12 RESP18 regulated endocrine specific protein 18 0.098 0.003363

13 GRP gastrin releasing peptide 0.079 8.77E-06

14 CGA glycoprotein hormones, alpha polypeptide 0.064 5.46E-08

15 H3C11 H3 clustered histone 11 0.061 0.007993

16 H2BC14 H2B clustered histone 14 0.055 0.003496

17 H2BC10 H2B clustered histone 10 0.053 0.003473

18 RBBP8NL RBBP8 N-terminal like 0.050 0.001128

19 CST1 cystatin SN 0.045 2.06E-08

20 H4C13 H4 clustered histone 13 0.034 0.024042
F
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FIGURE 4

The GO and KEGG analysis between HG-NB and LG-NB in transcriptomics. (A) GO analysis of biological processes, molecular functions and cellular
components organization of up- and down-regulated genes between HG-NB and LG-NB. (B) KEGG analyzes up- and down-regulated genes from 3
aspects of environmental information, human diseases and organismal systems between HG-NB and LG-NB.
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TABLE 5 Differential metabolic pathways based on joint-pathway analysis.

NO Pathway name Match status P value Impact

1 Cytokine-cytokine receptor interaction 64/294 <0.001 0.45

2 Viral protein interaction with cytokine and cytokine receptor 35/100 <0.001 0.20

3 Neuroactive ligand-receptor interaction 69/392 <0.001 0.34

4 Chemokine signaling pathway 29/194 <0.001 0.30

5 PI3K-Akt signaling pathway 33/358 <0.001 0.17

6 cAMP signaling pathway 31/241 <0.001 0.48

7 ECM-receptor interaction 17/89 <0.001 0.5

8 PPAR signaling pathway 15/81 <0.001 1.8

9 Cortisol synthesis and secretion 13/77 <0.001 0.63

10 TNF signaling pathway 15/112 <0.001 0.04
F
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FIGURE 5

Integrated transcriptomics and metabolomics analysis of NB metabolic pathways. (A) Joint-pathway analysis of differential pathway between HG-NB
and LG-NB. (B) The cAMP signaling pathway, (C) the PI3K-Akt signaling pathway and (D) the TNF signaling pathway with altered significantly genes in
HG-NB compared to LG-NB. Significant overexpression in red, and no significant changes in grey.
ntiersin.org

https://doi.org/10.3389/fimmu.2023.1345734
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1345734
tumor angiogenesis and cell death, thereby facilitating tumor

advancement and metastasis (50, 51). The activation of the TNF

signaling pathway can induce the expression and activation of a

diverse array of downstream molecules, including nuclear factor kB
and p38 mitogen-activated protein kinase (52, 53). Subsequent

activation of these molecules exerts regulatory control over

various biological processes, such as cell death. The TNF

signaling pathway has been confirmed to be intricately associated

with various diseases, including prostate cancer, breast cancer, and

gastric cancer (54, 55). However, further investigations are

warranted to elucidate the underlying mechanisms of the TNF

signaling pathway in NB.
Conclusions

In this study, a total of 84 clinical plasma samples and 51 clinical

NB tissue samples were analyzed, leading to the identification of

1,199 differential genes and 39 differential metabolites. The

metabolomics and transcriptomics characteristics of HG-NB

patients were elucidated, followed by a comprehensive network

analysis. Furthermore, significant differences in key signaling

pathways including cAMP signaling pathway, PI3K-Akt signaling
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pathway, and TNF signaling pathway were observed between HG-

NB and LG-NB. Subsequently, a risk stratification risk diagnostic

model for HG-NB was developed based on the combination of

MGST1, SERPINE1, and ERBB3. The area under the ROC curve was

determined to be 0.915, while the sensitivity and specificity were

found to be 75.0% and 80.0%, respectively, indicating the potential

of the risk diagnostic model for early detection of HG-NB as well as

its future therapeutic implications. The limited sample size of this

study was inadequate, and the diagnostic model we constructed

could not be clinically validated. In future studies, our aim is to

increase the sample size, identify potential biomarkers, explore

effective therapeutic targets, and enhance patient outcomes. In

summary, a comprehensive analysis integrating metabolomics and

transcriptomics revealed a dysregulated network, leading to the

development of a diagnostic model for HG-NB.
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FIGURE 6

Establishment of HG-NB early diagnosis model. The ROC curves for biomarkers (A) MGSTI, (B) SERPINE1 and (C) ERBB3. (D) The ROC curve in the
test set. (E) The prediction accuracies by the MGSTI, SERPINE1, and ERBB3 in test set and validation set are compared between HG-NB and LG-NB.
(F) The ROC curve in the validation set.
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