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Background:We explored the characteristics of single-cell differentiation data in

glioblastoma and established prognostic markers based on CRYAB to predict the

prognosis of glioblastoma patients. Aberrant expression of CRYAB is associated

with invasive behavior in various tumors, including glioblastoma. However, the

specific role and mechanisms of CRYAB in glioblastoma are still unclear.

Methods: We assessed RNA-seq and microarray data from TCGA and GEO

databases, combined with scRNA-seq data on glioma patients from GEO.

Utilizing the Seurat R package, we identified distinct survival-related gene

clusters in the scRNA-seq data. Prognostic pivotal genes were discovered

through single-factor Cox analysis, and a prognostic model was established

using LASSO and stepwise regression algorithms. Moreover, we investigated the

predictive potential of these genes in the immune microenvironment and their

applicability in immunotherapy. Finally, in vitro experiments confirmed the

functional significance of the high-risk gene CRYAB.

Results: By analyzing the ScRNA-seq data, we identified 28 cell clusters

representing seven cell types. After dimensionality reduction and clustering

analysis, we obtained four subpopulations within the oligodendrocyte lineage

based on their differentiation trajectory. Using CRYAB as a marker gene for the

terminal-stage subpopulation, we found that its expression was associated with

poor prognosis. In vitro experiments demonstrated that knocking out CRYAB in

U87 and LN229 cells reduced cell viability, proliferation, and invasiveness.
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Conclusion: The risk model based on CRYAB holds promise in accurately

predicting glioblastoma. A comprehensive study of the specific mechanisms of

CRYAB in glioblastoma would contribute to understanding its response to

immunotherapy. Targeting the CRYAB gene may be beneficial for

glioblastoma patients.
KEYWORDS
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1 Introduction

Gliomas present a prominent hazard due to their prevalent

occurrence as the predominant neoplasms originating in the adult

brain (1). Diagnosing and treating the majority of neurological

disorders can be inherently challenging due to their complex

etiology, difficulties in studying the underlying pathophysiological

mechanisms, and the limited progress in the development of

corresponding medications or therapies. As of now, the

therapeutic options for patients with gliomas, in particular,

remain considerably limited. The immune suppressive effects of

gliomas present significant challenges for immunotherapy, while

conventional approaches such as surgery, radiation, and

chemotherapy have shown minimal efficacy (2). Consequently,

early diagnosis, precise prognosis, and intervention is essential

(3). Over the years, the early diagnosis and effective intervention

of gliomas have faced substantial challenges. Although significant

and encouraging progress has been made in exploring the

heterogeneity between and within tumors, leveraging this

heterogeneity for diagnosis and investigating the tumor

microenvironment has further advanced immunotherapy (4).

Nevertheless, glioma patients have benefited minimally from

these developments (5). Therefore, urgent research efforts are

required to identify novel and more suitable approaches to

combat gliomas (6). Simultaneously, it is imperative to acquire a

comprehensive comprehension of the underlying pathogenic

mechanisms and prospective targets linked to the commencement

and advancement of gliomas in order to facilitate the exploration of

groundbreaking advancements (7).

The aB-crystallin protein, encoded by the CRYAB gene,

belongs to the family of heat shock proteins. It is predominantly

found in muscles and the nervous system, and it functions as a

molecular chaperone and antioxidant under stress conditions (8).

Mutations or abnormal expression of the CRYAB gene are

associated with various diseases (9). In the nervous system,

CRYAB gene mutations can lead to familial progressive spinal

muscu la r a t rophy (FPSMA) , which i s an inher i t ed

neurodegenerative disease (10). FPSMA primarily affects motor

neurons, resulting in progressive muscle weakness and atrophy

(11). aB-crystallin is a critical factor in the maintenance of neuronal
02
functionality, and alterations in the CRYAB gene can result in

aberrant aB-crystallin production. This, in turn, impairs normal

neuronal function and survival, ultimately contributing to the

manifestation of symptoms associated with FPSMA (12).

Moreover, it has been observed that the CRYAB gene also exerts

an influence on other neurodegenerative disorders, including

Alzheimer’s disease and Parkinson’s disease (13, 14). Abnormal

expression of the CRYAB gene in tumors has been extensively

studied and is associated with the biological characteristics and

prognosis of cancers (10). In certain types of cancers, including

breast cancer (15), prostate cancer (16), and glioma (17),

overexpression of the CRYAB gene is associated with malignancy.

Overexpressed aB-crystallin promotes the survival and

proliferation of tumor cells by inhibiting apoptosis processes and

regulating proteins involved in the cell cycle (18). It also has an

impact on cell migration and invasion, as high expression of

CRYAB is correlated with enhanced metastatic and invasive

capabilities of tumor cells. Moreover, CRYAB may alter the

morphology and migration ability of tumor cells by promoting

epithelial-mesenchymal transition (EMT) and activating other

related signaling pathways (19). Furthermore, overexpression of

CRYAB may contribute to increased resistance of tumor cells to

chemotherapy drugs. It can enhance tumor cell survival and

decrease sensitivity to treatment through various mechanisms,

such as alleviating cellular stress and regulating intracellular

calcium ion concentration. Hence, the CRYAB gene assumes a

crucial role in both the development of FPSMA within the nervous

system and the initiation and advancement of tumor formation.

Conducting comprehensive investigations into the molecular

mechanisms and functionalities of CRYAB will greatly contribute

to enhancing our comprehension of the pathogenesis of

associated disorders.

Existing literature has reported that the expression level of the

CRYAB gene is usually elevated in glioblastomas (20). Glioblastoma

is a highly invasive malignant brain tumor, characterized by

significant biological heterogeneity and varying treatment

responses. Abnormal expression of the CRYAB gene has become

a focus in studying the mechanisms underlying glioblastoma

development (21). In the realm of cellular stress response,

CRYAB, an integral member of the heat shock protein (HSP)
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family, actively engages in cellular stress responses, affording

protection to cells against the deleterious effects provoked by

environmental stressors and cellular stressors. In glioblastoma,

the high expression of CRYAB may help tumor cells adapt to

adverse environments and alleviate cellular stress, thereby

promoting their survival and proliferation. Regarding cell cycle

regulation, CRYAB has also been found to regulate the cell cycle of

glioblastoma cells. The upregulation of CRYAB is linked to

abnormal expression of cell cycle-associated proteins and

disturbances in the cell cycle. This may lead to excessive cell

proliferation and rapid tumor development. Tumor cells often

suppress apoptosis and exhibit excessive proliferation. The

overexpression of CRYAB may inhibit apoptosis in glioblastoma

cells, thereby increasing their survival and resistance to treatment.

This may be related to the regulation of apoptosis-related proteins

(such as the Bcl-2 family) and the antioxidant system by CRYAB in

the process of cell apoptosis. Although the specific functions and

interaction mechanisms of CRYAB in glioblastoma are not fully

understood, it is considered to be one of the important factors

involved in glioblastoma occurrence and development (22). Further

comprehensive investigations are pivotal for determining the

precise involvement of CRYAB in glioblastoma and may yield

promising therapeutic targets for novel treatment approaches.

Researchers in the field of glioblastoma immunology are

strongly committed to unraveling the intricate interplay between

the immune system and the pathogenesis of glioblastoma, as well as

harnessing immunotherapeutic interventions to potentiate the

immune-mediated antitumor response against glioblastoma (23).

Glioblastoma is a highly heterogeneous and immunosuppressive

malignant tumor (24). One of the goals of immunological research

is to uncover how glioblastoma inhibits the immune system’s attack

and evades immune surveillance (25). In investigations concerning

immune cell infiltration, advanced methods like single-cell

sequencing are employed to scrutinize the distribution and

abundance of immune cells in the tumor microenvironment. This

allows for a comprehensive assessment of the immune cell

infiltration surrounding the tumor (26). This helps to understand

the types, quantities, and activities of immune cells in glioblastoma.

In addition, signaling pathways that regulate immune responses,

known as immune checkpoints, are studied in glioblastoma. As an

example, researchers delve into analyzing the activation and

inhibition of crucial signaling pathways like PD-1/PD-L1 and

CTLA-4 (27). Understanding the impact of immune checkpoint

signaling on immune cell function may contribute to the

development of immunotherapies targeting these signaling

pathways (28). In recent years, emerging immunotherapy

approaches involve the use of CAR-T cell therapy or T-cell

receptor (TCR) gene-engineered T cells to target and attack

tumor cells (29). These engineered immune cells can enhance the

anti-tumor effects by targeting tumor-specific antigens.

Furthermore, researchers are also focused on developing vaccines

to stimulate the immune system’s response against glioblastoma.

These vaccines can include tumor-associated antigens (TAAs) or

neoantigens to stimulate a specific immune response against tumor

cells (30). The objective of these research efforts is to find new

strategies to overcome immune tolerance and resistance in
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glioblastoma, improve patients’ response to immunotherapy, and

enhance treatment outcomes. The progress in immunological

research brings hope to glioblastoma patients by providing more

effective treatment options.

Historically, research on neurological disorders has

predominantly focused on histology, physiology, and sequencing

at the cellular population level. However, this approach faces

constraints when performing transcriptomic analysis at the

single-cell level, hindering the precise identification of

pathological alterations and immunological characteristics

associated with these diseases. In this study, we conducted

snRNA-seq on tumor samples from 10 GBM patients,

companying utilizes scRNA-seq and transcriptomic data. Single-

cell sequencing technology enables the determination of the gene

expression profiles of individual cells, thus allowing the comparison

of variations in the quantity of specific cell subpopulations and

transcriptomic alterations within each subpopulation. Through

dimensionality reduction and clustering, we identified four

subpopulations within the glioblastoma (GBM) tumor

microenvironment of oligodendrocyte-like cells. We further

investigated the differentiation relationships between these

subpopulations and explored the origin of GBM cells. By

unraveling the intricate mechanisms driving the onset and

progression of GBM, this study contributes groundbreaking

perspectives that hold great promise for personalized therapeutic

interventions, ultimately leading to enhanced prognostic outcomes

for individuals affected by GBM.
2 Methods

2.1 Data source

The SnRNA-seq data utilized in this study were retrieved from

the Gene Expression Omnibus (GEO) repository, which is hosted

by the National Center for Biotechnology Information (NCBI).

Additional information and access to the repository can be found at

the following URL: https://www.ncbi.nlm.nih.gov/geo/. The specific

dataset used in this study is identified by the GSE number

GSE138794. The samples analyzed include GSM4119521,

GSM4119522, GSM4119523, GSM4119524, GSM4119525,

GSM4119526, GSM4119527, GSM4119528, GSM4119529,

GSM4119530. Furthermore, bulk RNA-seq data were obtained

from the official website of The Cancer Genome Atlas (TCGA),

accessible at https://portal.gdc.cancer.gov/.
2.2 Data filtering and the standard process

The unprocessed snRNA-seq data was acquired and

transformed into a count matrix. Subsequently, snRNA-seq data

analysis was conducted using the Seurat package (version 4.3.0)

implemented in the R programming language (version 4.2.0),

following the methodologies outlined in previous scientific

investigations (31, 32). To filter out low-quality cells and potential

doublets, we utilized the DoubletFinder package (version 2.0.3) with
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its standard workflow (33). Quality control criteria were applied to

retain cells for further analysis. Only cells that met the following

criteria were included: 300 < nFeature < 7,500, 500 < nCount <

100,000, mitochondrial gene expression accounting for less than

20% of the total expressed genes per cell, and erythroid gene

expression accounting for less than 5% of the total expressed

genes per cell. To mitigate variations in library size and cell-

specific biases, the count matrix underwent normalization. Highly

variable genes are identified based on their expression variance

across cells. Normalization was performed after identifying the top

2000 highly variable genes. We employed the Harmony R package

(version 0.1.1) to alleviate batch effects observed within the samples,

as previously reported in relevant literature (34, 35). Further

downscaling and clustering analysis were conducted using the top

30 principal components (PCs). The UMAP method was employed

to visualize the cellular heterogeneity in a two-dimensional (2D)

map. To annotate the cell clusters, we referred to known cell

markers from previous literature and the CellMarker database

(http://xteam.xbio.top/CellMarker/). Subsequently, The

proportion of different cell types in the dataset is evaluated by

assessing the distribution of cell types across clusters.
2.3 Differentiation and enrichment analysis

To identify Differentially Expressed Genes (DEGs) within each

cell type, we employed the “FindAllMarkers” function in the Seurat

package. This analysis was based on the Wilcoxon rank-sum test

with default parameters. We focused on clusters displaying logFC

(fold change) values exceeding 0.25 and genes expressed in over

25% of the cells within the respective cluster. In order to gain a

comprehensive understanding of the functional attributes

associated with each identified cell type, we performed

enrichment analysis on the DEGs utilizing the “clusterProfiler” R

package (version 0.1.1).
2.4 Subpopulation analysis of
oligodendrocytes cells

In order to inves t iga te the heterogenei ty wi th in

Oligodendrocytes, we performed a series of analyses. Initially, we

isolated Oligodendrocyte cells and subsequently applied

renormalization techniques to identify the top 2000 genes

exhibiting high variability. Subsequently, we applied data

normalization to ensure consistency across samples. To alleviate

batch effects between samples, we utilized the harmony method

during principal component analysis (PCA). This approach helped

to remove any unwanted variation attributed to different

experimental batches. We then selected the top 30 principal

components (PCs) for downstream analysis, which involved

downsampling and clustering of the cells.To visualize and explore

the heterogeneity among the Oligodendrocyte cells, we employed

the UMAP method. This technique facilitated the projection of the

cells onto a two-dimensional map, enabling the identification of

distinct subpopulations within the Oligodendrocyte population.
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2.5 InferCNV identifies malignant cells

To discriminate malignant cells from non-tumor cells, we

leveraged CNV analysis. Copy number variability within cell

subpopulations was determined using the inferCNV algorithm. In

this analysis, vascular endothelial cells served as the reference, allowing

us to identify subpopulations exhibiting high copy number variability,

which were designated as glioblastoma (GBM) cells.
2.6 Difference analysis and enrichment
analysis of cell subpopulations

Next, we employed the “FindAllMarkers” function, employing

the Wilcoxon rank-sum test, to detect genes that displayed

differential expression within each subpopulation. Notably, our

analysis was particularly concentrated on the Oligodendrocytes

cell subpopulation. To gain deeper insights into the functional

characteristics associated with these identified differentially

expressed genes, we performed a Gene Ontology Biological

Process (GO-BP) enrichment analysis using clusterProfiler.
2.7 Trajectory analysis

We employed a comprehensive approach utilizing three

software packages to assess the developmental dynamics of

differentiation within the Oligodendrocytes cell subpopulation.

Initially, cytoTRACE algorithm was utilized to evaluate the

stemness of individual cell subpopulations. This assessment

provided valuable insights into the cellular state and potential

for differentiation.

Subsequently, Monocle R package (version 2.24.0) was

employed for reconstructing cell differentiation trajectories. The

DDRTree algorithm was utilized to construct these trajectories,

while the FindVairableFeatures method and downscaling were

employed to observe the developmental progression of

subpopulation cells along the newly established trajectories (36).

To further analyze the cellular trajectories during glioblastoma

multiforme (GBM) differentiation, we utilized the Slingshot

package (version 2.6.0). This package facilitated the fitting of a

minimum spanning tree (MST) to infer cell lineages using the

getLineages function. Additionally, the getCurves function was

employed to estimate the temporal changes in cellular expression

levels within each lineage over time (37).
2.8 Cell communication

To elucidate the intricate communication between different cell

subpopulations within GBM tumor tissues and their surrounding

microenvironment, we employed the Cellchat R package (version

1.6.1) as a powerful tool (38). For this analysis, we utilized

CellchatDB.human as a reference database for ligand-receptor

interactions. By leveraging this computational framework, we

deciphered cell-cell communication events at both the signaling
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pathway and receptor-ligand levels. This enabled us to gain insights

into the coordinated interplay of signaling pathways across diverse

cell types.
2.9 Modeling the prognosis of cancer-
associated glioma cells

To specifically investigate the predictive value of GBM-associated

cells in determining patient survival, we employed key subpopulation

marker genes associated with GBM as predictive gene features. Using

the “survival” R package, we employed both univariate Cox analysis

and lasso regression analysis to identify the most significant

prognostic genes. Subsequently, a prognostic model was developed

through multivariate Cox analysis, incorporating the crucial genes

identified from the previous analyses.

To derive the risk score for each sample, we computed it using

the following formula: Riskscore = Expression of gene 1 multiplied

by coefficient 1, plus Expression of gene 2 multiplied by coefficient

2, up to Expression of gene n multiplied by coefficient n.

Samples were classified into high-scoring and low-scoring groups

based on the median value. Subsequently, survival analysis was

performed to evaluate the prognostic outcomes of patients

belonging to these distinct groups. For the purpose of assessing the

performance of our model, we utilized the timeROC software package

(version 0.4.0) to generate ROC curves at intervals of 1, 3, and 5 years.

Furthermore, in order to gain a more comprehensive

understanding of the connection between gene expression

patterns and patient outcomes, we investigated the correlation

between the identified model genes, risk scores, and OS.
2.10 Assessment of tumor-infiltrating
immune cells

To comprehensively evaluate the immune microenvironment of

patients, we utilized a combination of CIBERSORT, ESTIMATE,

and Xcell algorithms to calculate various immune-related scores.

These scoring systems provided us with a comprehensive

assessment of the patient’s immune status. Subsequently, under

the CIBERSORT algorithm, we examined the high and low levels of

22 immune cells in different patient groups. Additionally, we

conducted an investigation into the interrelation among the

immune cells, risk scores, model genes, and OS. Furthermore, we

examined the discrepancies in Stromal Score, Immune Score,

ESTIMATE Score, and Tumor Purity among distinct patient

cohorts. This thorough exploration allowed us to gain

comprehensive insights into the intricate connections between

these factors and patient outcomes.
2.11 Differential and enrichment analysis of
bulk data

We employed the DESeq2 R package for conducting separate

differential analyses on high and low-risk groups. To identify
Frontiers in Immunology 05
significant differences, we applied a threshold of |logFC|>2 with a

p-value lower than 0.05.

In addition, we employed the clusterProfiler package to carry

out GO, KEGG, and GSEA on the differentially expressed genes that

were identified (39, 40).
2.12 Somatic mutation analysis

For somatic mutation analysis, we accessed the TCGA database

to obtain the mutation data. We investigated the distribution of

mutations in highly mutated genes as well as in modeled genes. To

assess the tumor mutational burden (TMB) of each glioma sample,

we employed the “maftools” software package. This computational

tool allowed us to quantitatively measure the number of somatic

mutations present in the genomic data of each tumor sample.

Following this, we categorized the glioma samples into two

distinct groups, distinguished as high TMB and low TMB groups,

using the median TMB value. To evaluate the influence of TMB on

survival outcomes, we applied the Kaplan-Meier method to

compare the differences in survival between these two groups.

This analysis allowed us to evaluate the potential prognostic

significance of TMB in glioma patients. Furthermore, we

examined the copy number variation (CNV) profile of the

modeled genes. This enabled us to gain insights into potential

genomic alterations associated with these genes and their possible

implications in glioma development and progression.
2.13 Drug sensitivity analysis

To determine the IC50 (half-maximal inhibitory concentration)

of chemotherapeutic drugs and assess their sensitivity in various

groups, we utilized the pRRophetic R package (version 0.5) (41, 42).
2.14 Cell culture

The U-87 and LN229 cell lines, obtained from the Cell Resource

Center of Shanghai Life Sciences Institute, were cultured in DMEM

medium (Gibco BRL, USA). The cells were incubated at a

temperature of 37°C in a humidified atmosphere enriched with

5% CO2. Furthermore, the culture medium was supplemented with

10% fetal bovine serum (FBS) acquired from Gibco BRL, a well-

known supplier based in the United States. As the cells reached

confluency, they were detached from the culture vessel using

enzymatic or non-enzymatic cell dissociation methods.

Subsequently, the dislodged cells were transferred into fresh

culture flasks at an optimal cell density to facilitate subsequent

proliferation and experimental investigations.
2.15 Cell transfection

Two distinct small interfering RNAs (siRNAs) designed to

specifically target CRYAB were synthetized by Ribobio
frontiersin.org
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(Guangzhou, China). Transfections were performed utilizing

Lipofectamine 3000 (Invitrogen, USA) fol lowing the

manufacturer’s protocol. The siRNA sequences targeting CRYAB

can be found in Supplementary Table 1.
2.16 RT-qPCR analysis

RNA extraction from cellular lines was conducted using TRIzol

reagent (Thermo, 15596018) following established protocols (43,

44). Following RNA extraction, complementary DNAs (cDNAs)

were generated by employing the PrimeScriptTM RT kit (Vazyme,

R232-01). To quantify gene expression, the SYBR qPCRMaster Mix

(Vazyme, Q111-02) was utilized on the Roche LightCycler 480

(Roche, GER). Data analysis was carried out using the 2−DDCt

method for gene expression analysis. The specific primer

sequences, sourced from Tsingke Biotech (Beijing, China), can be

found in Supplementary Table 1. GAPDH was employed as the

internal reference gene for normalization purposes.
2.17 The experiment of cell-cunting-kit-
8 assay

Cells were plated in 96-well plates at a density of 1 × 103 cells

per well, following standard protocols (45, 46). Following that, the

plates were incubated in darkness at 37°C for 2 hours with CCK-8

labeling reagent (A311-01, Vazyme). The assessment of cell viability

was carried out by measuring the absorbance at 450 nm using an

enzyme-linked spectrophotometer (A33978, Thermo) at time

intervals of 0, 24, 48, 72, and 96 hours.
2.18 The experiment of colony formation

A cohort comprising 1000 cells was transfected and cultured in

6-well plates for approximately 14 days. After a span of 2 weeks, the

cellular clones were visually examined without magnification.

Following that, the cells were washed and fixed using a 4%

paraformaldehyde (PFA) solution for 15 minutes. Subsequently,

the cells were subjected to crystal violet staining (Solarbio, China)

for 20 minutes, and the samples were air-dried at room

temperature. Finally, quantification of cells per well was conducted.
2.19 The experiment of wound healing

The transfected cells were cultured in 6-well plates and placed in

a cell incubator until they reached a confluency level of 95%. A

200ml pipette tip was used to make a linear scratch on the cell

monolayer. After washing off unattached cells and debris with PBS,

the cells were transferred to a serum-free culture medium.

Following that, images were taken at identical positions before

and after 48 hours, and the width of the scratch was quantified using

Image J software.
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2.20 The experiment of transwell

Cell migration assays utilized Transwell chambers in the

experimental setup. In each well of the upper compartment,

2×104 cells were seeded using a 200 mL serum-free medium. To

evaluate cell migration, the upper region of the chamber was

subjected to different conditions: in some cases, it was treated with

Matrigel solution (BD Biosciences, USA), while in others it was

left untreated. Following a 48-hour incubation period, the

chambers were retrieved. The cells were subsequently fixed

using 4% PFA and stained with 0.1% crystal violet (Solarbio,

China). Subsequently, cell counting was carried out utilizing a

light microscope. The migrated cells were photographed

and quantified.
2.21 Apoptotic rate assessed through flow
cytometric analysis

Apoptosis analysis was conducted utilizing an Annexin V-

FITC/PI Apoptosis Detection Kit (Yeasen, Shanghai, China)

according to the instructions provided by the manufacturer.

Subsequently, flow cytometry (Cytoflex, Beckman, CA, USA) was

employed to analyze the samples. The determination of apoptotic

rate involved the consideration of both early apoptotic cells and

terminal apoptotic cells.
2.22 Statistical analysis

For biological analysis in the field of medicine, R software

version 4.1.3 was utilized, whereas GraphPad Prism version 8.0

was employed specifically for experimental data analysis. Mean

values and standard deviations of the outcomes were extracted from

three independent studies. Student’s t-tests were employed for

pairwise comparisons between two groups, whereas comparisons

involving more than two groups were evaluated using one-way

ANOVAs followed by Tukey’s test. Significant differences were

denoted as *P<0.05, **P<0.01, and ***P<0.001.
3 Results

3.1 snRNA sequencing reveals major cell
types during GBM progression

To explore the cellular heterogeneity within the tumor

microenvironment, we performed single-nucleus RNA sequencing

(snRNA-seq) analysis on tumor specimens derived from 10

individuals diagnosed with GBM. After applying quality control

and filtering criteria, we successfully profiled gene expression in

15,419 individual cells.

Applying dimensionality reduction followed by clustering

analysis, we identified 28 distinct cell clusters (Figure 1A, upper

left), which were further classified into seven major cell types:
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Oligodendrocytes (5345 cells), Neurons (3559 cells), Myeloid cells

(2436 cells), Astrocytes (2635 cells), Vascular Endothelial Cells

(VECs) (1112 cells), Proliferating cells (278 cells), and T cells (54

cells) (Figure 1A, upper right). Among the 15,419 cells analyzed,

14,625 cells were derived from GBM lesions, while 794 cells
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originated from IDH R132H wild-type GBM lesions (Figure 1A,

bottom left). Furthermore, we examined the distribution of these

cell types within the cell cycle phases, revealing the following

proportions: S phase (4430 cells), G1 phase (6859 cells), and G2M

phase (4130 cells) (Figure 1A, bottom right).
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FIGURE 1

snRNA sequencing reveals major cell types during GBM progression. (A) UMAP plot showing the 28 clusters of cells in glioma patients and the
number of cells in each cluster (top left); UMAP plot showing the 7 major cell types (top right); UMAP plot showing the distribution of the two
groups of GBM and IDHR132H WT GBM for the 7 cell types (bottom left); and UMAP plot showing the distribution of different cell cycle phases
(lower right). (B) Bubble plot showing differential expression of Top10maker genes in glioma cells across cell types. The color of the bubbles is based
on the normalized data and the size indicates the percentage of genes expressed in the subpopulation. (C) Bar graph showing the percentage of the
7 cell types in the GBM group versus the IDHR132H WT GBM group. (D) Box line plot depicting the percentage of the 7 cell types in the GBM group
versus the IDHR132H WT GBM group. (E) The UMAP plot showcases the distribution of the following relevant features: nCount_RNA, nFeature_RNA,
S.score, and G2M.score. (F) Word cloud graph demonstrating gene pathway enrichment in the 7 cell types. (G) Volcano plot demonstrating
differential gene expression in 7 cell types. (H) GO-BP enrichment analysis demonstrating biological processes associated with the 7 cell types.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1336187
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cai et al. 10.3389/fimmu.2023.1336187
To evaluate the expression patterns of marker genes across

distinct cell types within the tumor, we generated bubble plots to

showcase the top 10 marker genes for each identified cell population

(Figure 1B). Moreover, we constructed a bar chart to depict the

proportions of the seven cell types across eight patients with GBM

lesions and two patients with IDH R132H wild-type GBM lesions,

emphasizing the inter-patient heterogeneity in cell composition

(Figure 1C). These findings underscore distinct cellular dynamics

within GBM patients. Additionally, box plots were employed to

demonstrate differential expression patterns across the seven cell

types in different experimental groups (Figure 1D).

To offer a comprehensive dataset overview, we utilized UMAP

plots to visualize the distribution of several key parameters for all

cells, including nCount_RNA, nFeature_RNA, S score, and G2M

score (Figure 1E). To uncover enriched Gene Ontology Biological

Process (GO-BP) terms that are unique to individual cell types, we

generated word clouds (Figure 1F). We visualized the differential

gene expression analysis across cell types through volcano plots

(Figure 1G). Moreover, we utilized a heatmap to illustrate the

outcomes of GO-BP enrichment analysis for the differentially

expressed genes across the seven cell types (Figure 1H).
3.2 Displaying the intracellular
heterogeneity of oligodendrocytes

Following the implementation of dimensionality reduction

clustering, we successfully discerned the presence of four distinct

subgroups within oligodendrocytes. To distinguish between normal

and cancer cells within GBM tissues based on genomic copy

number variations (CNVs), we applied the inferCNV algorithm

to explore single-cell data. Based on the inferCNV results, we

categorized cells with high CNV levels as GBM cells

(Supplementary Figure 1). This led to the identification of four

cell subpopulations: C0 DOCK5+ GBM (3133 cells), C1 SOX6+

Oligodendrocytes (1271 cells), C2 CRYAB+ GBM (515 cells), and

C3 ROBO2+ Oligodendrocytes (426 cells) (Figure 2A, upper left).

UMAP plots were generated to visually represent the distribution

and relative proportions of the four cell subpopulations based on

cell cycle staging (Figure 2A, upper right), subgrouping (Figure 2A,

lower left), and patient samples (Figure 2A, lower right).

Furthermore, we visualized several relevant features including

CNV score, nCount_RNA, S score, and G2M score of the four cell

subpopulations using UMAP plots (Figure 2B). Furthermore, the

proportions of the four cell subgroups were assessed in a cohort of

eight patients with GBM lesions and two patients with IDH R132H

wild-type GBM lesions (Figure 2C, left). In our investigation, we

observed an elevated prevalence of the C2 CRYAB+ GBM subgroup

in the SF12264 patient. Nevertheless, statistical analysis utilizing

box plots demonstrated no noteworthy variances in the proportions

of these four subgroups among the different groups (Figure 2C,

right). Volcano plots were employed to visually depict the distinct

gene expression patterns among the four subpopulations

(Figure 2D). Moreover, word cloud plots were generated to depict

the Gene Ontology Biological Process (GO-BP) enriched pathway

entries specific to each of the four subpopulations (Figure 2E).
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Bubble plots were employed to showcase the divergence in marker

gene expression between Oligodendrocytes and GBM cells by

highlighting the top 10 marker genes for each subpopulation

(Figure 2F). In addition, heatmaps were generated to visually

depict the outcomes of the Gene Ontology Biological Process

(GO-BP) enrichment analysis pertaining to the differentially

expressed genes observed within the four respect ive

subpopulations (Figure 2G).
3.3 Visualization of pseudotime analysis of
oligodendrocytes and GBM cell
subpopulations by cytotrace and monocle

To investigate the differentiation and developmental

relationship among the four cell subpopulations, we performed an

analysis of Oligodendrocytes and GBM cell subpopulations using

cytotrace (Figure 3A). The results were visualized, demonstrating

that the four cell subpopulations differentiated along the C1-C0-C3-

C2 trajectory (Figure 3B).

To depict the differentiation trajectories of Oligodendrocytes

and GBM cell subgroups, we utilized UMAP plots, violin plots, and

ridge plots to visualize the four cell subgroups at the pseudotime

level (Figure 3C). We observed a continuum of Oligodendrocytes

and GBM cell subpopulations at the pseudotime level. The

percentage of these four cell subpopulations was compared

between the GBM group and the IDHR 132H WT GBM group

using bar graphs (Figure 3D, top). It was noted that the percentage

of C0 DOCK5+ GBM was higher in both groups, while the C2

CRYAB+ GBM subpopulation was exclusively found in the GBM

group. This suggests a potential relationship between the GBM

group and the IDHR 132H WT GBM group, which merits further

investigation. Bar graphs were also employed to display the cell

occupancy of the four cell subpopulations across different cell cycle

stages (Figure 3D, bottom).

In the bar graph presented in Figure 3E, the distribution of cell

percentage in the four cell subpopulations across different trajectory

differentiation states was illustrated. Notably, the C1 SOX6+

Oligodendrocytes subpopulation showed a higher percentage in

state1 and state6, while the C0 DOCK5+ GBM subpopulation was

almost 100% present in state3 and state5. The C2 CRYAB+ GBM

subpopulation exhibited a higher percentage in state4 and was

almost absent in other states, which is of particular interest. We

then provided detailed information on the percentage of cells in

each cell subpopulation based on cell cycle phase (Figure 3F, top)

and trajectory differentiation state (Figure 3F, bottom).

To further explore the origin of GBM cytogenesis, we conducted

trajectory analysis using monocle analysis on the four cell

subpopulations (Figure 3G). The analysis revealed a continuous

distribution of the four cell subpopulations along a pseudotime

trajectory with four branching points. The trajectory initiated from

the upper-right region and reached the second differentiation point

as state1, which further split into two branches. One branch

extended downwards corresponding to state6, while the other

branch continued differentiation towards the left, corresponding

to state2. At the third differentiation point, another split occurred,
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1336187
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cai et al. 10.3389/fimmu.2023.1336187
B

C

D

E

F

G

A

FIGURE 2

Visualization of oligodendrocytes cell subpopulations. (A) UMAP diagram demonstrating the 4 cell subpopulations of tumor cells in glioma patients
and the number of cells in each subpopulation (top left); UMAP diagram demonstrating the percentage of different cell cycles in the 4 cell
subpopulations (top right); UMAP diagram demonstrating the distribution of the GBM group versus the IDHR132H WT GBM group in the 4 cell
subpopulations (bottom left); and UMAP diagram demonstrating the patient origin of the 4 cell subpopulations (lower right). (B) UMAP plot
visualizing the relevant features of the 4 cell subpopulations: CNVscore, nCount_RNA,S.score,G2M.score. (C) Bar graph demonstrating the
percentage of the 4 cell subpopulations in the GBM group versus the IDHR132H WT GBM group (left); box line graph depicting the percentage of
the 4 cell subpopulations in the GBM group versus the IDHR132H WT GBM group (right). (D) Volcano plot demonstrating the expression of
differential genes in the 4 cellular subpopulations. (E) Word cloud graph demonstrating gene pathway enrichment in the 4 cell subpopulations.
(F) Bubble plot showing differential expression of Top10maker genes in 4 cell subpopulations. The color of the bubbles is based on the normalized
data and the size indicates the percentage of genes expressed in the subpopulation. (G) GO-BP enrichment analysis demonstrating biological
processes associated with the 4 cell subpopulations.
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FIGURE 3

Visualization of proposed time series analysis of oligodendrocyte subpopulation and glioma cell subpopulation by cytotrace and monocle. (A) The
differentiation of oligodendrocyte subpopulation and glioma cell subpopulation is analyzed using cytotrace and displayed in a 2D graph. The color
can represent the level of differentiation. The figure on the right represents the cytotrace results displayed according to different oligodendrocyte
subpopulations and glioma cell subpopulations. The colors represent different cell subpopulations. (B) Box line plot showing the visualization results
of cytotrace analysis of oligodendrocyte subpopulations and glioma cell subpopulations. (C) UMAP plots, violin plots and ridge plots showing the
pseudotime distribution of oligodendrocyte subpopulations and glioma cell subpopulations. *p ≤ 0.05, **p < 0.0 1, ***p < 0.001, ****p < 0.0001.
indicates a significant difference, ns indicates a non-significant difference. (D) The occupancy of relevant features in different pseudotime stages of 4
cell subpopulations was visualized: the occupancy of 4 cell subpopulations in the GBM group vs the IDHR132H WT GBM group (top); the occupancy
of 4 cell subpopulations in different cell cycles (bottom). (E) Bar charts illustrating the proportions of different pseudotime stages (state1-state6)
within the four cell subgroups. (F) Bar graph demonstrating the expression of the 4 cell subpopulations in different phases (top) vs. different states
(bottom), respectively. (G) Demonstrating the derivation process of oligodendrocyte subpopulation and glioma cell subpopulation. Left: UAMP plot
of the proposed temporal trajectory showing the 4 cell subpopulations; Middle: UMAP plot showing the pseudotime trajectory of oligodendrocyte
subpopulation and glioma cell subpopulation, starting from the upper right and dividing into two branches, one of which differentiates downward
and the other to the left followed by two more branches, one of which differentiates upward to the left, and the other downward; Right: UMAP plot
showing the distribution of 6 states on the proposed temporal trajectory plot. (H) Split-plane plots of the proposed temporal trajectories of
oligodendrocyte subpopulations and glioma cell subpopulations showing the distribution of different cell subpopulations on the proposed temporal
trajectories, respectively. (I) Scatter plot showing the changes of 4 cell subpopulations of oligodendrocyte subpopulation and glioma cell
subpopulation with the proposed chronological sequence; proposed chronological sequence UMAP plot showing the changes of the cell
subpopulations corresponding to the 4 named genes with the proposed chronological sequence; and the expression of the 4 named genes of cell
subpopulations (DOCK5, SOX6, CRYAB, ROBO2) on the pseudotime trajectory.
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with one branch differentiating towards the upper-left (state3) and

the other branch differentiating downwards (state4). A short branch

emerged towards the upper-left at the first differentiation point,

corresponding to state5. According to the proposed chronology, the

C1 SOX6+ Oligodendrocytes subpopulation corresponds to the

early stages of tumor development and continues to differentiate

into other subpopulations. It is likely that the C0 DOCK5+ GBM or

C2 CRYAB+ GBM subpopulations represent further differentiation

stages. The facets analysis of each subpopulation provided

supporting evidence for this conclusion (Figure 3H).

Selected genes specific to the four cell subpopulations were

examined, and their changes across the pseudotime series were

visualized using scatter plots, pseudotime series UMAP plots, and

pseudo-scatter plots (Figure 3I). The C1 cell subpopulation,

represented by the SOX6 gene, predominantly appeared at the

beginning of the proposed time series, while the C2 cell

subpopulation, represented by the CRYAB gene, was primarily

observed at the end of the pseudotime series.

These findings shed light on the differentiation and

developmental patterns within the four cell subpopulations,

providing insights into the origin and progression of GBM cells.
3.4 Slingshot analysis of oligodendrocytes
and GBM cell subpopulations of
pseudotime trajectories

Furthermore, we employed slingshot to further analyze the

cellular trajectories during GBM differentiation. Initially, we

illustrated the trajectories of the four cell subpopulations (C0 to

C3), revealing a continuous distribution along the temporal axis

with differentiation into two distinct lineages (Figure 4A). We

estimated the pseudotime sequences at the cellular level along

these two lineages (Figure 4B, C). Lineage1 originated from C0

and progressed through C2, while lineage2 commenced from C1

and progressed through C3 before shifting to C0 and C2.

To gain insights into the biological processes associated with the

two pseudotime trajectories, we performed GO-BP enrichment

analysis. We discovered that C1, present in both lineage1 and

lineage2, exhibited associations with various biological processes,

including extension, tissue development, and axon growth. C2 was

linked to biological processes like potential, fraction, and sodium.

C3 exhibited associations with biological processes such as

triphosphate and electron, while C4 was related to subunit and

ribosomal processes (Figure 4D).

Lastly, scatter plots were utilized to visually represent the

distribution of distinct cell subpopulations along the lineage1 and

lineage2 trajectories, portraying their respective differentiation

curves throughout the pseudotime series (Figure 4E).
3.5 Cellchat analysis between cells and
visualization of PSAP signaling pathways

To systematically unravel the intricate cellular responses, we

aimed to investigate cell-to-cell relationships and ligand-receptor
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communication networks, ultimately enhancing our understanding

of intercellular interactions. By employing Cellchat analysis, we

initially constructed intercellular communication networks among

various cell types, including Oligodendrocytes, subpopulations of

GBM cells, Myeloid cells, Astrocytes, T cells, and others. We

quantified the cellular interplay, measuring the frequency of

interactions between different cell types (illustrated by the

thickness of the connecting lines) and the intensity of these

interactions (indicated by the weight of the lines) (Figure 5A).

Besides examining individual signaling pathways, gaining

insight into the coordination of functions among multiple cell

populations and signaling pathways was essential. To tackle this

issue, Cellchat employed a pattern recognition technique utilizing

non-negative matrix decomposition. This approach aimed to

identify overall communication patterns and critical signaling

molecules within distinct cellular clusters. The results of this

analysis yielded communication patterns that connected cell

populations with signaling pathways in the context of efferent

signaling (cells acting as senders) or afferent signaling (cells acting

as receivers). We utilized gene expression pattern analysis provided

by Cellchat to unvei l interact ions between cel ls and

signaling pathways.

Through this analysis, we identified three efferent signaling

patterns and three afferent signaling patterns. Each efferent

communication pattern was associated with a specific cell type

predominantly responsible for that pattern: pattern 1

(Oligodendrocytes, VECs, Proliferating cells), pattern 2 (Myeloid

cells), and pattern 3 (a subpopulation of GBM cells) (Figure 5B). For

instance, we observed that GBM efferent signaling was primarily

characterized by mode 3, encompassing multiple pathways such as

CNTN and MAG, among others. T cell and myeloid cell signaling

were predominantly represented by mode 2, which included

pathways like CD45, CD99, and GAS. On the other hand, the

afferent signaling pattern indicated that GBM afferent signaling was

predominantly associated with mode 3, incorporating pathways like

CD45, PSAP, and others (Figure 5D).

To identify key afferent and efferent signals associated with the

four cell subpopulations, we quantitatively assessed ligand-receptor

networks using Cellchat’s pattern recognition methods. In GBM,

each cell type could act as a signal sender, releasing various cell

factors or ligands, while also functioning as a signal receiver, with

receptors targeted by ligands from the same or different cell types.

The ligand-receptor-mediated communication across different cell

types was anticipated to contribute to GBM development

(Figure 5C). Specifically, we focused on the communication

between Oligodendrocyte subpopulations and GBM cell

subpopulations with vascular endothelial cells, demonstrating

their ligand-receptor relationships (Figure 5E).

To depict the incoming and outgoing signal strengths of all cell

interactions, we presented a heatmap (Figure 5F). To investigate the

PSAP signaling pathway’s mechanism of action, we visualized and

analyzed the pathway. Scatter plots were employed to demonstrate

the cellular communication pattern of the PSAP signaling pathway,

revealing the prominence of the GBM cell subpopulation C2

CRYAB+ GBM within this pathway (Figure 5G). Additionally, we

identified cell types as mediators and influencers of intercellular
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communication in the PSAP signaling pathway based on a

central ity measure algorithm. Notably, the GBM cell

subpopulation C2 CRYAB+ GBM exhibited the highest

importance in the PSAP signaling pathway (Figure 5H). A violin

plot illustrated cell-cell interactions and highlighted the high

expression of the PSAP signaling pathway in the GBM

subpopulation C2 CRYAB+ GBM, suggesting its significance

within the context of GBM (Figure 5I). Chordal plots were

employed to demonstrate receptor-ligand profiles of GBM cell

subpopulations and Oligodendrocyte cell subpopulations with

other intercellular receptors (Figure 5J).
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By considering all ten identified cell types in GBM tissues as the

source cells of the PSAP signaling pathway and selecting specific cell

types as potential target cells, we utilized layered diagrams to

visualize potential targets of PSAP released from different cell

types. Our results indicated that PSAP released from eight cell

types could potentially target the C0 DOCK5+ GBM subpopulation,

the C1 SOX6+ Oligodendrocytes subpopulation, and the C2

CRYAB+ GBM subpopulation, while PSAP released from the

other six cell types did not target any specific cells (Figure 5K).

Our findings suggested that all cell types except C3 ROBO2+

Oligodendrocytes and T cells might act as signal emitters in the
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FIGURE 4

slingshot analysis of the pseudotime trajectories of oligodendrocyte subpopulations and glioma cell subpopulations. (A) UMAP plot showing the
distribution of two differentiation trajectories of oligodendrocyte subpopulation and glioma cell subpopulation fitted by the pseudotime order in all
cells. (B) UMAP plot demonstrating the change of Lineage1 with the fitted temporal order (left); UMAP plot demonstrating the differentiation
trajectory of Lineage1 on the fitted temporal order (right). (C) UMAP plot demonstrating the change of Lineage2 with the fitted temporal order(left);
UMAP plot demonstrating the differentiation trajectory of Lineage2 on the fitted temporal order (right). (D) GO-BP enrichment analysis
demonstrating the biological processes corresponding to the two proposed chronological trajectories of oligodendrocyte subpopulation and glioma
cell subpopulation. (E) Scatterplot demonstrating the trajectories of the named genes of the four cell subpopulations of oligodendrocyte
subpopulation and glioma cell subpopulation obtained after slingshot visualization.
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FIGURE 5

Cellchat results presentation. (A) Circle plot showing the number (left) and strength (right) of interactions between all cells. (B) Heatmap showing
pattern recognition of outcoming cells in all cells (left), and pattern recognition of incoming cells (right). (C) Outcoming contribution bubble plots
and incoming contribution bubble plots showing the expression of cellular communication patterns between each cell subpopulation and other
cells in the oligodendrocyte subpopulation and glioma cell subpopulation. (D) Mulberry diagram showing cellular communication patterns between
all cells. Top: incoming Mulberry diagram, bottom: outcoming Mulberry diagram. (E) Scatterplot of cellular communication patterns for screening
interactions between glioma cell subpopulations, oligodendrocyte subpopulations and vascular endothelial cells. The color of the dots indicates
varying degrees of functional strength and the size of the dots indicates the number of cells. p-value < 0.01, statistically different. (F) Heatmap
showing afferent and efferent signal intensities of all cell interactions (G) Scatter plot of cellular communication patterns of PSAP signaling pathway.
(H) Centrality score of PSAP signaling pathway network demonstrated by heatmap. (I) Violin plot of cellular interactions in the PSAP signaling
pathway. (J) Circle plot of cellular interactions in the PSAP signaling pathway with oligodendrocyte subpopulation and glioma cell subpopulation as
RECEIVER. (K) Hierarchical diagram of oligodendrocyte subpopulations and glioma cell subpopulations interacting with other cells in the PSAP
signaling pathway. (L) Interaction of cells in the PSAP signaling pathway shown by heatmap.
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PSAP signaling pathway. Detailed intercellular interactions within

the PSAP signaling pathway were presented (Figure 5L).
3.6 Establishment and validation of the
prognostic model

To evaluate the clinical significance of the identified cell types in

this study, we conducted a univariate COX analysis on the top 100

marker genes for the C2 CRYAB+ GBM subgroup. This analysis

revealed that 19 genes were associated with patient prognosis. Among

them, SPP1, PMP22, CST3, CLU, and ACTG1 were identified as risk

factors, while the remaining genes were found to be protective factors

(P<0.05) (Figure 6A). To address the issue of multicollinearity among

these genes, we conducted lasso regression to further refine the

selection, resulting in a set of 8 genes that constituted the CRYAB+

GBM score. The Lambda plot validated this selection (Figure 6B).

Subsequently, subjects were stratified into two cohorts based on

the gene expressions of the 8 chosen genes, namely the high CRYAB

+ GBM score cohort and the low CRYAB+ GBM score cohort.

Survival analysis was then conducted for both cohorts (Figure 6C).

Results indicated superior survival outcomes in the low CRYAB+

GBM score group, and conversely, poorer survival outcomes in the

high CRYAB+ GBM score group.

Survival analysis focusing on the eight genes comprising the

CRYAB+ GBM score model revealed statistically significant results

specifically for PMP22 and SPP1 (Figure 6D). Higher gene

expression consistently associated with worse survival outcomes,

while lower expression consistently correlated with improved

prognosis, confirming their established role as risk factors.

The CRYAB+ GBM score was determined for each patient in

the TCGA-GBM dataset, taking into account the expression levels

of the eight genes and their corresponding regression coefficients).

After plotting the distribution of CRYAB+ GBM scores in the

TCGA-GBM dataset, the patients were classified into high and low

score groups based on the median value. Furthermore, the survival

time distribution demonstrated a negative prognostic impact

associated with higher CRYAB+ GBM scores. The expression

levels of the eight genes comprising the model were also visually

depicted (Figure 6E).

Correlation analysis among survival days, CRYAB+ GBM score,

and the genes in the model revealed a negative correlation between

overall survival (OS) and CRYAB+ GBM score, a significant

negative correlation between EEF1A1 and CRYAB+ GBM score,

and positive correlations among most of the other modeled genes.

The scatter plot further visualized the relationships among the eight

modeling genes, CRYAB+ GBM score, and OS (Figure 6F).

In order to assess the predictive accuracy of the CRYAB+ GBM

score for survival outcomes at 1, 3, and 5 years, ROC curves were

generated, yielding corresponding area under the curve (AUC)

values of 0.687 (1-year survival), 0.703 (3-year survival), and

0.599 (5-year survival) (Figure 6G). Scatter plots were employed

to illustrate the associations between the genes included in the

model and the CRYAB+ GBM score (Figure 6H). The variation in

expression levels of the eight modeled genes between the high and

low CRYAB+ GBM score groups was exhibited (Figure 6I).
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FIGURE 6

Development of a prognostic model associated with CRYAB+ GBM
scores. (A) Forest plot showing univariate cox analysis of genes
constituting CRYAB+ GBM score. Null line HR=1, HR<1 protective
factor, HR>1 risk factor. (B) 8 genes that constitute CRYAB+ GBM
score screened by lasso regression (top); Lambda plot of genes that
constitute CRYAB+ GBM score (right). (C) Survival analysis status of
the screened 8 genes constituting CRYAB+ GBM score in both high
and low CRYAB+ GBM score groups. (D) Survival analysis plot of the 8
genes constituting the high and low CRYAB+ GBM score groups.
(E) Curve plots showing hazard scores in the high and low CRYAB+
GBM score groups (top); scatter plot illustrates survival status
variations between high and low CRYAB+ GBM score groups(middle);
heatmaps showing gene expression of genes constituting the high
and low CRYAB+ GBM score groups, with color scales based on
normalized data (bottom). Green indicates the low CRYAB+ GBM
score group and red indicates the high CRYAB+ GBM score group.
(F) Correlation analysis between CRYAB+ GBM scores, overall survival
(OS), and genes used in model establishment. Red indicates positive
correlation, blue indicates negative correlation, and color shades
indicate high or low correlation. (G) AUC scores for 1, 3, and 5 years
are shown by ROC plot. AUC(1-year): 0.687, AUC(3-year):0.703, AUC
(5-year):0.599. (H) Scatter plot showing the correlation analysis of the
genes constituting CRYAB+ GBM score with CRYAB+ GBM score.
(I) Peak and box plot showing the difference in expression of the eight
genes constituting CRYAB+ GBM score in the high and low CRYAB+
GBM score groups. (J) Forest plot showing multivariable Cox
regression analysis of CRYAB+ GBM score in conjunction with other
clinical factors. Null line HR=1, HR<1 protective factor, HR>1 risk
factor. (K) Nomogram plots predicting OS (overall survival) at 1, 3, and
5 years based on age, high and low CRYAB+ GBM score subgroups,
and stage. (L) Box line plot for internal cross validation of AUC scores
at 1, 3, and 5 years.
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To determine whether the CRYAB+ GBM score was an

independent risk factor, we constructed a gene-cytotype clinical

prediction model and performed multi-factorial Cox regression

analysis, considering age, ethnicity, T-stage, N-stage, M-stage, and

the high/low CRYAB+ GBM score groups as factors. The findings of

our study indicated that the CRYAB+ GBM score exhibited

statistical significance (p<0.05) as an independent prognostic risk

factor for patients with GBM (Figure 6J). Age, ethnicity, and T-stage

were subsequently used to construct a nomogram diagram that

integrated clinical and pathological risk factors, as well as risk cell

type characteristics. This nomogram diagram effectively predicted

the probability of patients’ survival and displayed the 1-year, 3-year,

and 5-year survival rates (Figure 6K).

To further validate the accuracy of the nomogram diagram, we

internally cross-validated the results using a box-and-line

plot (Figure 6L).
3.7 Immune infiltration patterns and
differences between patients with high
CRYAB+ GBM scores and those with low
CRYAB+ GBM scores

To explore immune infiltration in GBM and its association with

the two groups, we employed heatmaps as a visual representation of
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the distinct expression patterns of immune infiltration between the

high CRYAB+ GBM score group and the low CRYAB+ GBM score

group (Figure 7A). We subsequently utilized the CIBERSORT

algorithm to estimate the proportions of 22 immune cell types in

GBM patients sourced from the TCGA database. Our investigation

primarily concentrated on discerning the immune infiltration status

within the high CRYAB+ GBM score group and the low CRYAB+

GBM score group, resulting in the identification of the predicted

composition of various immune cell subsets (Figure 7B, top).

Further analysis of the immune infiltration in the two groups

highlighted the differences in the predicted abundances of six

immune cell types. Within the high CRYAB+ GBM score group,

increased levels of resting NK cells and regulatory T cells (Tregs)

were observed. Conversely, the low CRYAB+ GBM score group

displayed elevated proportions of M1 macrophages and activated

NK cells (Figure 7B, bottom). Bar graphs were utilized to present

the correlation between immune infiltrating cells and GBM

subpopulation labeling scores. The results demonstrated a positive

correlation between the CRYAB+ GBM score and resting NK cells,

neutrophils, regulatory T cells (Tregs), among others. Conversely, a

negative correlation was observed between the CRYAB+ GBM score

and activated NK cells, eosinophils, naive B cells, among other cell

types (Figure 7C).

To explore the relationships between the eight modeled genes

and immune cells, we employed multiple methods of immune cell
B C

D

E F

A

FIGURE 7

Differential analysis of immune infiltration in high and low CRYAB+ GBM score groups. (A) Heatmap shows the expression of various immune scores
in high and low CRYAB+ GBM score groups. (B) Stacked bar graph of immune infiltration (top); box-and-line graph showing the expression of 22
immune cells in gliomas(middle); infiltration of 6 immune cells with significant differences in high and low CRYAB+ GBM score groups is shown by
box-and-line graph (bottom). (C) The lollipop chart shows the correlation between immune cells and CRYAB+ GBM score. (D) Correlation of
immune cells with genes constituting CRYAB+ GBM score is shown by bar graph, heat map. *p ≤ 0.05, **p < 0.0 1; ***p < 0.001 indicates a
significant difference, ns indicates a non-significant difference. (E) Box line plots showing differences between high and low CRYAB+ GBM score
groups in stromal score, immune score, and stromal and immune signature gene set scores. *p ≤ 0.05, **p < 0.0 1; ***p < 0.001 indicates a
significant difference and ns indicates a non-significant difference. (F) Differences in tumor purity in high and low CRYAB+ GBM score groups are
shown by violin plots. *p ≤ 0.05, **p < 0.0 1, ***p < 0.001, ****p < 0.0001. indicates significant difference, ns indicates insignificant difference.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1336187
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cai et al. 10.3389/fimmu.2023.1336187
content assessment and presented the results in a heatmap. The

heatmap represented positive correlations in red shades and

negative correlations in blue shades (Figure 7D).

Moreover, we performed an assessment of the Stromal Score,

Immune Score, and ESTIMATE Score in the high CRYAB+ GBM

score group versus the low CRYAB+ GBM score group. The

findings revealed elevated levels of the Stromal Score, Immune

Score, and ESTIMATE Score in the high CRYAB+ GBM score

group as opposed to the low CRYAB+ GBM score group

(Figure 7E). Visualization of Tumor Purity was conducted for

both cohorts, indicating a decreased level of Tumor Purity in the

high CRYAB+ GBM score group when compared to the low

CRYAB+ GBM score group (Figure 7F).
3.8 Analysis of differences and
enrichment analysis

To investigate the differences between the high CRYAB+ GBM

score group and the low CRYAB+ GBM score group, we utilized

volcano plots and heatmaps to visualize the expression of

differentially expressed genes (Figures 8A, B). To gain a deeper

understanding of the potential involvement of the C2 subgroup

characterized by CRYAB+ expression in the initiation and

progression of GBM, we performed functional enrichment

analysis on the set of genes exhibiting differential expression

between the two groups. The results of GO enrichment analysis

were presented as bar graphs, showcasing associations with

pathways such as dopaminergic neuron differentiation, regulation

of cerebellar granule cell precursor proliferation, sex differentiation,

and forebrain development (Figure 8C).

In addition, we conducted KEGG enrichment analysis on the set

of differentially expressed genes and represented the outcomes

through bar graphs, which unveiled significant enrichments in

various pathways. These pathways encompassed the IL-17

signaling pathway, Rheumatoid arthritis, and Viral protein

interaction with cytokine and cytokine receptor (Figure 8D). The

enrichment scores for genes on different pathways were

demonstrated through GSEA scoring of GO-BP-enriched entries

of the differentially expressed genes (Figure 8E).
39 Mutation analysis

To explore the association between genetic mutations and

immune components within the tumor microenvironment

(TME), we performed supplementary investigations and visually

represented the cellular mutation data obtained from both study

cohorts. A model was used to display the mutations in the eight

genes (Figure 8F). We compared the top 30 genes displaying the

highest mutation frequencies in the interstitial cells of the two

groups. The upper bars represent the mutation load for each

sample, while the right bars indicate the total proportion of

mutations in each gene within those samples (Figure 8G).

To assess chromosomal copy number variation (CNV) gain and

loss, bar graphs were employed. However, the results revealed no
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significant chromosomal CNV gain or loss in the modeled genes

(Figure 8H). Additionally, a heatmap displayed the correlation of

mutation profiles among the genes comprising the CRYAB+ GBM

score (Figure 8I). Furthermore, a lollipop plot was utilized to

visualize the mutation profiles of different genes (Figure 8J).

Violin plots were utilized to examine the variation in mutation

load between the high CRYAB+ GBM score group and the low

CRYAB+ GBM score group. Nevertheless, no statistically significant

differences were observed (Figure 8K). Scatter plots were employed

to illustrate the statistical significance (p < 0.05) in the correlation

between mutation load and the CRYAB+ GBM score (Figure 8L).

Furthermore, tumor samples were assessed and classified into

four distinct groups based on their mutational load: High TMB with

High CRYAB+ GBM score, Low TMB with High CRYAB+ GBM

score, High TMB with Low CRYAB+ GBM score, and Low TMB

with Low CRYAB+ GBM score. Survival analysis curves depicted

the outcomes for these groups, with the Low CRYAB+ GBM score-

Low TMB group demonstrating the best survival, while the High

CRYAB+ GBM score-Low TMB group exhibited the worst

survival (Figure 8M).
310 Drug sensitivity analysis

Violin plots were utilized to illustrate the variation in drug

sensitivity between the high CRYAB+ GBM score group and the

low CRYAB+ GBM score group (Figure 8N). Notably, we observed

differential responses to specific drugs. For instance, Dasatinib, an

FDA-approved CNS permeant for GBM, exhibited a higher IC50

value in the low CRYAB+ GBM score group compared to the high

CRYAB+ GBM score group. This finding suggests that the high

CRYAB+ GBM score group may display potentially greater

sensitivity to the drug.
3.11 Knocking down CRYAB expression
effectively suppresses the proliferation,
migration, and metastatic capabilities of
glioma cells

To investigate the impact of CRYAB in glioma, we performed

CRYAB gene transfection knockdown and the transfection

efficiency was verified by RT-qPCR (Supplementary Figure 2).

Then we conducted colony formation assays on U87 and LN229

glioma cells in the negative control (NC) and si-CRYAB groups

(Figure 9A). The results indicated that the suppression of CRYAB

led to reduced colony size in both U87 and LN229 cells, indicating

the impediment of glioma cell proliferation (Figure 9C). To further

validate this observation, the CCK-8 assay was conducted

(Figures 9G, H).

In order to investigate the impact of CRYAB on glioma cell

migration, we utilized both scratch and transwell assays (Figure 9B).

The outcomes demonstrated that the knockdown of CRYAB

significantly impeded the mgration capability of U87 and LN229

cells (Figures 9D, E). Consequently, the silencing of CRYAB

exhibited inhibitory effects on glioma cell proliferation and
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FIGURE 8

Enrichment analysis, mutation analysis and drug sensitivity analysis between different groups. (A, B) Volcano and heatmap showing the expression of
differential genes in the high and low CRYAB+ GBM score groups. (C) Bar graph showing the results of all GO enrichment analyses (GOBP, GOCC,
GOMF). (D) Results of enrichment on different pathways are shown by KEGG enrichment analysis of differential genes. (E) Showing the enrichment
score values of genes on different pathways by GSEA scoring of GO-BP enrichment entries of differential genes. (F) Gene mutation waterfall plot
showing mutations of the genes constituting the CRYAB+ GBM score in the samples. The top bar indicates the mutation load for each sample, and
the right bar indicates the total percentage of mutations for that gene in those samples. (G) Mutation waterfall plot showing differences in the top 30
most frequently mutated genes in somatic cells between the two groups. The top bar indicates the mutation load for each sample, and the right bar
indicates the total percentage of mutations in that gene in those samples. (H) CNV status of model genes (I) Heatmap showing the correlation
between the mutation profiles of the genes that make up the CRYAB+ GBM score. (J) Visualization of the mutation profiles of different genes using
lollipop plots. (K) Difference in mutation load in high and low CRYAB+ GBM score groups using violin plots. (L) Scatter plot showing the correlation
analysis between mutation load and CRYAB+ GBM score. (M) Scoring according to tumor mutation load, divided into four groups: high-risk high
mutation load, high-risk low mutation load, low-risk high mutation load, and low-risk low mutation load, and the curves show the survival analysis
results of the four groups. (N) Differences in different drug sensitivities in high and low CRYAB+ GBM score groups are shown by violin plots. *, p ≤

0.05; **p < 0.0 1; ***p < 0.001 indicates a significant difference, and ns indicates a non-significant difference.
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FIGURE 9

Silencing CRYAB Inhibits Proliferation, Migration and Metastasis while Promoting Apoptosis in Glioma Cells. (A) Colony formation assay was performed
on U87 and LN229 glioma cells in the NC and si-CRYAB groups. Smaller colonies were observed in the si-CRYAB group, indicating that CRYAB silencing
inhibits glioma cell proliferation. (B) Transwell assay demonstrated a decrease in the migration ability of U87 and LN229 cells in the si-CRYAB group
compared to the NC group. And scratch assay revealed a decrease in the migration ability of U87 and LN229 cells in the si-CRYAB group compared to
the NC group. (C) Quantification of colony formation assay results showing a decrease in colony size in the si-CRYAB group compared to the NC group.
(D) Quantification of scratch assay results showing a decrease in wound closure percentage in the si-CRYAB group compared to the NC group. (E)
Quantification of transwell assay results showing a decrease in the number of invading cells in the si-CRYAB group compared to the NC group. (F)
Quantification of apoptosis assay results showing an increase in the percentage of apoptotic cells in the si-CRYAB group compared to the NC group. (G)
CCK-8 assay further confirmed the inhibitory effect of CRYAB silencing on LN229 cells proliferation. (H) CCK-8 assay further confirmed the inhibitory
effect of CRYAB silencing on U87 cells proliferation. (I) Apoptosis assay revealed an increase in apoptosis in both U87 and LN229 cell lines upon CRYAB
silencing. **p < 0.01, ***p < 0.001.
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migration. Apoptosis is a pivotal process involved in the aggressive

characteristics of numerous tumors. To gain deeper insight into the

influence of CRYAB on tumor cell apoptosis, we conducted

additional investigations. The results from the apoptosis assay

demonstrated that downregulation of CRYAB significantly

enhanced apoptosis in both U87 and LN229 cell lines

(Figures 9F, I).
4 Discussion

Glioma, the predominant form of primary brain tumor arising

from glial cells, represents approximately 80% of all cases of brain

tumors (47). The exact etiology of glioma remains unclear, but it has

been associated with genetic factors, environmental exposures, and

gene mutations (48). The specific mechanisms underlying the origin

of glioma are still poorly understood. In clinical practice, the

preferred treatment for glioma patients is surgical resection (4).

However, the effectiveness of surgery alone is often limited.

Additional treatment options include radiation therapy and

chemotherapy, although their outcomes are also unsatisfactory

(49). Novel approaches such as targeted therapy and

immunotherapy have emerged with the aim of interfering with

specific signaling pathways in glioma cells or enhancing the

immune system to suppress tumor growth. However, the

immunosuppressive effects of glioma often contribute to poor

treatment responses (50). The expression of CRYAB gene is mainly

observed in cardiac and neural tissues, and its dysregulated

expression has been linked to the pathogenesis and advancement of

diverse immune-associated disorders (51). Research findings indicate

that the atypical expression of CRYAB has been implicated in various

autoimmune disorders, including rheumatoid arthritis and systemic

lupus erythematosus, as well as inflammatory conditions such as

pneumonia and myocarditis. The expression of CRYAB may be

regulated by inflammatory cytokines and, in turn, can influence the

extent and progression of the inflammatory response.In the nervous

system, abnormal expression of the CRYAB gene is associated with

the occurrence and progression of several neurodegenerative diseases

(9). In neurodegenerative conditions, such as Alzheimer’s disease and

Parkinson’s disease, aberrant expression of CRYAB has been

associated with neuronal apoptosis (cell death) and the progression

of neurodegeneration. Moreover, CRYAB has proven to have a

significant impact in the context of neurotrauma and inflammatory

disorders, including stroke, traumatic brain injury, and spinal cord

injury (52).Therefore, the dysregulation of CRYAB expression in

cardiac and neural tissues is implicated in the pathogenesis of

immune-related diseases, inflammation-related conditions, as well

as neurodegenerative disorders. The implication of CRYAB in these

pathological conditions highlights its significance as a promising

therapeutic target for the development of interventions (8).

In this study, we conducted snRNA-seq analysis on tumor

samples from 10 patients with GBM to investigate the major cell

types involved in GBM progression. Single-cell sequencing

technology has significantly enhanced our exploration of

neuroimmune molecular mechanisms, ushering in a redefinition

of disease subtyping, and facilitating the discovery of novel
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therapeutic targets (53, 54). Building upon newly discovered

neuroimmune molecular mechanisms and biomarkers, we aim to

explore novel therapeutic strategies, including immunotherapy and

pharmacological interventions, to enhance treatment outcomes for

neurological disorders (55). By utilizing sequencing technologies,

we delve more extensively into the regulatory mechanisms of the

neuroimmune system, encompassing intercellular interactions,

signaling pathways, cytokine release, and regulation, ultimately

providing a comprehensive understanding of the processes

underlying the onset and progression of glioma. By employing

dimensionality reduction clustering techniques, we successfully

dist inguished seven unique cel l populat ions , namely

oligodendroglial cells, neurons, myeloid cells, astrocytes, vascular

endothelial cells (VECs), proliferating cells, and T cells. We scored

the cells and performed GO-BP enrichment analysis and differential

gene analysis. Intracellular heterogeneity was observed within the

oligodendroglial cells, which were further divided into four

subgroups, including malignant and non-malignant cells. Cell

tracking and single-cell trajectory analysis were performed to

visualize the differentiation and developmental relationship

between oligodendroglial cell and GBM cell subgroups. Using the

slingshot method, we further analyzed the trajectory of cell

differentiation in GBM and identified two distinct lineages.

Cellchat analysis was performed to investigate the signaling

communication network among cells and gain insights into their

intercellular interactions. Additionally, we investigated the

coordinated functions of multiple cell clusters and signaling

pathways. Our study revealed that within the terminal

differentiation stage of glioma tissue, a subpopulation of

oligodendroglial cells exhibited the highest expression of CRYAB,

which was associated with prognosis and confirmed by in vitro

experiments (56, 57). The knockdown of CRYAB in glioma cells

resulted in the suppression of cell proliferation and migration,

concomitant with the induction of apoptosis.

Immunotherapy is a potent therapeutic strategy in the field of

medicine, targeting the immune escape strategies employed by

tumors and effectively activating the patient’s immune cells to

combat malignant cancer cells (58). The Cryab gene assumes a

pivotal role in tumor immunity, as evidenced by the notable

distinctions observed in immune infiltration between the high

CRYAB+ GBM score cohort and the low CRYAB+ GBM score

cohort within the context of this investigation. Indeed, the

expression of Cryab is intricately linked to tumor progression and

response to treatment. Primarily, there is a frequent upregulation of

Cryab within tumor cells (59). The elevated expression of Cryab

may be associated with the survival, proliferation, and metastatic

potential of tumor cells. It has been observed that increased Cryab

levels contribute to enhanced cell viability, proliferation, and the

ability of tumor cells to spread to distant sites (60). The

overexpression of Cryab in tumor cells may play a vital role in

promoting cell survival and offering a means to evade immune

system-mediated attacks. Additionally, the presence of Cryab

expression has been correlated with tumor-induced immune

evasion. The upregulation of Cryab has been observed to be

closely linked with the ability of tumors to escape immune

detection and subsequent immune responses. The mechanism of
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immune surveillance involves the recognition and elimination of

potential tumor cells by the body’s immune system (61).

Nevertheless, tumor cells have the ability to evade immune

surveillance through diverse mechanisms. These evasion tactics

i n c l u d e d own r e gu l a t i n g t h e e xp r e s s i o n o f ma j o r

histocompatibility complex (MHC) molecules, which are crucial

for immune recognition, as well as modulating the expression of

immune inhibitory factors (62). Cryab has been found to regulate

the immune escape mechanisms of tumor cells, inhibiting the

activation of T cells and the expression of tumor-associated

antigens, thereby aiding the evasion of immune attacks by tumor

cells (63). Tumor cell immune resistance is a major challenge in

immunotherapy. Scientific research has revealed a potential

correlation between the expression of Cryab and tumor resistance

towards immunotherapy. Overexpression of Cryab can render

tumor cells insensitive to attacks from immune cells, thereby

reducing the effectiveness of immunotherapy (64). In a nutshell,

the Cryab gene exerts a pivotal influence on tumor immunity by

exerting regulatory control over crucial aspects such as tumor cell

survival, immune evasion, and resistance to immune-based

therapies.Thus, gaining a comprehensive comprehension of tumor

immunology and fostering the advancement of novel

immunotherapeutic methodologies hold immense importance.

The association between the CRYAB gene and the prognosis of

glioblastoma multiforme (GBM) has been successfully elucidated,

alongside an in-depth investigation into its involvement in cellular

communication, as well as cellular development and differentiation

mechanisms. The findings suggest that increased CRYAB expression

is linked to unfavorable prognosis. Several studies have validated a

substantial correlation between the presence, advancement, and

prognostic implications of cancer and the expression pattern of the

CRYAB gene. For example, research has shown that increased levels

of CRYAB in glioblastoma patients are closely related to decreased

survival rates and increased susceptibility to metastatic diseases. The

expression of the CRYAB gene has been identified as a prospective

diagnostic indicator for a range of cancers, including prostate cancer,

colorectal cancer, and gastric cancer (65). The assessment of CRYAB

gene expression levels offers valuable insights into the prognosis and

treatment response of various tumors. In particular, CRYAB plays a

crucial role in the management of glioblastomas, a type of brain

tumor. Research findings indicate that the inhibition of CRYAB

expression in glioblastoma cells leads to a reduction in their

invasiveness and proliferation rates. Moreover, this silencing of

CRYAB expression has been shown to increase the sensitivity of

these cells towards chemotherapy drugs (66). The upregulation of

CRYAB in glioblastomas suggests its potential role in promoting

tumor occurrence and progression, which is consistent with previous

research on CRYAB in other cancers. Our study represents the

pioneering investigation examining the precise involvement of

CRYAB in glioblastomas. The inhibitory effect of CRYAB silencing

on glioblastoma cell behavior indicates that targeting CRYABmay be

a promising treatment approach. We have validated our research

findings through in vitro experiments, demonstrating that silencing

CRYAB in glioblastoma cells inhibits cell proliferation, migration. In

conclusion, our study has established a reliable diagnostic and

prognostic model for glioblastoma and provided evidence for the
Frontiers in Immunology 20
upregulation of CRYAB and its promotion of tumor cell behavior in

glioblastomas. Targeting CRYAB may be a promising therapeutic

strategy for glioblastoma. Additional investigations are required to

gain a comprehensive understanding of the underlying mechanisms

through which CRYAB operates in relation to glioblastomas.

Moreover, exploring the clinical implications of targeting CRYAB

holds promise and warrants further exploration.
5 Conclusions

In conclusion, the utilization of CRYAB-related models enables

a comprehensive patient classification for prognosis and

immunological assessment in glioblastoma patients. Our research

findings can provide valuable insights for the detection, treatment,

and mechanistic studies of gliomas.
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SUPPLEMENTARY FIGURE 1

The classification of GBM cells. According to the inferCNV results, we defined

cells with high CNV levels as GBM cells.

SUPPLEMENTARY FIGURE 2

CRYAB gene transfection knock-down low efficiency verification. Compared
with untransfected cells, the mRNA level of CRYAB gene was significantly

decreased in the transfected knockdown group.
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