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Macrophages polarized into distinct phenotypes play vital roles in inflammatory

diseases by clearing pathogens, promoting tissue repair, and maintaining

homeostasis. Metabolism serves as a fundamental driver in regulating

macrophage polarization, and understanding the interplay between

macrophage metabolism and polarization is crucial for unraveling the

mechanisms underlying inflammatory diseases. The intricate network of

cellular signaling pathway plays a pivotal role in modulating macrophage

metabolism, and growing evidence indicates that the Hippo pathway emerges

as a central player in network of cellular metabolism signaling. This review aims to

explore the impact of macrophage metabolism on polarization and summarize

the cell signaling pathways that regulate macrophage metabolism in diseases.

Specifically, we highlight the pivotal role of the Hippo pathway as a key regulator

of cellular metabolism and reveal its potential relationship with metabolism in

macrophage polarization.
KEYWORDS

macrophage polar izat ion, inflammatory diseases , metabol ism, Hippo,
regulatory network
1 Introduction

Macrophages are critical components of innate immunity and play a vital role in

homeostasis, tissue repair, and defense against bacterial, viral, and neoplastic threats. These

cells are highly plastic and can be polarized into distinct phenotypes. The M1 phenotype

produces proinflammatory cytokines and free radicals for antibacterial, antiviral, and

antineoplastic responses. In contrast, the M2 phenotype secretes anti-inflammatory

cytokines that are involved in antiparasitic, proangiogenic, and prowound healing
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responses (1, 2) (Figures 1, 2). Recent studies have highlighted the

importance of cellular metabolism in regulating macrophage

polarization and controlling inflammatory responses. Metabolism,

such as glycolysis, pentose phosphate pathway (PPP), tricarboxylic

acid cycle (TCA cycle), and fatty acid synthesis (FAS), influence the

M1 polarization (Figure 3A), which is associated with bacterial

infection, obesity, diabetes, fatty liver, and atherosclerosis

(Figure 2). Conversely, the intact TCA cycle, fatty acid oxidation

(FAO), and FAS affect the M2 polarization (Figure 3B), which is

related to parasite infection, tumors, and fibrosis (2, 3) (Figure 2).

Furthermore, various signaling pathways, including mammalian

target of rapamycin (mTOR)-phosphoinositide 3-kinase (PI3K)-

AKT, peroxisome proliferator-activated receptor (PPAR) g,
adenosine 5’-monophosphate (AMP)-activated protein kinase

(AMPK), mitogen-activated extracellular signal-regulated kinase

(MEK)/extracellular regulated protein kinase (ERK), and Notch,

have been implicated in regulating macrophage metabolism

(Figure 4). However, these studies are scattered and lack a

comprehensive overview. By summarizing the literature, we found

that the Hippo pathway is a central player in the cellular metabolic

signaling network. It has the potential to intertwine with these
Frontiers in Immunology 02
pathways to form a metabolic regulatory network that affects

macrophage metabolism (4–6) (Figure 5).

Understanding the mechanisms underlying metabolic

regulation is critical for preventing and treating inflammatory

diseases. The Hippo pathway could represent a novel target for

modulating the metabolic polarization of macrophages and holds

promise for therapeutic interventions in inflammatory diseases.

This comprehensive review aims to explore the role of the Hippo

pathway-mediated cellular metabolism and reveals the potential

regulatory relationship of Hippo signaling with cellular metabolism

in macrophage polarization.
2 Macrophage polarization-
related diseases

Macrophages are important immune cells that exhibit

remarkable plasticity and can switch two main phenotypes: M1

and M2. M1 macrophages are activated by damage-associated

molecular patterns (DAMPs) or pathogen-associated molecular

patterns (PAMPs) and combat bacterial, viral, and neoplastic
FIGURE 1

Characteristics of polarized macrophages. M0 macrophages polarize into M1 macrophages with IFN-g, TNF, DAMPs (e.g., ATP), and PAMPs (e.g., LPS)
stimuli. M1 macrophages secrete pro-inflammatory cytokines (e.g., TNF, IL-1b, IL-6) and free radicals (NO, ROS) to perform pro-inflammatory,
bactericidal, viricidal, and antineoplastic activities. In M1 macrophages, glycolysis, PPP, and de novo FAS are upregulated, and OXPHOS and the intact
TCA cycle are downregulated. M0 macrophages polarize into M2 macrophages with IL-4, IL-10, IL-13, and TGF-b treatment. M2 macrophages
secrete anti-inflammatory cytokines (e.g., IL-10, IL-1RII, IL-1RA) and growth factors (e.g., TGF-b1, PDGF) to perform anti-inflammatory, matrix-
producing, pro-angiogenesis, and pro-wound healing functions. In M2 macrophages, FAO, OXPHOS, and the TCA cycle are upregulated. In special
cases, M1 can be polarized toward M2. However, whether M2 can be polarized to M1 is still debated. M0 macrophages, unactivated macrophages;
M1 macrophages, classically activated macrophages; M2 macrophages, alternatively activated macrophages; IFN, interferon; TNF, tumor necrosis
factor; DAMPs, damage-associated molecular patterns; PAMPs, pathogen-associated molecular patterns; PPP, pentose phosphate pathway;
OXPHOS, oxidative phosphorylation; FAS, fatty acid synthesis; FAO, fatty acid oxidation; TCA, tricarboxylic acid cycle; IL, interleukin; NO, nitric oxide;
ROS, reactive oxygen species; TGF, transforming growth factor; PDGF, platelet-derived growth factor.
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threats (Figures 1, 2). M2 macrophages are activated by cytokines

such as IL-4, IL-10, IL-13, and transforming growth factor-b (TGF-

b) and promote anti-inflammatory responses, tissue repair, and

angiogenesis (Figures 1, 2). The balance and switch between M1 and

M2 macrophages are crucial for maintaining homeostasis and

controlling disease processes.
2.1 Infectious diseases

Normally, microbial infection triggers macrophage polarization

and the inflammatory response by recognizing PAMPs. Common

infectious diseases are caused by bacterial , viral , and

parasitic infections.

During bacterial infection, pattern recognition receptors (PRRs)

are anchored on the surface of macrophages to recognize PAMPs of
Frontiers in Immunology 03
bacteria, such as toll-like receptor (TLR) 2, TLR4, TLR5, and TLR9,

which are specific for lipopeptides, lipopolysaccharide (LPS),

flagellin, and the low-methylated DNA sugar backbone,

respectively (7, 8) (Figure 2A). PAMPs induce macrophages

to express high-level costimulatory molecules, such as cluster of

differentiation (CD) 40, CD80, CD86, and major histocompatibility

complex-II (MHC-II), to perform antigen presentation (2)

(Figure 2A). These activated macrophages also produce and

secrete proinflammatory cytokines to promote the Th1 immune

response (2) (Figure 2A). Some bacteria could decrease the level of

M1 polarization for bacterial survival. Mycobacterium tuberculosis

(M. tuberculosis) inhibits pro-inflammation and induces M2

polarization (9). In addition, we found that Mobile colistin

resistance (mcr)-1/3 resistance enzyme-modified LPS decreases

NF-kB activation and induces weaker macrophage response than

native LPS in vitro. mcr-1/3 positive bacteria induce lower level
B

A

FIGURE 2

Macrophage polarization in different diseases. (A) Macrophages recognize lipopeptides, LPS, flagellin, and the low-methylated DNA sugar backbone
of bacteria through TLR2/4/5/9 and recognize CpG dsRNA, ssRNA, and unmethylated DNA of viruses through TLR3/7/9 to activate M1 macrophages.
Activated M1 macrophages secrete proinflammatory cytokines and upregulate MHC-II, CD86, CD80, and CD40. Macrophages recognize lipoprotein,
CpG DNA, and ssRNA and profilin of parasites through TLR2/7/9/11 to polarize into M2 macrophages. M2 macrophages produce Arg-1, TGF-b,
VEGF, YM1, and IGF-1. (B) In RA, SLE, glomerulonephritis, obesity, diabetes, and atherosclerosis, macrophages are overactivated to upregulate the
transcription of proinflammatory cytokines such as IL-1b, TNF, and CCL2 and downregulate the transcription of anti-inflammatory cytokines such as
IL-10, Ym-1, and Arg-1. In fibrosis and tumors, M2 macrophages are overactivated to upregulate anti-inflammatory cytokines such as IL-10, TGF-b,
and Wnt-1. TLR, toll-like receptor; MHC, major histocompatibility complex; CD, cluster of differentiation; VEGF, vascular endothelial growth factor;
IGF, insulin-like growth factor; CCL, chemokine cc-motif ligand; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus.
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B

A

FIGURE 3

The metabolism of regulated polarization. (A) Under LPS, IFN-g, or TNF treatment, glycolysis, PPP, and FAS are upregulated to increase M1
polarization. The TCA cycle and amino acid metabolism are changed. The changes promote intermediate products of TCA and NO production of
large quantities to enhance pro-inflammation and kill bacteria. Glucose uptake is increased and further produces pyruvate. Pyruvate enters
mitochondria and promotes citrate, itaconate, and succinate accumulation. Citrate enters the cytoplasm to produce acetyl-CoA, which participates
in histone acetylation and FAS. Succinate enters the cytoplasm to maintain the stabilization of HIF-1a. HIF-1a translocates into the nucleus to
transcribe glycolysis enzymes and proinflammatory cytokines. In addition, IDO is downregulated to inhibit kynurenine production to increase M1
polarization. Ribulose-5-phosphate and CARKL are decreased to inhibit M1 polarization. Glutamine plays a negative role in pro-inflammatory
cytokine production. (B) Response to IL-4, TCA cycle, FAO, and OXPHOS is upregulated for M2 polarization. Amino acid metabolism is changed to
enhance anti-inflammatory cytokine production. The intermediate products of TCA and FAO are involved in OXPHOS. In response to IL-4 and
lactate, M2 markers such as Arg-1 are transcribed. Arg-1 promotes arginine catabolism and further enhances TCA and OXPHOS. In addition, IDO is
upregulated to increase kynurenine production. Ribulose-5-phosphate and CARKL are increased. These changes enhance M2 polarization.
Glutamine plays a positive role in M2 polarization. PK, pyruvate kinase; PGD, phosphogluconate dehydrogenase; PDH, pyruvate dehydrogenase
complex hyperacetylation; CS, citrate synthase; ACOD, aconitase decarboxylase; SDH, succinate dehydrogenase; IDH, isocitrate dehydrogenase;
iNOS, inducible nitric oxide synthase; IDO, indoleamine 2,3-dioxygenase; HIF, hypoxia-inducible factor; NAD, nicotinamide adenine dinucleotide;
ATP, adenosine 5’-triphosphate.
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macrophage inflammation and M1 polarization, further causing

higher mortality in mice (10). Wu reported that promoting M2

polarization and decreasing M1 polarization ameliorate bacterium-

induced acute lung injury (11).

Viral infection triggers a pro-inflammatory response that is similar

to bacterial infection. TLR 3, 7, and 9 identify CpG motifs-dsRNA,

ssRNA, and unmethylated DNA of viruses, respectively (12)

(Figure 2A). Jiang found that simian immunodeficiency virus (SIV)

induces M2 macrophage polarization (13). Hepatitis B virus (HBV)

decreases the levels of IL-1b and IL-6 secretion by M1 macrophages,

and increases the IL-10 secretion by M2 macrophages (14).

Parasite infection causes M2 polarization. TLR2, 7, 9, and 11

identify lipoprotein, CpG DNA, ssRNA, and profilin of parasites

(15) (Figure 2A). Helminth infection induces a Th2 immune
Frontiers in Immunology 05
response to produce high levels of Arg-1, TGF-b, vascular

endothelial growth factor (VEGF), YM1, and insulin-like growth

factor-1 (IGF-1) to inhibit parasitic confinement and clearance (16)

(Figure 2A). Protozoans induce anti-inflammatory responses to

antagonize macrophages for protozoan survival (17).

Therefore, enhancing the proinflammatory response in the

microenvironment can enhance bacterial and viral clearance,

although this may cause more severe tissue damage. M2 anti-

inflammation increases parasitic clearance. Those evidences

suggest that regulating the balance of M1 and M2 activation in

infectious disease could be a potential therapeutic intervention. It is

of great significance to explore the molecular mechanism of the

polarization balance between M1 and M2 macrophages to control

microbial infection.
B

A

FIGURE 4

Pathways of regulatoy metabolism. (A) In M1 polarization, PI3K-AKT-mTOR, MEK/ERK, and NF-kB are activated to enhance glycolysis through HIF-
1a. In addition, PI3K-AKT-mTOR and NF-kB also directly regulate glycolysis. JAK/STAT increases arginine metabolism by iNOS. NO that is produced
by the enzymolysis of iNOS participates in the TCA cycle. JAK/STAT and NF-kB regulate the TCA cycle through IRG1. Notch affects the TCA cycle via
PDP1. CD40-AMPK enhances FAO by regulating the conversion of glutamine and lactate. (B) In M2 polarization, PPARg enhances FAO by increasing
CD36 expression. AMPK/PPARa promotes FAO. PI3K-AKT-mTORC2 increases the level of FAO via IRF4. STAT6 boosts FAO, FAS, and arginine
metabolism via IRF4, SREBP1, and Arg-1, respectively. AMPK-mTORC1 increases FAS by ACLY. PI3K, phosphoinositide 3-kinase; mTOR, mammalian
target of rapamycin; NF-kB, nuclear factor kappa-B; MEK, mitogen-activated extracellular signal-regulated kinase; ERK, extracellular regulated
protein kinase; JAK, Janus kinase; STAT, signal transducer and activator of transcription; AMPK, adenosine 5’-monophosphate (AMP)-activated
protein kinase; PPAR, peroxisome proliferator-activated receptor.
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2.2 Noninfectious diseases

Abnormal macrophage polarization also affects noninfectious

diseases. Aberrant M1 activation induces autoimmune disease and

chronic inflammatory diseases. M2 overactivation is involved in

fibrosis and tumors.

2.2.1 M1 activation-related disease
Autoimmune diseases feature a macrophage-mediated

uncontrolled and overinflammatory immune response, including

rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and

glomerulonephritis (Figure 2B). In these diseases, a large number of

proinflammatory factors are mainly secreted by M1 macrophages

(Figure 2B). Obesity, diabetes, and atherosclerosis are chronic

inflammatory diseases (4). In obesity, adipocytes secrete

proinflammatory cytokines and free fatty acids (FFAs) that induce

the recruitment of monocytes to polarize M1 macrophages. M1

macrophage-mediated proinflammatory cytokine production

amplifies the proinflammatory circuit and leads to insulin resistance

(18). In atherosclerosis, macrophages uptake oxidized lipids to develop

into foam cells and further release proinflammatory cytokines, which

induce low-level inflammation in the arterial wall (19).

Therefore, reducing the level of M1 polarization and enhancing

M2 polarization are essential strategies for treating autoimmune

diseases and chronic inflammatory diseases.
Frontiers in Immunology 06
2.2.2 M2 activation-related disease
M2 macrophages can suppress the proinflammatory response,

release anti-inflammatory cytokines, promote tissue repair, and

secrete extracellular matrix (ECM) for wound healing. However,

persistent stimuli can lead to dysregulation of this process, resulting

in excessive ECM deposition, upregulation of myofibroblast

activity, and a chronic inflammatory environment with

infiltration of M2 macrophages and other immune cells (2)

(Figure 2B). M2 macrophages not only play critical roles in tissue

repair and fibrosis but also promote the occurrence and

development of tumors. Tumor-associated macrophages (TAMs)

generally display the M2 phenotype and secrete anti-inflammatory

cytokines and growth factors to promote the proliferation, invasion,

and metastasis of tumor cells and inhibit the antitumor immune

response (20, 21) (Figure 2B).

Therefore, the regulation of macrophage polarization level is of

great significance for controlling ECM accumulation and tumor cell

proliferation and metastasis.
3 Cellular metabolism-mediated
macrophage polarization

Previously, we have summarized the important role of

macrophage polarization in disease. We will further discuss the
frontiersin
FIGURE 5

Crosstalk with Hippo and other pathways. Hippo engages in crosstalk with NF-kB, HIF-1a, MEK/ERK, and PI3K-AKT-mTOR to affect glycolysis. Hippo
engages in crosstalk with PI3K-AKT-mTOR, PPARg, and AMPK to affect FAO. Hippo engages in crosstalk with Notch to affect arginine metabolism.
Hippo engages in crosstalk with Notch and NF-kB to affect the TCA cycle.
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factors that regulate macrophage polarization. Many studies have

shown that metabolic pathways can regulate macrophage

polarization. Reprogramming the functions of macrophages by

changing metabolism has become a consensus for regulating

macrophage polarization diseases. Next, we will summarize how

metabolism affects polarization.
3.1 Glycolysis

Glycolysis metabolizes glucose to produce pyruvate, lactate, and

ATP (4). Although glycolysis only produces a small amount of ATP,

it proceeds rapidly to provide energy for requiring rapid production

of physiological activities (4). In response to LPS or PAMPs, the

metabolism of macrophages switches toward anaerobic glycolysis,

but IL-4 almost does not affect glycolysis (22). Hypoxia-inducible

factor-1a (HIF-1a) is a transcription factor. In response to LPS

stimulation, HIF-1a is upregulated and promotes glycolytic enzyme

and proinflammatory cytokine expression (23, 24) (Figure 3A).

Inhibition of macrophage glycolysis can reduce M1 polarization by

facilitating the proteasome degradation of HIF-1a (25, 26).

Pyruvate kinase (PK) is the rate-limiting enzyme of glycolysis.

Enhancing glycolysis by increasing PKM2 phosphorylation or

decreasing PKM2 ubiquitination can promote polarization of M1

macrophages, following an increased proinflammatory response to

aggravate liver fibrosis (27) (Figure 3A). Annexin A5 promotes

hepatic macrophage shifting from M1 to M2 by inhibiting PKM2

phosphorylation (28). Lactate (a product of anaerobic glycolysis and

glutaminolysis)-derived acetylation in histone lysine residues

directly induces transcription of M2-like genes such as Arg-1 at

the late phase of M1 polarization with bacterial infection (29)

(Figure 3B). Lactate inhibits the levels of M1 markers and the

proportion of M1 macrophages in breast cancer tissues (30).

These results show that enhancing glycolysis can promote M1

polarization. Notably, HIF-1a and the rate-limiting enzymes are

crucial in increasing M1 macrophage polarization (Figure 3A).

Meanwhile, lactate inhibits the M1 marker and promotes M2

polarization (Figure 3B). This suggests that glycolysis is a target

to regulate macrophage polarization.
3.2 PPP

As a branch of glycolysis, the PPP is a major source of NADPH

and is required for ribonucleotide synthesis (31). The PPP is

significantly upregulated in M1 macrophages, suggesting that the

PPP plays an important role in proinflammatory polarization (3, 32,

33). Glucose-6-phosphate (G6P, an intermediate product of

glycolysis) is oxidized to produce NADPH, which is the

foundation of macrophage-killing activity and is involved in fatty

acid biosynthesis and antioxidant defense mechanisms (34).

Inhibiting PPP by the knockdown of 6-phosphogluconate

dehydrogenase (PGD) can decrease macrophage-producing pro-

inflammatory cytokines with LPS treatment (35) (Figure 3A). In

addition, the carbohydrate kinase-like protein CARKL, which

catalyzes an orphan reaction in PPP, can reprogram M1- and
Frontiers in Immunology 07
M2- polarization metabolism (36) (Figures 3A, B). CARKL

reduces the production of proinflammatory cytokines (M1

phenotype) (36). CARKL gene overexpression in macrophages

significantly inhibits intracellular ROS production and is more

sensitive to M2 stimulation (37).

Those evidences suggest that the PPP is also involved in

increasing proinflammatory cytokine production and M1

macrophage polarization.
3.3 The TCA cycle

Pyruvate in the cytoplasm is transported to the mitochondria and

then used in the TCA cycle (also known as the Krebs cycle) (4).

(Figure 3A). In M1 macrophages, isocitrate dehydrogenase (IDH,

which catalyzes the conversion of isocitrate to a-ketoglutarate)
breaks the TCA cycle (38), resulting in the accumulation of the

intermediate products citrate, itaconate, and succinate, which

participate in pro-inflammation (34, 38–44). HBV decreases the

incomplete TCA cycle and drives M2 polarization (45). After DCA

(an agonist of TCA) treatment, enhancing incomplete TCA can

significantly reduce M2 marker expression (45). Inhibition of citrate

synthase (CS)/pyruvate dehydrogenase complex hyperacetylation

(PDH) in macrophages increases M2-like polarization (45).

(Figure 3A). Citrate is exported from mitochondria and catabolized

to produce acetyl-CoA to enhance glycolytic gene transcription by

histone acetylation, which drives M1 activation (39) and inflammatory

cytokine, nitric oxide (NO) and reactive oxygen species (ROS)

production (40) (Figure 3A). Inhibition of the citrate carrier (CIC,

which exports citrate from mitochondria) ensures oxidative metabolic

flux in the TCA cycle (39). CIC inhibition decreases IL-1b and Nos 2

gene (M1 marker) expression, increases IL-10 and Arg-1 gene (M2

marker) expression, and promotes the switch fromM1 toM2 (39). The

accumulation of itaconate has been recognized as characteristic of

inflammation and the killing activity of M1 macrophages (41). In M1

macrophages, itaconate is produced inmitochondria through aconitase

decarboxylase 1 (ACOD1) (42) (Figure 3A). It has been shown that

itaconate enhances innate antibacterial immunity (43). In addition,

itaconate decreases IL-1b, IL-6, IL-12, and IL-18 levels by inhibiting

succinate dehydrogenase-mediated oxidation of succinate after LPS

treatment (44). Succinate has been reported to be involved in M1

activation after LPS stimuli (40). Succinate can stabilize HIF-1a and

drive IL-1b secretion by promoting glycolysis (23) (Figure 3A).

Therefore, intact TCA can completely metabolize pyruvate,

enhance oxidative phosphorylation, and promote macrophages to

polarize into M2. Interrupted TCA can increase the pro-

inflammatory response. These results suggest that the polarization

and biological activity of macrophages can be regulated by affecting

the integrity of the TCA cycle.
3.4 Fatty acid metabolism

Nonlipid precursors (e.g., glucose-derived citrate) are

transported to the cytosol and synthesized as Ac-CoA (the raw

material for fatty acid synthesis) (46). When fatty acids are broken
frontiersin.org
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down, they produce Ac-CoA, FADH2, and NADH in the

mitochondrial matrix (46). Fatty acid metabolism also provides

energy for supporting the macrophage inflammatory response

and polarization (47). FAS plays a vital role in energy source and

prostaglandin biosynthesis in M1 macrophages (48), and malonyl-

CoA promotes the pro-inflammatory response (49, 50) (Figure 3A).

FAO (also known as b oxidation) in M2 macrophages can drive

mitochondrial oxidative phosphorylation (OXPHOS) to produce

energy. Inhibition of FAO prevents M2 polarization (51)

(Figure 3B). However, other studies have shown that FAO is not

necessary for M2 polarization upon IL-4 stimulation, and FAOmay

play a role in M1 activity (52–54), suggesting that the regulation of

macrophage polarization by fatty acid metabolism may be more

complicated than previously thought. Other functions of FAO are

receiving increasing attention. Chandra reported that when FAO is

inhibited in macrophages, the bacteria cannot survive, and the

tissue bacterial load of mice decreases (55). Enhancing FAO

exacerbates LPS-induced sepsis (56).

Consequently, fatty acid metabolism affects macrophage

polarization. However, there are many contradictions in the

literature. How fatty acid metabolism regulates polarization still

needs to be further explored.
3.5 Amino acid metabolism

Amino acid metabolism usually refers to the synthesis of amino

acids and their decomposition (4). Amino acid and their metabolic

producers are important for the immune response (34). A

deficiency of amino acid may affect the migration, division, and

maturation of immune cells (34). Deficiency of glutamine increases

M1-specific marker genes and decreases M2-specific markers (38)

(Figures 3A, B). a-Ketoglutarate (a-KG) produced by glutamate

decomposition promotes M2 polarization but inhibits M1

polarization (57) (Figure 3B). The limiting enzyme of tryptophan

metabolism is indoleamine 2,3-dioxygenase (IDO) (34).

Macrophages polarize into M2 with overexpression of IDO, and

silencing IDO macrophages polarize into M1 (58) (Figures 3A, B).

Two L-arginine catalytic enzymes, inducible nitric oxide synthase

(iNOS) and Arg-1, are M1 and M2 macrophage markers,

respectively. Arginine metabolism plays an essential role in

macrophage inflammatory function (59). In response to

proinflammatory stimuli (e.g., LPS, IFN-g, and TNF), iNOS

catabolizes arginine to produce NO. NO promotes M1

polarization and prevents M1 to M2 polarization (60, 61)

(Figure 3A). In M2 macrophages, Arg-1 catabolizes arginine to

produce ornithine and urea, and ornithine is catalyzed to produce

spermidine. Furthermore, TCA and OXPHOS are promoted, which

induces macrophage polarization to M2 (62) (Figure 3B). However,

the two catabolic pathways of arginine are not independent of each

other. In tumors, arginine is catabolized by both iNOS and Arg-1,

which suggests that targeting arginine is a new strategy to regulate

macrophage polarization (63).

These results indicate that amino acids, related enzymes, and

their production can change the polarization of macrophages.
Frontiers in Immunology 08
Therefore, they can be used as targets to explore the mechanism

of macrophage polarization.
4 The regulation of
macrophage metabolism

According to the above summary, macrophage metabolism is

an important way to regulate macrophage polarization. These

metabolic pathways are affected by different cellular signals. Here,

we will summarize the specific signaling pathways involved in

regulating macrophage metabolism, aiming to identify the

potential mechanisms regulating macrophage metabolism.
4.1 The regulatory mechanisms of
M1 metabolism

As we have shown before, glycolysis, amino acid metabolism,

the TCA cycle, and FAO regulate M1 polarization. Therefore, we

focused on these metabolic pathways to explore the signaling

pathways affecting M1 metabolism.

In glycolysis, there is a critical transcription factor, HIF-1a,
which transcribes the key glycolysis kinases hexokinase 1/2 (HK1/

2), glucose transporters 1/3 (GLUT1/3), lactate dehydrogenase

(LDHA) and PKM (64). Therefore, controlling the expression and

activation of HIF-1a is a strategy for affecting glycolysis. In breast

cancer cells, responses to ROS, PI3K and AKT are activated and

further promote HIF-1a transcription of HK2, thereby enhancing

macrophage glycolysis and enhancing tumor survival (65). A

similar process also exists in macrophages. In macrophages of

mice with E. coli-induced sepsis, triggering receptors expressed on

myeloid cells-1 (TREM-1), PI3K, AKT, and mTOR are activated in

a cascade (66). Then, HIF-1a translocates into the nucleus and

initiates the transcription of GLUT1, HK2, and LDHA to enhance

glycolysis, control the activation of NOD-like receptor thermal

protein domain associated protein 3, and affect the secretion of

inflammatory factors in macrophages (66) (Figure 4A). In addition,

the PI3K-AKT-mTOR pathway is also activated to regulate HIF-1a
by growth factors (64). MEK/ERK, downstream of growth factors

and LPS, can also restrict glycolysis through HIF-1a (67, 68)

(Figure 4A). With LPS induction, another classical inflammatory

pathway, nuclear factor kappa-B (NF-kB), is also involved in

regulating the upregulation of glycolysis (69). In macrophages,

inhibition of NF-kB activation damages glycolysis activity

(Figure 4A). As a transcriptional regulator, NF-kB can participate

in the transcriptional regulation of HK2 in CD8+ T cells, which is

also a way for NF-kB to inhibit glycolysis (70). This suggests that

PI3K-AKT-mTOR, MEK/ERK, and NF-kB promote M1

polarization by enhancing glycolysis.

In macrophages, signal transducer and activator of

transcription (STAT) regulates L-arginine metabolism. Under

IFN-g treatment, Janus kinase (JAK)/STAT1 is phosphorylated to

transcript Nos2 mRNA and express iNOS for L-arginine

metabolism (71, 72) (Figure 4A). Furthermore, in the gastric
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cancer microenvironment, the SLC2A3-STAT3-SLC2A3 feedback

loop promotes macrophage phenotype trans i t ion by

phosphorylating downstream glycolytic targeting genes (73). This

suggests that the STAT family plays an important role in the

macrophage metabolism regulatory mechanism. When bacteria

infect macrophages, immune-responsive gene 1 (IRG1), which is

needed for the decarboxylation of cis-aconitate to form itaconate in

the TCA cycle, is upregulated, therefore inducing itaconate

accumulation to damage microbes (74, 75) (Figure 4A). However,

prolonged excessive accumulation of itaconate leads to decreased

sensitivity of M1 macrophages (75). In addition, IRG1 encodes an

emerging IFN regulatory protein (IRP) with antimicrobial activity

(74), and both JAK/STAT and NF-kB are upstream of IRG1

(Figure 4A). In a zebrafish bacterial infection model, the

glucocorticoid receptors and JAK/STAT signaling pathways

cooperatively regulate IRG1 expression (76). Therefore, IRG may

be used as new targets to explore new antibacterial mechanisms and

develop new antibacterial drugs in macrophages. Those evidences

indicate JAK/STAT, which is related to the TCA cycle, increases M1

polarization. NF-kB affects the TCA cycle to promote

M1 polarization.

In response to LPS stimuli, the Notch pathway is activated to

initiate transcription of the Nos2 and pyruvate dehydrogenase

phosphatase 1 (Pdp1) genes to induce concurrent glucose flux to

the TCA cycle for M1 activation (77) (Figure 4A). In M1, a large

amount of NO damages the mitochondrial respiratory chain (78).

In cells lacking NO, citrate is significantly decreased, and itaconate

and succinate are increased (78). These results indicate that NO is

involved in regulating metabolic processes such as the TCA cycle in

M1 cells and may participate in proinflammatory and antibacterial

processes through metabolism (Figure 4A).

Different from LPS, CD40 signaling can regulate the conversion

of glutamine and lactate to affect the NAD/NADH ratio by AMPK,

thereby reprogramming the FAO-induced proinflammatory

response and antitumorigenic activation (79) (Figure 4A).

Therefore, PI3K-AKT-mTOR, MEK/ERK, and NF-kB promote

M1 polarization by enhancing glycolysis. JAK/STAT regulates

arginine metabolism by iNOS expression to increase M1

polarization. NF-kB plays a proinflammatory role in the TCA

cycle. Notch increases M1 polarization by the TCA cycle. CD40-

AMPK reprograms the FAO-induced proinflammatory response. In

summary, PI3K-AKT-mTOR, MEK/ERK, NF-kB, JAK/STAT,

Notch, CD40-AMPK, and NO-related pathways are involved in the

metabolic regulation of macrophage M1 polarization (Figure 4A).
4.2 The regulatory mechanisms of
M2 metabolism

After reviewing the literature, we found that FAS, FAO, and

arginine metabolism play central roles in regulating M2

polarization. Therefore, we focused on exploring the signaling

pathways that affect M2 metabolism.

PPARg, a hallmark of M2 macrophages, is involved in lipid

metabolism by upregulating CD36 (fatty acid transporter) to

promote fatty acid uptake and FAO (80) (Figure 4B). PPARa is
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also involved in regulating macrophage metabolism. Li reported

that in DSS-induced ulcerative colitis (UC), activation of AMPK-

PPARa can promote b-oxidation, decrease de novo lipogenesis, and
promote M2 polarization of macrophages (81) (Figure 4B).

However, this study did not clearly show that AMPK-PPARa
changes occurred in macrophages. However, based on previous

reports that AMPK, PPARa, and FAO are upregulated under the

induction of IL-4+IL-13 (51, 81), we speculated that a similar

process would occur in macrophages. With IL-4 or MCSF

induction, IRF4 is transcribed to promote FAO and OXPHOS by

inducing glucose metabolism. The study also reported that STAT6

and mTORC2 are the pathways regulated upstream of IRF4 (82)

(Figure 4B). In summary, PPARg, AMPK-PPARa, and PI3K-AKT-

mTORC2 increase M2 polarization by enhancing FAO.

STAT6 also regulates FAS. In response to IL-4, the anabolic

transcription factor sterol regulatory element binding protein 1

(SREBP1) is activated by STAT6 to trigger de novo FAS and then

promotes macrophage M2 activation (83) (Figure 4B). A study

established that AKT-mTORC1 is also involved in FAS by

activating ATP citratelyase (ACLY, catalyze citrate to produce

acetyl-CoA) to promote acetyl-CoA derived acetylation of histone

and M2 gene transcription (84) (Figure 4B). Under IL-4 stimuli,

STAT6 is activated to produce Arg-1 for L-arginine metabolism

(71) (Figure 4B). In summary, STAT6 and AKT-mTORC1 promote

M2 polarization by FAS, and STAT6 also affects arginine

metabolism for M2 polarization.

PPARg, AMPK-PPARa, and PI3K-AKT-mTORC2 increase M2

polarization by regulating FAO. STAT6 promotes M2 polarization

through FAO and arginine metabolism. AKT-mTORC1 increases

M2 polarization by FAS. This suggests that these pathways are

targets to control M2 macrophage polarization by affecting

metabolism (Figure 4B).

It is worth noting that these metabolic and cell signaling

pathways always crosstalk each other. Therefore, we speculated

that there might be a pathway that could bring these complex

regulatory mechanisms together.
5 The potential relationship of Hippo
pathway with the regulatory pathway
of metabolism

The cellular signaling pathways that influence macrophage

metabolism are relatively dispersed. There is a lack of center

pathways to crosstalk those pathways into a network. Through

reviewing the literature, we found that the Hippo pathway engages

in crosstalk with multiple cellular signaling pathways. The signaling

network will help us better explore the potential relationship of

Hippo signaling with the regulatory pathway of metabolism

in macrophages.

The Hippo pathway is widespread and cross-interacts with a large

number of pathways to perform different functions. The Hippo

pathway was first identified in Drosophila, and it controls organ

size by regulating cell proliferation and apoptosis. The Hippo

pathway consists of a series of kinases, mainly including
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mammalian Sterile 20-like kinases 1/2 (MST1/2), SAV1, large tumor

suppressor (LATS1/2), MOB1, Yes-associated protein (YAP),

transcriptional coactivator with PDZ-binding motif (TAZ), and

TEAD1-4. In response to a variety of stimuli, the Hippo pathway is

activated or inhibited.When the Hippo pathway is activated, MST1/2

(its critical kinase of Hippo) undergoes heterodimerization with SAV

(Figure 5). MST1/2 is activated and phosphorylated, followed by

stepwise phosphorylation of SAV1, LATS1/2, and MOB1 (Figure 5).

Phosphorylated YAP/TAZ (YAP and TAZ are homologous analogs),

the downstream effectors of Hippo, bind to 14-3-3 proteins and are

retained in the cytoplasm or are polyubiquitinated and degraded in

the cytoplasm. When the Hippo pathway is off, YAP/TAZ in the

cytoplasm translocate into the nucleus and bind to transcription

factors or TEADs to initiate the transcription of downstream factors

(Figure 5). YAP/TAZ regulates cell proliferation, differentiation,

apoptosis, and other biological processes (85). In the Hippo

pathway, MST1/2 is a key regulatory kinase, and YAP is a

downstream effector molecule. Thus, most studies have focused on

MST1/2 and YAP.

The Hippo pathway plays an important role in cell proliferation

and differentiation. YAP aggravates inflammatory bowel disease

(IBD) by balancing M1/M2 polarization (86). With LPS or IL-4+IL-

13 stimuli, transcription regulatory YAP is activated (86). Activated

YAP increases IL-6 expression to promote M1 polarization and

decreases p53 expression to disrupt M2 polarization (86). In

myocardial infarction, it has also been reported that YAP

promotes pro-inflammation by secreting IL-6 and impairs the

reparative response by decreasing Arg-1 expression (87). During

acute liver injury and acute lung injury, inhibition of YAP promotes

M2 macrophage polarization to decrease proinflammatory cytokine

production and impair tissue injury (88–90). This evidence shows

that YAP promotes M1 polarization and decreases M2 polarization

to affect inflammatory diseases. In bacterial infection mice,

deficiency of MST1/2 in macrophages increases inflammatory

damage in the lung and promotes proinflammatory cytokine

secretion (91). We highlight above that Hippo is an important

pathway in regulating macrophage polarization.

These evidences show the Hippo pathway is an important

controller in macrophage polarization (86, 91). Metabolism is also

an important factor in regulating macrophage polarization (4, 92).

But, at present, no study directly evidences that Hippo can affect

macrophage polarization by regulating metabolism. This part of the

research is still a gap. Therefore, exploring whether the Hippo

pathway regulates macrophage polarization by affecting

metabolism is a new and meaningful research direction. According

to the reports, Hippo can regulate cellular metabolism in tumors,

hepatocytes, cardiomyocytes, and chondrocytes (93–97). And the

AKT-mTOR, PPARg, MEK/ERK, AMPK, NF-kB, HIF-1a, and
Notch pathways play important roles in macrophage metabolism

(64–69, 77, 80, 81). Meanwhile, we also found that the Hippo

pathway is in crosstalk with these regulatory pathways in

macrophages or other cells (74, 90, 96, 98–105). Therefore, we

comprehensively reviewed the literature to summarize the

crosstalk between Hippo and metabolic regulatory pathways in

different kinds of cells. Then, we further speculated on the
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potential relationship of the Hippo pathway with the regulatory

pathway of metabolism in macrophages. As a transcription

regulator, YAP itself can mediate the transcription of key

metabolic kinases. Therefore, we speculate the Hippo pathway may

regulate cellular metabolism either directly or through crosstalk with

these pathways.
5.1 The potential relationship of Hippo
pathway with the regulatory pathway
of glycolysis

The Hippo pathway and glycolysis regulate M1 polarization (22,

86–90). However, no literature directly suggests that Hippo

regulates macrophage polarization by glycolysis. These studies

have reported that MST1 and YAP affect glycolysis in tumors,

hepatocytes, cardiomyocytes, and chondrocytes (93–96). Activation

of MST1 inhibits glycolysis by reducing the expression of GLUT1

and C-MYC in tumors, while YAP has a positive correlation with C-

MYC, GLUT3, HK2, and PFKB3 to increase glycolysis in

hepatocytes (93, 94). In cardiomyocytes, YAP promotes glycolysis

by upregulating GLUT1 (95). In chondrocytes, YAP also plays a

positive role in glycolysis (96). Therefore, YAP and MST1/2 may

play roles in glycolysis to regulate macrophage polarization. But

that needs to be further proven using experimental proof.

That reports that HIF-1a, MEK/ERK, PI3K-AKT-mTOR, and

NF-kB regulate M1 polarization by glycolysis (64–70). Many studies

show the Hippo pathway is in crosstalk with these pathways (96, 98–

100). Therefore, Hippo, which is in crosstalk with these pathways,

may be involved in the regulation of macrophage glycolysis. Next, we

will describe specifically how Hippo interacts with these pathways in

other cells and macrophages.

First, we summarized the crosstalk between Hippo and these

pathways in cells other than macrophages. An important molecule

is HIF-1a in glycolysis. It has already been mentioned in many

studies that MST1 and YAP are involved in the regulation of HIF-

1a in granulocyte progenitor cells, chondrocytes, and hepatocellular

carcinoma cells (96, 98, 99). In granulocyte progenitor cells,

deficient of MST1 increases glycolysis by enhancing mTOR and

HIF-1a (98). During chondrogenesis, YAP binds to HIF-1a to form

a complex that promotes glycolysis and chondrogenic

differentiation (96). In hepatocellular carcinoma cells, in response

to hypoxia, nuclear YAP binds to HIF-1a to maintain the stability

of HIF-1a and promote the transcription of glycolytic genes (99). In

addition, MEK/ERK also regulates glycolysis (68, 69). YAP inhibits

the MEK/ERK pathway in initial segment epithelial cells. MST1/2 at

least partially regulates initial segment differentiation by repressing

YAP (106). In Jurkat T cells, MEK/ERK can activate MST1, caspase-

3/7, and caspase-8 to enhance MST1 proteolytic cleavage (107). In

tumor cells, the AKT pathway directly inhibits MST2 activity by

promoting MST2/Raf-1 interaction (108). In HEK293 cells, AKT

can block MST1 activation by phosphorylating MST1 at S387 (109).

Cinar reported that MST1 is cleaved by caspase, and mature MST1

and cleavage products are inhibited by AKT in human prostate

cancer cells (110). In idiopathic pulmonary fibrosis, YAP and PI3K-
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AKT-mTOR interact with each other to regulate the proliferation,

migration, and polarity of abnormal cells (111). Therefore, AKT

inhibits the activation of MST1/2, and YAP interacts with PI3K-

AKT-mTOR. In addition, deficiency of MST1 in granulocyte

progenitor cells upregulates glycolysis and downregulates

OXPHOS by mTOR and HIF-1a for cell proliferation and

differentiation (98). Therefore, according to these evidences, we

speculate that Hippo may play a role through crosstalk with HIF-1a
and MEK/ERK, and PI3K-AKT-mTOR in promoting glycolysis and

the inflammatory response of macrophages.

Next, we summarized the crosstalk between Hippo and these

pathways in macrophages. Only a small amount of literature has

shown that YAP interacts with NF-kB (100). In M1-type

macrophages, YAP enhances the proinflammatory response by

binding to NF-kB p65 and increasing the accumulation of p65 in

the nucleus (100). Meanwhile, NF-kB plays a role in glycolysis (69).

Therefore, we suggest that YAP crosstalk with NF-kB may play a

role in glycolysis in macrophages. And it sti l l needs

further verification.

Therefore, it can be speculated that YAP affects glycolysis and

M1 polarization by p65, HIF-1a, and PI3K-AKT-mTOR (Figure 5).

MST1 may regulate polarization by glycolysis, which is regulated by

AKT (Figure 5). However, MEK/ERK function is inconsistent with

expectations in glycolysis and M1 polarization as an unknown

mechanism. It is worth noting that the above is only our

conjecture. However, the role of Hippo in the regulation of

glycolysis in macrophages deserves further study.
5.2 The potential relationship of Hippo
pathway with the regulatory pathway of
fatty acid metabolism

The Hippo pathway and fatty acid metabolism regulate M2

polarization (49–54, 86–90). Deletion of YAP/TAZ in brown

adipose tissue decreases the oxygen consumption rate and

increases body fat content, suggesting that YAP/TAZ plays a role

in lipid metabolism (97). They report that PPARg and AMPK

regulate M2 polarization by fatty acid metabolism (80, 81). But no

study directly suggests that Hippo is crosstalk with PPARg and

AMPK in macrophages. Most of these literatures focused on

epithelial stem cells, adipocytes, and tumor cells (101–104).

To be specific, activation of PPARg inhibits WB-F344 (rat liver

epithelial stem cell) proliferation. It induces cell cycle arrest by

regulat ing the Hippo pathway (including promoting

phosphorylation of MST1 and LATS2 and inhibiting nuclear

translocation of YAP) (101). In turn, in adipocytes, YAP1

deficiency significantly increases the expression of PPARg to affect

the proliferation and differentiation of ovine preadipocytes (102).

AMPK also modulates the activity of the Hippo pathway for energy

homeostasis. During glucose starvation, AMPK is activated to

phosphorylate YAP in tumor cells (103). Mo also found the same

effect in response to energy stress (104). On the one hand, AMPK

can phosphorylate LATS1/2 to inhibit YAP. On the other hand,

AMPK can directly phosphorylate YAP Ser 94 to inhibit the binding

of YAP to TEADs (104). Both PPARg (a marker for M2) and
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AMPK-PPARa promote FAO. Therefore, we can speculate that, in

the FAO-mediated M2 polarization, Hippo plays a role through

crosstalk with PPARg and AMPK (Figure 5).

YAP is inhibited by the PI3K-AKT/b-catenin pathway with IL-

4+IL-13 treatment in macrophages (86), and AKT is related to fatty

acid metabolism in M2 macrophages (112). Unfortunately, we did

not find more evidence about the regulation of fatty acid

metabolism by Hippo crosstalk with AKT. The regulation of fatty

acid metabolism by Hippo in macrophage polarization is only

speculated by us based on the study of other cells, and whether

there is such an association still needs to be further verified.
5.3 The potential relationship of Hippo
pathway with the regulatory pathway of
TCA and arginine metabolism
in macrophages

The Hippo pathway, TCA, and arginine metabolism regulate

macrophage polarization (45, 59–63, 86–91). The Notch pathway

promotes the accumulation of TCA intermediates and iNOS (74,

75), and an incomplete TCA cycle and iNOS promote macrophage

polarization into M1 macrophages (77). In Kupffer cells, the Notch

pathway increases Yap gene expression, and YAP can upregulate

Notch ligand gene expression involved in macrophage polarization

(90). Based on a previous summary, we found that YAP can also

promote the TCA cycle through NF-kB in macrophages (74, 100)

(Figure 5). In addition, in hepatocellular carcinoma, there also is a

positive feedback loop between YAP and the Notch pathway (105).

These studies suggest that YAP may play a role in M1 polarization

by the Notch pathway-mediated accumulation of TCA

intermediates and iNOS (Figure 5).

In summary, we can make the following assumptions: YAP

promotes M1 polarization by glycolysis, incomplete TCA cycle, and

arginine metabolism. The involved pathways may be NF-kB, HIF-

1a, PI3K-AKT-mTOR, and Notch (Figure 5). YAP inhibits M2

polarization by FAO, and the involved pathways may be the

PPARg-, AMPK-, and PI3K-AKT-related pathways (Figure 5). In

addition, MST1/2 plays a role in macrophage polarization by

glycolysis and FAO, which may be regulated by AKT and PPARg,
respectively (Figure 5).

Based on the above evidence, there is obvious crosstalk between

the Hippo pathway and other pathways that regulate macrophage

metabolism, which suggests that the Hippo pathway is a potential

target for exploring the mechanism of macrophage metabolism

and polarization.
6 Discuss: the Hippo pathway and
metabolism in macrophage
polarization-related diseases

Metabolism can endow macrophages with different functions

(92). It is a new treatment idea for diseases to target macrophage

polarization by regulating macrophage metabolism (1). Therefore,
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it is necessary to explore the intrinsic metabolic mechanism in the

process of macrophage polarization, especially in the state of

diseases. Most studies on metabolic regulation have mainly

focused on the PI3K-AKT-mTOR, PPARg, AMPK, Notch, MEK/

ERK, and NF-kB pathways (64–69, 77, 80, 81). However, according

to the literature, we found that the Hippo pathway can crosstalk

with these metabolic regulatory pathways (74, 90, 96, 98–105).

Meanwhile, they reported that regulating the Hippo pathway drives

changes in metabolism (93–97). Therefore, we have summarized

how the Hippo pathway is in crosstalk with metabolic regulatory

pathways. This will facilitate further exploration of the regulatory

mechanism of metabolism by the Hippo pathway, which will help

us to control the process of metabolic diseases in macrophages. The

Hippo pathway is a new potential target that affects macrophage

polarization by regulating metabolic pathways and metabolism in

macrophages. It is worthy of in-depth exploration.
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