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Despite the emergence of molecular targeted therapy and immune checkpoint

inhibitors as standard first-line treatments for non-small cell lung cancer

(NSCLC), their efficacy in some patients is limited by intrinsic and acquired

resistance. Antibody-drug conjugates (ADCs), a revolutionary class of

antitumor drugs, have displayed promising clinical outcomes in cancer

treatment. In 2022, trastuzumab deruxtecan (Enhertu) was approved for

treating HER2-mutated NSCLC, thereby underscoring the clinical value of

ADCs in NSCLC treatment strategies. An increasing number of ADCs, focusing

on NSCLC, are undergoing clinical trials, potentially positioning them as future

treatment options. In this review, we encapsulate recent advancements in the

clinical research of novel ADCs for treating NSCLC. Subsequently, we discuss the

mechanisms of action, clinical efficacy, and associated limitations of these ADCs.

KEYWORDS
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1 Introduction

Lung cancer, known as the most common thoracic malignancy, is the leading cause of

cancer-related deaths worldwide, revealing a 5-year survival rate of only 10%-20% (1).

NSCLC accounts for approximately 85% of lung cancer cases, establishing it as the

dominant subtype (2). In recent years, the introduction of targeted therapies and

immunotherapy has significantly reshaped the treatment landscape for NSCLC. In 2003,

the approval of gefitinib by the Food and Drug Administration (FDA), as the first

molecular targeted drug for NSCLC treatment, led the way for the development of

potent inhibitors such as EGFR, ALK, RET, and KRAS (3, 4). Nonetheless, a marginal

section of patients (25%) benefit from these targeted therapies, whilst drug resistance

remains a challenge (5). For most patients with driver-gene-negative NSCLC, immune
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checkpoint inhibitor (ICI) has surpassed combination

chemotherapy as the primary approach (3). However, the

effectiveness of ICIs in treating metastatic NSCLC patients

remains underwhelming, with a median overall survival (mOS) of

less than 3 years. Overcoming drug resistance presents continual

obstacles (6, 7). ADCs, an emerging class of antineoplastic drugs,

mainly encompass three components: antibody, linker, and

cytotoxic payload. This therapeutic approach conveys anti-tumor

effects via targeted delivery of cytotoxic drugs into tumor cells,

earning it the nickname of a ‘magic bullet’ (8). Currently, ADC

development is advancing rapidly. To date, the FDA has approved

12 ADCs for tumor treatment, with 9 of them receiving approval

since 2017 (9). Importantly, trastuzumab deruxtecan is the only

ADC used to treat HER2-mutated NSCLC, signifying an innovative

approach to using ADCs in targeted therapy for NSCLC (10). In this

review, we summarize recent advancements in the research of

ADCs for the treatment of NSCLC, with a focus on aspects

including the mechanisms of action, clinical efficacy,

and limitations.
2 Trop2-targeted ADCs

Trophoblast cell surface antigen 2 (Trop2), a type I cell surface

glycoprotein, shows limited expression in normal tissues but over-

expression in various types of tumors, including breast cancer,

NSCLC, pancreatic cancer, and other tumors. In NSCLC, over-

expressed Trop2 is associated with lymph node metastasis and poor

OS (11). There have been several clinical trials to evaluate the

therapeutic potential of Trop2-targeted ADCs in NSCLC.
2.1 Sacituzumab govitecan (Trodelvy)

Sacituzumab govitecan is a Trop2-targeted ADC composed of

hRS7, an anti-Trop2 monoclonal antibody, connecting to the

irinotecan metabolite (SN-38) via a cleavable CL2A carbonate

linker with a DAR of 7.6. Preclinical studies demonstrated that

sacituzumab govitecan can selectively bind to Trop2+ tumor cells,

causing double-stranded DNA breaks and tumor cell death by

topoisomerase I and bystander effect. Sacituzumab govitecan

exhibits potent antitumor effects in vitro and in vivo .

Furthermore, it is well tolerated in monkeys at clinically relevant

doses (12, 13). Sacituzumab govitecan is currently the only Trop2-

targeted ADC approved by the FDA for the treatment of metastatic

triple-negative breast cancer (mTNBC) patients who have received

at least two prior therapies for metastatic disease. In a first-in-

human (FIH) 1/2 clinical trial of sacituzumab govitecan

(NCT01631552), an ORR of 19% was observed among 47

evaluated NSCLC patients. The 8 and 10 mg/kg doses every 21

days were selected as the recommended phase 2 dose (RP2D).

Notably, neutropenia was reported by 43% of the patients. Grade 3

or higher AEs were experienced by 5% of the patients, including

diarrhea (7%), nausea (7%), fatigue (6%), and neutropenia (28%)

(14, 15). Currently, there are several ongoing clinical trials aimed at

evaluating the clinical activity of sacituzumab govitecan as a single
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agent or in combination with other antitumor agents for patients

with NSCLC. In a trial (NCT05186974) with sacituzumab govitecan

combined with first-line therapy (pembrolizumab or platinum

agent), preliminary data demonstrated an ORR of 56% among 61

patients with advanced or metastatic NSCLC that receiving

treatment of combination of sacituzumab govitecan and

pembrolizumab (16). In addition, three clinical trials

(NCT06055465, NCT05089734, and NCT05609968) in patients

with refractory or advanced metastatic NSCLC are ongoing.
2.2 Datopotamab deruxtecan

Datopotamab deruxtecan, jointly developed by Daiichi Sankyo

and AstraZeneca, aims at treating metastatic breast cancer and

metastatic NSCLC. It consists of an anti-Trop2 monoclonal

antibody, an enzymatically cleavable tetrapeptide linker, and the

exatecan derivative (DXd) (17). Unlike sacituzumab govitecan and

other deruxtecan-containing ADCs, datopotamab deruxtecan has a

lower DAR. This design is based on preclinical studies suggesting that

datopotamab deruxtecan with a DAR of 4 offers enhanced tolerability

and a broader therapeutic window in cynomolgus monkeys, in

contrast to those with higher DARs. The mechanism of action

(MOA) of datopotamab deruxtecan includes inhibition of DNA

topoisomerase I and bystander effects (17). Datopotamab

deruxtecan is currently undergoing phase 3 clinical trials. The

safety, tolerability, and preliminary efficacy of datopotamab

deruxtecan have been evaluated in a phase 1 clinical trial

(NCT03401385) involving patients with advanced solid tumors. A

total of 180 patients with NSCLC received datopotamab deruxtecan,

and the treatment of datopotamab deruxtecan showed both

antitumor activity and safety. The blinded independent central

review determined the ORR as follows: 4 mg/kg - 24% (12/50), 6

mg/kg - 26% (13/50), and 8 mg/kg - 24% (19/80). Among the

patients, 47% experienced grade 3 or worse TEAEs, with the most

common being nausea, stomatitis, alopecia, and fatigue (18). Notably,

the 6 mg/kg dose demonstrated better tolerability, greater

effectiveness, and lower AEs, establishing it as the recommended

dosage for future development. As a result, it has been recommended

for use in subsequent clinical trials. Based on the notable clinical value

exhibited by datopotamab deruxtecan in this trial, further evaluation

is being conducted through the TROPION-LUNG program. This

extensive clinical development initiative aims to assess the

effectiveness and safety of datopotamab deruxtecan, either as a

monotherapy or in combination with other antitumor agents,

specifically targeting Trop2+ NSCLC (11). TROPION-Lung01

(NCT04656652) is a phase 3 clinical trial that assesses the

effectiveness and safety of datopotamab deruxtecan when compared

to docetaxel (DTX) in individuals with advanced or metastatic

NSCLC who have received previous treatment. The study enrolled

a total of 604 patients, with 299 in the datopotamab deruxtecan group

and 305 in the DTX group. The observed ORR was significantly

higher in the datopotamab deruxtecan group (26.4%) compared to

the DTX group (12.8%). It is noteworthy that the datopotamab

deruxtecan group had a higher occurrence of grade ≥ 3 treatment-

related interstitial lung disease (ILD) compared to the DTX group,
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with rates of 3.4% and 1.4% respectively. Stomatitis (49.2%) and

nausea (37%) were the most frequently reported TEAEs in the

datopotamab deruxtecan group (19). TROPION-Lung02

(NCT04526691) is a phase 1 clinical trial evaluating the efficacy of

datopotamab deruxtecan plus pembrolizumab in patients with

advanced NSCLC with or without chemotherapy. As of April 2023,

a 38% ORR was observed in 61 patients with advanced NSCLC who

received datopotamab deruxtecan plus pembrolizumab treatment.

Additionally, the ORR for patients receiving platinum-based

chemotherapy in combination with datopotamab deruxtecan and

pembrolizumab (n = 71) was 49%. In terms of safety, grade 3 or

higher TEAEs occurred in 53% and 76% of patients in the two groups

who received doublet or combination chemotherapy, respectively

(20). The TROPION-Lung05 (NCT04484142), phase 2 clinical trial,

aims to examine both the effectiveness and safety of datopotamab

deruxtecan in individuals with advanced or metastatic NSCLC who

have actionable genomic alterations. Out of 137 patients who received

datopotamab deruxtecan treatment, 56.9% had EGFR mutants. As of

December 2022, the observed ORR was 35.8%. Patients with EGFR

mutants showed a comparable response, with an ORR of 43.6%. The

most common grade ≥ 3 TEAEs were stomatitis (9.5%), anemia

(5.8%), and increased amylase (5.8%) (21). Other TROPION-Lung

clinical trials (TROPION-Lung07 and TROPION-Lung08)

are ongoing.
2.3 SKB264

In SKB264, an anti-Trop2 antibody (hRS7) is conjugated to a

topoisomerase I inhibitor (KL610023, belotecan-derived) via an

sulfonyl pyrimidine-CL2A-carbonate linker, resulting in a DAR of

7.4 (22). SKB264 shares a similar MOA with sacituzumab govitecan

and datopotamab deruxtecan, exerting anti-tumor effects through

the inhibition of topoisomerase I and bystander effects. Preclinical

studies have demonstrated the remarkable efficacy of SKB264 in the

nonclinical Trop2-expressing patient-derived xenografts (PDX)

models, with an acceptable safety profile and an excellent

therapeutic window in animal studies (23). A phase 1/2 clinical

study (NCT04152499) is evaluating the clinical activity of SKB264

in patients with solid tumors who have shown resistance to

standard therapies. In the phase 2 expansion cohort, an ORR of

44% was observed among the 39 NSCLC patients. It is worth noting

that patients with tyrosine kinase inhibitors (TKIs)-resistant EGFR

mutants appear to be more responsive to SKB264 than patients with

EGFR WT. Among the EGFR WT group, the ORR was 26% (5/19),

while the TKI-resistant EGFR mutant group demonstrated an ORR

of 60% (12/20). The most frequently observed grade ≥ 3 TEAEs,

experienced by at least 5% of patients, consisted of neutrophil count

decreased (32.6%), anemia (30.2%), white blood cell count

decreased (23.3%), stomatitis (9.3%), rash (7.0%), and lymphocyte

count decreased (7.0%) (24). Grade 4 TEAEs occurred only for

neutropenia and white blood cell count decreased. According to the

positive result of SKB264 in the EGFR mutant group, a phase 3

clinical trial (NCT05870319) in patients with EGFR-mutated

NSCLC has been initiated to further determine the clinical

activity of SKB264. In addit ion, two clinical studies
Frontiers in Immunology 03
(NCT05816252 and NCT05351788) aiming to investigate SKB264

in patients with advanced NSCLC are ongoing.
3 HER2-targeted ADCs

Human epidermal growth factor receptor 2 (HER2), a member

of the epidermal growth factor receptor family, can initiate various

oncogenic signaling pathways (MAPK, PI3K, AKT, and PKC),

provoking abnormal cell proliferation and encouraging

tumorigenesis (25). HER2 is overexpressed across various tumor

types. The remarkable success of HER2-targeted therapies in

treating HER2+ breast cancer encourages us to explore their

potential beyond breast cancer. Recent studies demonstrated that

NSCLC, closely correlated with abnormal HER2, may also exhibit

potential for suitability towards HER2-targeted agents (26, 27).

Moreover, receptor ubiquitination and internalization induced by

HER2 amplification or mutant offer a mechanistic foundation for

employing HER2-targeted ADCs in the treatment of NSCLC (28).
3.1 Trastuzumab emtansine (Kadcyla)

Trastuzumab emtansine, the first HER2-targeted ADC to be

developed, consists of trastuzumab, connecting to the microtubule

inhibitor emtansine (DM1) via a non-cleavable linker with a DAR

of 3.5 (29). FDA has approved trastuzumab emtansine in treating

advanced HER2+ breast cancer patients who have previously

received trastuzumab and taxane therapies, either as monotherapy

or in combination. Recent encouraging clinical results have

demonstrated the therapeutic potential of trastuzumab emtansine

for the treatment of HER2+ NSCLC. In a phase 2 clinical study

(NCT02675829) involving 49 patients with HER2 amplification or

mutant, trastuzumab emtansine showed an ORR of 51% (25/49)

and a median progression-free survival (mPFS) of 5 months with

good tolerability. According to these positive results, the NCCN has

recommended trastuzumab emtansine as the only preferred 2L

treatment option for metastatic HER2-mutated NSCLC (28).

However, another phase 2 clinical trial (UMI000019446) was

terminated because of the limited efficacy of trastuzumab

emtansine in patients with HER2+ relapsed NSCLC. In this

setting, 15 patients (33% with IHC3+, 20% with IHC2+, and 47%

with exon 20 mutant) received trastuzumab emtansine with an

RP2D of 3.6 mg/kg every three weeks. Only one patient with

mutant, accounting for 6.7% (1/15), achieved PR (30). In a phase

2 trial (NCT02289833), trastuzumab emtansine was administered

to 49 patients with HER2+ NSCLC (29 with IHC2+ and 20 with

IHC3+). No treatment responses were observed in the IHC2+ group,

whereas 4 patients in the IHC3+ cohort achieved partial response

(PR). This result suggested the selective activity of trastuzumab

emtansine in NSCLC with a high HER2 level (31). In summary, not

all patients with HER2+ NSCLC benefit from trastuzumab

emtansine treatment. The mechanisms of treatment resistance

include the disruption of trastuzumab-mediated effects, abnormal

changes in trafficking/metabolism, and impairment of lysine-MCC-

DM-1-mediated cytotoxicity.
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3.2 Trastuzumab deruxtecan (Enhertu)

Trastuzumab deruxtecan, an anti-HER2 ADC developed by

Daiichi Sankyo and AstraZeneca, is composed of trastuzumab

linked with topoisomerase I inhibitor (Deruxtecan, DXd) via a

hydrolyzable tetrapeptide linker with a DAR of 8 (32). Owing to its

highly permeable payload, trastuzumab deruxtecan exhibits a

pronounced bystander effect, which allows it to keep potent

antitumor activity even in HER2low tumor cells (33). In 2022, the

FDA granted accelerated approval to trastuzumab deruxtecan for

HER2-mutated NSCLC. This approval is derived from the

significant therapeutic effect observed in the phase 2 DESTINY-

Lung01 trial (NCT03505710). The trial involved 91 patients with

advanced HER2+ NSCLC, who received RP2D at 6.4mg/kg every

three weeks and not respond to previous treatments, which

included 42 patients with HER2 mutant and 49 patients with

HER2 overexpression. For the HER2 mutant group, one achieved

complete response (CR) (2.4%), and 25 achieved PR (59.5%)

totaling an ORR of 61.9% (34). Trastuzumab deruxtecan

showcased an advantageous anti-tumor effect in this category,

denoted as significant. In contrast, the cohort showing HER2

overexpression exhibited substantial toxicity and relatively

reduced efficacy, with an ORR of 24.5%. Only one of these 49

patients reached CR, with 11 achieving PR, and the mPFS of 5.4

months (35). Among the 91 patients treated with trastuzumab

deruxtecan, 88 reported AEs, including 42 instances of grade 3

and above AEs and two documented fatalities. Nausea, neutropenia,

and ILD were the most frequent AEs. Drug-related ILD was

reported at 26% across all grades and 6.6% for grade 3 and above,

respectively (36). Presently, six active clinical trials involving

trastuzumab deruxtecan are underway for NSCLC patients,

including NCT05048797, a phase 3 study designed to assess both

the efficacy and safety of trastuzumab deruxtecan in NSCLC

patients with HER2 exon 19 or 20 mutant.
3.3 Trastuzumab botidotin

Trastuzumab botidotin is designed for the treatment of HER2+

solid malignancies. Its synthesis involves conjugating trastuzumab

to duostatin-5 (an auristatin derivative) using a protease-cleavable

linker with a DAR of 2. In preclinical studies, trastuzumab botidotin

demonstrated better tumor growth inhibition than trastuzumab

emtansine at a dose of 3 mg/kg in PDX models (37). The initial

clinical trial (NCT03602079) of trastuzumab botidotin incorporated

35 patients suffering from locally advanced or metastatic solid

tumors, including NSCLC, that were HER2+ or HER2-amplified.

Preliminary data demonstrated promising anticancer efficacy at the

dosages of 3.6 mg/kg and 4.8 mg/kg. Among 27 evaluable patients,

which included NSCLC cases, 7 showed PR, contributing an ORR of

36%. The most frequently observed TEAEs included keratitis,

decreased appetite, and dry eye, alongside blurred vision and

others. Ocular toxicity was particularly prominent. The onset rate

of ocular toxicity marked 80% in the 3.6 mg/kg therapy group,

whereas the 4.8 mg/kg group reported an 83% incidence rate (38).

Three patients exhibited more severe whorl pattern epitheliopathy,
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indicating limbal stem cell deficiency (LSCD), which necessitated

the cessation of treatment (39). Ocular toxicity was also reported in

another clinical trial of trastuzumab botidotin (CTR20181301). A

total of 81 patients with advanced solid tumors received

trastuzumab botidotin treatment, resulting in objective partial

tumor responses observed in 43 patients, reflecting an ORR of

53% (40). The most frequent TEAEs, at grades 3 or above,

comprised of corneal epitheliopathy (30.9%), blurred vision

(18.5%), dry eyes (7.4%), and peripheral sensory neuropathy

(6.2%) (41).
3.4 SHR-A1811

SHR-A1811 is a HER2-targeted ADC composed of trastuzumab

via a cleavable linker and a novel topoisomerase I inhibitor payload

(SHR9265, exatecan derivative), with a DAR of 5.7. In preclinical

studies, SHR-A1811 showed growth inhibition and antitumor

activity in breast cancer and gastric cancer cell lines with different

HER2 expression levels (high, medium, and low). Moreover, treated

cynomolgus monkeys did not exhibit any deaths or lung injuries

within 42 days, indicating a good safety profile (42). NCT04818333

is a phase 1/2 trial evaluating the clinical activity of SHR-A1811 in

patients with advanced HER2-mutated NSCLC. A total of 50

patients were enrolled, all of whom had received prior treatment

including HER2-targeted TKIs (66%), ICI (68%), and anti-

angiogenic drugs (78%). Overall, the ORR was 40%. All patients

experienced TEAEs. Grade ≥ 3 TEAEs were observed in 42% of

patients, with the most common being decreased neutrophil count

(30%), white blood cell count decreased (20%), anemia (16%), and

thrombocytopenia (12%). Among the patients, nine (18%)

experienced severe AEs that might be associated with SHR-

A1811. Two patients had to discontinue treatment due to AEs,

and one patient died from treatment-related ILD (43). Additionally,

NCT05482568 is an ongoing phase 1/2 clinical trial recruiting

patients with advanced NSCLC. It aims to assess the effectiveness

of SHR-A1811 when used in combination with either pyrotinib or

SHR-1316.
3.5 XMT-1522

XMT-1522 is an anti-HER2 ADC made up of the monoclonal

antibody HT-19 conjugated with the AF-HPA (auristatin-

derivative) payload. It utilizes a cysteine linkage containing

biodegradable hydrophilic polymer, with a DAR of 12. AF-HPA

and its intracellular metabolite auristatin F (AF) are potent tubulin

polymerization inhibitors used to kill tumor cells (44). In preclinical

studies, XMT-1522 demonstrated antitumor activity in

trastuzumab emtansine-resistant HER2+ breast cancer and gastric

cancer cell lines as well as trastuzumab emtansine-resistant PDX

models (45). In the primary phase 1 clinical trial (NCT02952729) of

XMT-1522, a cohort of 19 participants was enrolled, including

individuals with HER2+ NSCLC. Administered doses of 16 or 21.3

mg/m2 led to one patient experiencing PR and four others achieved

stable disease (SD), thus yielding a disease control rate (DCR) of
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83% (5/6) (46). However, the further development of XMT-1522

was terminated due to a grade 5 TEAEs, resulting in a patient’s

death at dose level 7 (47).
4 HER3-targeted ADCs

As a member of the EGFR family, human epidermal growth

factor receptor 3 (HER3) is found to be abnormally expressed in

various malignancies, including NSCLC (48). It triggers the

phosphorylation of receptor tyrosine residues by forming

homodimers or heterodimers with other EGFR members, thereby

activating multiple signaling pathways such as PI3K/AKT and

MAPK, leading ultimately to oncogenesis (49). Furthermore,

HER3 plays a crucial role in resisting EGFR TKIs and HER2-

targeted antibodies (50, 51). This underlines HER3’s potential as a

promising therapeutic target for ADC.
4.1 Patritumab deruxtecan

Patritumab deruxtecan is an ADC formed by conjugating a

humanized anti-HER3 monoclonal antibody (patritumab) to a

topoisomerase I inhibitor payload (DXd, exatecan derivative) via

a cleavable tetrapeptide linker, with DAR of 4 (52). Preclinical

studies indicated that patritumab deruxtecan exhibited robust anti-

tumor efficacy in the PDX model overexpressing HER3 via DXd-

mediated DNA damage and apoptosis without significant safety

concerns (52). In the phase 1 clinical trial (NCT03260491),

patritumab deruxtecan demonstrated significant clinical efficacy,

which it granted breakthrough therapy designation by the FDA for

the treatment of patients with metastatic or locally advanced,

EGFR-mutated NSCLC. This trial involved patients diagnosed

with locally advanced or metastatic EGFR-driven NSCLC, who

had previously undergone treatment with EGFR TKI and platinum-

based chemotherapy. Of the 57 patients receiving patritumab

deruxtecan, the ORR was 39%, with a mPFS of 8.2 months, and a

median duration of response (mDOR) of 6.9 months. Intriguingly,

responsiveness was also observed in patients exhibiting resistance to

EGFR TKI. It’s noteworthy that nearly all patients reported TEAEs

(96%), with 74% experiencing TEAEs of grade 3 or higher. ILD was

observed in 5 patients, one of which was of grade 3 (53). Given the

encouraging findings of the U31402-A-U102 investigation, the

HERTHENA-Lung program was initiated to more thoroughly

assess the safety and effectiveness of patritumab deruxtecan in

patients bearing EGFR-mutated NSCLC. HERTHENA-Lung01 is

a Phase 2 clinical trial (NCT04619004) aimed at evaluating the anti-

tumor activity of patritumab deruxtecan in subjects with metastatic

or locally advanced NSCLC and an activating EGFR mutant (exon

19 deletion or L858R). As of May 2023, a total of 225 patients have

received patritumab deruxtecan treatment, with an ORR of 29.8%,

mDOR of 6.4 months, mPFS of 5.5 months, and mOS of 11.9

months. Efficacy has been observed in patients with different HER3

expression levels, different EGFR TKI resistance mechanisms, and

those with brain metastases (54). Additionally, the HERTHENA-

Lung02 trial (NCT05338970), a Phase 3 trial, is currently ongoing in
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EGFR-mutated NSCLC patients who have progressed on an EGFR

TKI (55).
5 c-MET-targeted ADCs

c-MET (Mesenchymal-epithelial transition factor), also known

as hepatocyte growth factor receptor, is a receptor tyrosine-protein

kinase encoded by the MET gene. Upon ligand binding, c-MET can

initiate several signaling pathways including PI3K/AKT and

MAPK. These pathways are associated with tumor cellular

processes such as proliferation, migration, and invasion (56). In

NSCLC, variant forms of c-MET have been observed, including

mutant, amplifications, and overexpression (57–59). Notably, a

correlation has been established between c-MET amplification

and resistance to multiple TKIs (60). Consequently, c-MET has

been identified as a promising target in ADC development.
5.1 Telisotuzumab vedotin

Telisotuzumab vedotin is a novel ADC produced by

conjugating a humanized anti-c-MET monoclonal antibody

(ABT-700) to a microtubule inhibitor (MMAE) via a cleavable

linker and has a DAR of 3.1 (61). In preclinical studies,

telisotuzumab vedotin demonstrated significant tumor growth

inhibition and regression in cell lines and PDX models with c-

MET overexpression or MET amplification, by targeted delivery of

toxins (61). The FIH clinical trial of telisotuzumab vedotin

(NCT02099058) was performed on patients with advanced solid

tumors showing c-MET overexpression, aiming to evaluate the

drug’s safety, tolerability, pharmacokinetics, and maximum

tolerable dose. Notably, the results revealed that the response was

confined to NSCLC patients. Among the 16 c-MET+ NSCLC

patients treated with telisotuzumab vedotin, 3 demonstrated a PR,

mPFS of 5.7 months, and mDOR of 4.8 months. The RP2D was

established at 2.7 mg/kg every 21 days (62). In the following phase

1b trial, the combined efficacy of telisotuzumab vedotin and

erlotinib was assessed. The trial involved 42 patients, yielding an

overall ORR of 30.6%, and a mPFS of 5.9 months. Among the

patients with EGFR mutant (n = 28), the ORR was 32.1% (63).

However, in a different phase 2 clinical trial (NCT03539536),

telisotuzumab vedotin showed limited efficacy in patients with

EGFR mutant. In this trial, telisotuzumab vedotin was used as

monotherapy. The ORR was 35.1% for the EGFR WT cohort, while

the EGFR mutant cohort had an ORR of 13.3% (64). Overall, for the

treatment of c-MET+ NSCLC patients with EGFR mutant, the

combination of telisotuzumab vedotin and erlotinib might prove

more beneficial. Furthermore, the occurrence of TEAEs should be

given due attention. A phase 2 clinical trial (NCT03574753) in

patients with c-MET+ NSCLC, recording an ORR of 9% (2/23),

along with 3 fatal grade 5 pulmonary TEAEs (two instances of

pneumonia and one of bronchopulmonary hemorrhage) (65). In

addition, multiple telisotuzumab vedotin clinical trials

(NCT05513703, NCT04928846) are currently underway for

patients with advanced/metastatic NSCLC (66, 67).
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6 EGFR-targeted ADCs

Epidermal growth factor receptor (EGFR), a member of the

EGFR family, promotes tumor cell proliferation by activating

downstream PI3K/AKT, MAPK, and JAK/STAT signaling

pathways. Many malignant tumors, including NSCLC, have been

found to carry mutants and amplifications in the EGFR gene (68).

Presently, therapy targeting EGFR has been sanctioned as the first-

line standard for NSCLC with EGFR mutant (69). Nonetheless, the

vast preponderance of therapies targeting EGFR unavoidably

engenders resistance, which necessitates the extension of EGFR-

targeted therapies, with ADC emerging as a potential

candidate (70).
6.1 MRG003

MRG003, an EGFR-targeted ADC, consists of an anti-EGFR

monoclonal antibody conjugated to a microtubule-disrupting

compound, MMAE (71). The safety and antitumor activity of

MRG003 patients with either advanced or metastatic solid

malignancies were evaluated in a phase 1 clinical trial

(NCT04868344). Of 61 patients, 9 (14.7%) achieved PR and 17

(27.8%) documented SD. The recommended dose was determined

as 2.5 mg/kg. TEAEs occurred in 89% of the participants, with the

majority experiencing grade 1 or 2 AEs. 19 patients (31%) reported

grade 3 or higher TEAEs, including hyponatremia, leukocytopenia,

neutropenia, elevated aspartate aminotransferase levels, and febrile

neutropenia (71). In conclusion, MRG003 administration

demonstrated therapeutic potential in patients with EGFR+ solid

malignancies. Furthermore, a phase 2 study (NCT04838548)

examining the efficacy and safety of MRG003 in patients with

EGFR+ advanced NSCLC is currently ongoing. The sustained

promising tumor activity of MRG003 justifies further anticipation.
6.2 BL-B01D1

BL-B01D1 is a bispecific ADC targeting EGFR and HER3,

which induces cell cycle arrest in the S phase and subsequent

apoptosis, leading to kill EGFR+ and/or HER3+ tumor cells. It is

comprised of a bispecific antibody against EGFR/HER3 (SI-B001), a

cathepsin B cleavable linker, and a novel topoisomerase I inhibitor

(Ed-04), with a DAR of 8. Preclinical studies have shown that BL-

B01D1 exhibits tumor suppressive effects in PDX models using

human colorectal cancer cell lines and pancreatic cancer cell lines

(72). In an FIH phase 1 clinical trial (NCT05194982), 76 NSCLC

patients were evaluable for efficacy. The ORR in the subset of 34

NSCLC patients with EGFR mutant was observed to be 61.8% (CR:

15, PR: 6), while in the subgroup of 42 NSCLC patients with EGFR

WT, the ORR was 40.5% (CR: 7, PR: 10). The most frequent TEAEs

(>10%, all grade/≥ G3) were leukopenia (60%/30%), neutropenia

(51%/34%), anemia (45%/15%), thrombocytopenia (44%/19%),

alopecia (30%/0%), nausea (29%/<1%), vomiting (28%/0%),

asthenia (21%/<1%), decreased appetite (22%/<1%), asthenia
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(21%/<1%), hypophagia (16%/0%), diarrhea (15%/2%), mouth

ulceration (15%/<1%), rash (13%/0%). No cases of ILD were

observed (73). In addition, there are ongoing clinical trials of BL-

B01D1 as a single agent or combination therapy for metastatic or

unresectable, advanced or metastatic NSCLC (NCT05983432,

NCT05880706, and NCT05956587).
7 PTK7-targeted ADCs

The protein tyrosine kinase 7 (PTK7), also known as colon

carcinoma kinase 4 (CCK4), is a receptor protein tyrosine kinase

(74). Although PTK7 lacks catalytic activity within its kinase

domain, it plays significant roles in canonical and non-canonical

Wnt, as well as VEGF signaling (75). Additionally, PTK7 is highly

expressed in diverse cancer cells, particularly NSCLC. The

abnormal expression of PTK7, associated with multiple adverse

prognoses, suggests its potential as a therapeutic target for

NSCLC (76).
7.1 Cofetuzumab pelidotin

Cofetuzumab pelidotin is an ADC consisting of the anti-PTK7

monoclonal antibody cofetuzumab, conjugated to the microtubule

inhibitor (Aur0101) through a cleavable linker, exhibiting a DAR of

4. Upon binding and internalization into PTK7-expressing cells,

cofetuzumab pelidotin undergoes cleavage by intracellular

proteases, leading to the release of the auristatin payload. This

disrupts microtubules, induces G2-M phase cell cycle arrest, and

triggers cell apoptosis, ultimately resulting in the death of cancer

cells (77, 78). Preclinical studies have shown that treatment with

cofetuzumab pelidotin leads to sustained regression of tumors in

PDX models derived from patient samples, and it exhibits stronger

anti-tumor activity compared to standard chemotherapy (77). A

phase 1 clinical study (NCT02222922) involving patients with

advanced solid tumors reported that neutropenia of grade 3 or

above was experienced by 25% of participants. Two patients

encountered dose-limiting toxicities, presenting as a grade 3

headache and fatigue. Antitumor activity was observed in treated

NSCLC patients, where 6 out of 31 achieved PR, thus indicating an

ORR of 19%. The RP2D was 2.8 mg/kg every 3 weeks. It is worth

mentioning that patients with moderate or high expression levels of

PTK7 were more responsive (79). Another ongoing phase 1 clinical

trial (NCT04189614) is further investigating the effectiveness and

safety of cofetuzumab pelidotin in patients with recurring

PTK7+ NSCLC.
8 MSLN-targeted ADCs

Mesothelin (MSLN), a membrane-bound glycoprotein, is

typically expressed at low levels in normal tissues. Conversely,

there is observed overexpression of MSLN in various tumor cell

types, including NSCLC (80). Overexpressed MSLN can stimulate
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resistance to apoptosis by activating NFkB, MAPK, and PI3K

signaling pathways. This leads to enhanced cell proliferation,

migration, and metastasis via the induction of MMP7 and MMP9

activation and expression (81–83). Hence, MSLN emerges as a

promising potential therapeutic target for NSCLC.
8.1 Anetumab ravtansine

Anetumab ravtansine is an MSLN-targeted ADC, composed of

a monoclonal antibody (MF-T) coupled with a microtubule

inhibitor (DM4) via a reducible disulfide linker, exhibiting a DAR

of 3.2 (84). The FIH study (NCT01439152) involving 148 patients

with advanced or metastatic solid tumors, encompassing

mesothelioma, ovarian, pancreatic, NSCLC, and breast cancers,

SD was reported in 66 cases, including one with NSCLC.

Additionally, PR was observed in 11 patients, and a CR was

noted in one patient. The RP2D and schedule of anetumab

ravtansine was determined as 6.5 mg/kg every three weeks or 2.2

mg/kg per week (85). Subsequently, two distinct clinical trials

(NCT03455556, NCT02839681) were planned to determine the

efficacy of anetumab ravtansine in advanced MSLN+ NSCLC

patients. However, these trials were prematurely terminated due

to slow patient recruitment and insufficient accrual.
9 B7-H3-targeted ADCs

B7-H3, also referred as CD276, is a transmembrane

glycoprotein and belongs to the B7 ligand family. Although

expression levels of B7-H3 are minimal in normal tissues, they

markedly increase in a plethora of malignant tumors, including

NSCLC, which correlates with poor prognosis (86). B7-H3 can

instigate the migration and invasion of tumor cells, thereby

escalating the progression of cancer (87). Furthermore, B7-H3

exerts immunosuppressive effects by promoting the infiltration of

regulatory T cells within tumor tissues (88).
9.1 MGC018

MGC018 is an ADC composed of a B7-H3-targeted

monoclonal antibody conjugated to a DNA-alkylating payload

(duocarmycin) via a protease-cleavable linker with a DAR of 2.7.

Its MOA includes payload-mediated DNA damage and bystander

effects. In preclinical studies, antitumor activity was observed in

PDX models. In addition, it showed good pharmacokinetics and

safety in cynomolgus monkeys (89). In a phase 1/2 study

(NCT03729596) involving 115 patients with advanced solid

tumors, MGC018 demonstrated manageable safety and

noticeable efficacy. Out of 16 evaluable patients with NSCLC, 4

patients achieved PR, with an ORR of 25%. The RP2D was

determined as 3 mg/kg (90).
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10 Tissue factor-targeted ADCs

Tissue factor, a transmembrane glycoprotein, plays a crucial

role in the coagulation cascade and hemostasis under normal

conditions. High expression of tissue factor is observed in various

malignant tumors, including NSCLC. Its abnormal expression is

strongly associated with tumor growth, enhanced metastasis, and

poor prognosis (91).
10.1 Tisotumab vedotin (Tivdak)

Tisotumab vedotin is composed of the anti-tissue factor,

monoclonal antibody (TF-011) conjugated to the payload MMAE

via a protease-cleavable linker, with a DAR of 4.1 (92). Its main

MOA in vivo is auristatin-mediated tumor cell killing. In addition,

tisotumab vedotin has shown excellent anti-tumor activity in PDX

models derived from solid cancer patients with different tissue

factor expression levels, including models that showed tissue

factor expression in only 25% to 50% of the tumor cells (92). In

2021, tisotumab vedotin has been approved by the FDA for treating

patients with recurrent or metastatic cervical cancer. The FIH

clinical trial of tisotumab vedotin (NCT02001623) was conducted

in patients with advanced solid tumors. The RP2D was 2.0 mg/kg

every three weeks. During the dose-expansion phase of the trial, a

13.3% ORR was recorded in 2 out of 15 patients diagnosed with

NSCLC. The most frequent TEAEs (grade ≥ G3) included fatigue

(10%), anemia (5%), abdominal pain (4%), and hypokalemia (4%).

Notably, 69% of patients experienced epistaxis, potentially due to an

impairment in tissue factor-mediated coagulation (93).
11 AXL-targeted ADCs

AXL is a transmembrane receptor tyrosine kinase and forms

part of the TAM family (94). Upon activation, AXL stimulates

several oncogenic signaling pathways such as PI3K and JAK/STAT

(95). It plays an important role in promoting invasion and

migration of tumor cells. Moreover, there is a correlation between

AXL activation with resistance to EGFR-targeted treatments in the

NSCLC (96).
11.1 Enapotamab vedotin

Enapotamab vedotin is an ADC composed of AXL-targeted

monoclonal antibody (AXL-107) and a microtubule disrupting

agent, MMAE, connected by a protease-cleavable linker (97). In

preclinical studies, enapotamab vedotin exhibited significant single-

agent activity in PDX NSCLC models expressing AXL, EGFR

mutant, and EGFR inhibitor resistance (98). The FIH clinical trial

of enapotamab vedotin (NCT02988817) was conducted with

patients bearing relapsed or refractory solid tumors, recruiting a

total of 47 patients, including 8 diagnosed with NSCLC. The
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preliminary data indicated that PR was observed in 3 patients, one

of whom was diagnosed with NSCLC. The RP2D was determined as

2.2 mg/kg every three weeks (99). Phase 2a (expansion phase) of this

study, included 26 patients with NSCLC, void of sensitizing EGFR

mutant (EGFR WT) or ALK rearrangements (ALK-). The trial

recorded an ORR of 19%, along with a DCR of 50%. 75% (9 of 12)

evaluable fresh biopsies tested positive for AXL tumor cell

staining (100).
12 NaPi2b-targeted ADCs

Sodium-dependent phosphate transport protein 2B (NaPi2b) is

encoded by SLC34A2, which has been recognized to play a

significant role in the regulation of tumor development (101).

Studies have indicated elevated expression of NaPi2b in diverse

cancers, especially notable in lung cancer patients exhibiting TTF1

positivity along with mutants in KRAS and EGFR (102). Such

characteristics make it an appealing target for the development

of ADC.
12.1 Lifastuzumab vedotin

Lifastuzumab vedotin is an ADC composed of anti-NaPi2b

mAb (MNIB2126A) and a potent microtubule inhibitor (MMAE).

Preclinical studies demonstrated that lifastuzumab vedotin

exhibited significant anti-tumor efficacy in mouse models of

ovarian cancer and the NSCLC PDX model, and it also showed

acceptable safety in animal studies (103). In a phase 1a clinical trial

(NCT01363947) involving patients with NSCLC and platinum-

resistant ovarian cancer (PROC), 4 out of 51 NSCLC patients

achieved PR, resulting in an ORR of 8%. The dose of 2.4 mg/kg

was established as the RP2D. Lifastuzumab vedotin has limited

efficacy in patients with NSCLC but is promising in patients with

PROC, with an ORR of 46%. The most common AEs of any grade

were fatigue (59%), nausea (49%), decreased appetite (37%),

vomiting (32%), and peripheral sensory neuropathy (29%). The

most common TEAEs (grade ≥ 3) were neutropenia (10%), anemia

(3%), and pneumonia (3%) (104). Additionally, another phase 1

clinical trial (NCT01995188) is ongoing, also in patients with

NSCLC and PROC.
12.2 XMT-1536

XMT-1536 is an ADC composed of a humanized anti-NaPi2B

antibody conjugated to the payload AF-HPA with a high DAR of

10-15. AF-HPA is a cell-permeable anti-mitotic compound that

slowly metabolizes into a highly low-permeable metabolite called

auristatin F (AF) within the tumor, resulting in controlled

bystander killing. The antitumor effect of XMT-1536 has been

observed in preclinical studies using in vivo and in vitro models

of adenocarcinoma, ovarian cancer, and lung cancer (105).

Pharmacokinetic analysis showed approximately proportional

increases in exposure in rats and monkeys. Systemic-free AF-
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HPA and AF concentrations were observed to be low in all

animal species. The clinical activity of XMT-1536 is being

evaluated in a phase 1/2 clinical trial (NCT03319628) involving

patients with NaPi2b+ ovarian cancer and NSCLC. However, a

separate clinical trial (NCT04396340) was terminated (106).
13 CEACAM5-targeted ADC

Carcinoembryonic antigen-related cell adhesion molecule 5

(CEACAM5), a cell surface glycoprotein, is typically expressed at

low levels in the majority of normal tissues. However, its expression

is significantly elevated in various tumors, notably those in the

gastrointestinal tract, breast, and lung (107). Approximately 20% of

patients diagnosed with NSCLC show overexpression of

CEACAM5 (108). Thus, the deployment of ADCs targeting

CEACAM5 could potentially exhibit promise for treating patients

with NSCLC.
13.1 Tusamitamab ravtansine

Tusamitamab ravtansine is a CEACAM5-targeted ADC consisting

of a humanized monoclonal antibody and a maytansinoid agent

(DM4). It exerts anti-tumor activity by inhibiting tubulin

polymerization through the action of DM4. Preclinical studies

demonstrated the in vitro cytotoxicity and in vivo efficacy of

tusamitamab ravtansine in a PDX model, as well as its safety profile

in monkeys (109). A phase 2 clinical trial (NCT02187848) evaluated

the efficacy and safety of tusamitamab ravtansine in patients with

CEACAM5+ non-squamous NSCLC. This study enrolled a total of 92

individuals, of which 28 exhibited moderate IHC expression and 64

had high expression. The respective ORRs for moderate and high

expression stood at 7.1% and 20.3%. Grade 3 or greater TEAEs

occurred in 47.8% of patients, with 15.2% of them being assessed as

drug-related (110). Additionally, tusamitamab ravtansine is currently

under investigation in several ongoing clinical trials involving NSCLC

patients, namely NCT04394624, NCT04524689, NCT05245071, and

NCT04154956 (108, 111–113).
14 ROR2-targeted ADCs

Tyrosine-protein kinase transmembrane receptor (ROR2), a

transmembrane protein receptor, is a member of the tyrosine kinase-

like orphan receptor family. Despite lacking kinase function, it interacts

with the non-canonicalWnt signalling (114). Research has demonstrated

that ROR2 is significantly expressed in a range of malignant tumors,

including NSCLC, and correlated with poor prognosis. It could

potentially serve as a target for NSCLC treatment (115).
14.1 Ozuriftamab vedotin

Ozuriftamab vedotin is a novel ADC that consists of an anti-

ROR2 monoclonal antibody conjugated to MMAE via a cleavable
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TABLE 1 Efficacy of ADCs for NSCLC.

Target Agent Phase
Clinical
trial ID

Patient
Efficacy Adverse events Reference

Trop2

Sacituzumab
govitecan

1/2 NCT01631552 47 ORR: 19%

Grade 3 or higher AEs were experienced
by 5% of the patients, including diarrhea
(7%), nausea (7%), fatigue (6%), and
neutropenia (28%)

(14)

2 NCT06055465 – – – –

2 NCT05186974 61

Sacituzumab
govitecan

combined with
pembrolizumab.

ORR: 56%

The most common any-grade TEAEs
were diarrhea (54%), anemia (48%), and
asthenia (38%)

(16)

3 NCT05089734 – – – (122)

3 NCT05609968 – – – –

Datopotamab
deruxtecan

1 NCT03401385 180

ORR:24.4% (12/
50, 4 mg/kg; 13/
50, 6 mg/kg; 19/
80, 8 mg/kg)

Grade ≥ 3 AEs in 47% of patients. TEAEs
seen in ≥30% of patients included (all
grade, grade ≥ 3) nausea (52%, 1%),
stomatitis (48%, 2%), alopecia (39%, 0%),
fatigue (32%, 1%), decreased neutrophil
count/neutropenia (6%, 1%), diarrhea
(16%, 0%), and ILD (11%, 2%)

(18)

1 NCT04612751 – – – –

1 NCT04526691 132

Datopotamab
deruxtecan plus
pembrolizumab
with or without
chemotherapy
(49%, n = 71;
38%, n = 61)

Grade 3 or higher TEAEs occurred in
53% and 76% of patients in the two
groups who received doublet or
combination chemotherapy, respectively

(20)

1/2 NCT05460273 – – – –

2 NCT03944772 – – – –

2 NCT04940325 – – – –

2 NCT04484142
137 (56.9% had
EGFR mutant)

ORR: 35.8%
(EGFR mutant
cohorts: 43.6%)

The most common grade ≥ 3 TEAEs were
stomatitis (9.5%), anemia (5.8%), and
increased amylase (5.8%)

(21)

3 NCT04656652 299 ORR: 26.4%
The most common any grade TEAEs
were stomatitis (49.2%) and nausea (37%)

(19)

3 NCT05555732 – – – (123)

3 NCT05215340 – – – (124)

SKB264

1/2 NCT04152499 39

ORR: 44%
(EGFR WT
cohorts: 26%,
TKI resistant
EGFR mutant
cohorts: 60%)

The most commonly observed grade ≥ 3
TEAEs, experienced by at least 5% of
patients, consisted of d neutrophil count
decreased (32.6%), anemia (30.2%), white
blood cell count decreased (23.3%),
stomatitis (9.3%), rash (7.0%), and
lymphocyte count decreased (7.0%).
Grade 4 TEAEs occurred only for
neutropenia and white blood cell
count decreased

(24)

2 NCT05816252 – – – –

2 NCT05351788 – – – –

3 NCT05870319 – – – –

LCB-84 1/2 NCT05941507 – – – (125)

(Continued)
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TABLE 1 Continued

Target Agent Phase
Clinical
trial ID

Patient
Efficacy Adverse events Reference

BL-M02D1 1/2 NCT05949619 – – – –

HER2

Trastuzumab
emtansine

2 NCT02675829 49
ORR: 51%
(25/49)

TEAEs with total frequencies of greater
than 10%, and no grade 4 or 5 AEs.
Notable TEAEs included elevated levels of
AST or ALT (63%), thrombocytopenia
(31%), fatigue (16%), nausea (29%),
infusion reactions (14%), anorexia (10%),
and anemia (10%)

(28)

Terminated UMI000019446 15
ORR: 6.7%
(1/15)

Grade 3 or 4 AEs included
thrombocytopenia (40%) and
hepatotoxicity (20%) without any TEAEs

(30)

2 NCT02289833 49
ORR: 8% (IHC
2+: 0%, 4 IHC

3+: 20%)

Forty-five patients (92%) reported an AEs,
and ten patients reported grade 3 AEs. Of
AEs of particular interest in trastuzumab
emtansine–treated patients, 1 event each
of grade 3 thrombocytopenia and
infusion-related reaction/
hypersensitivity occurred

(31)

Trastuzumab
deruxtecan

2 NCT03505710

42
(HER2
mutant)

ORR: 61.9%
(CR: 1, PR: 25)

All patients (42/42) had TEAEs; 64.3%
were grade ≥ 3 (52.4% drug-related),
including neutrophil count decreased
(26.2%) and anemia (16.7%). There were
5 cases (11.9%) of drug-related ILD (all
grade 2, no grade ≥ 3)

(34)

49
(HER2

overexpression)

ORR: 24.5%
(CR: 1, PR: 11)

All patients had ≥ 1TEAEs; the most
common any-grade TEAEs were nausea
(59.2%), decreased appetite (38.8%), and
fatigue (32.7%). Grade ≥ 3 TEAEs were
reported in 73.5% of patients (55.1%
drug-related); the most common were
decreased neutrophil count (20.4%) and
fatigue (10.2%). There were 8 cases
(16.3%) of drug-related ILD (grade 1, n =
2; grade 2, n = 3; grade 5, n = 3)

Trastuzumab
botidotin

1/2 NCT03602079 – – – (38)

1 CTR20181301 – – – (40)

SHR-A1811
1/2 NCT04818333

50
(HER2
mutant)

ORR: 40%

All patients had TEAEs. 42% of patients
experienced grade ≥ 3 TEAEs, with the
most common ones being decreased
neutrophil count (30%), white blood cell
count decreased (20%), anemia (16%),
and thrombocytopenia (12%). Nine
patients (18%) had serious AEs deemed
related to SHR-A1811. Treatment
discontinuation due to AEs was reported
in two patients. One death was reported
to be treatment-related (ILD).

(43)

1/2 NCT05482568 – – – –

XMT-1522 Terminated NCT02952729 – – – (46)

Disitamab
vedotin

2 NCT05847764 – – – –

2 NCT06003231 – – – –

Trastuzumab
vedotin

2 NCT05141786 – – – –

ADCT-502 1 NCT03125200 – – – –

(Continued)
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TABLE 1 Continued

Target Agent Phase
Clinical
trial ID

Patient
Efficacy Adverse events Reference

HER3

Patritumab
deruxtecan

1 NCT03260491 57 ORR: 39%

Grade ≥ 3 TEAEs were reported in 74%
of patients. The most common grade ≥ 3
TEAEs were hematologic toxicities. Five
patients were observed to have ILD, one
of which was of grade 3

(53)

1 NCT04676477 – – – (126)

2 NCT04619004
225

(HER2
mutant)

ORR: 29.8% – (54)

2 NCT05865990 – – – –

3 NCT05338970 – – – (55)

– NCT06099639 – – – –

YL-202 1 NCT05653752 – – – –

c-MET

Telisotuzumab
vedotin

1

NCT02099058

16
ORR: 18.8%

(PR: 3)
– (62)

1 42

Telisotuzumab
vedotin in
combination
with erlotinib.
ORR: 30.6%

(ORR of 32.1%
in EGFR

mutant cohorts)

Grade ≥ 3 TEAEs occurred in 13 patients
(31%); the most frequently occurring were
hypophosphatemia and peripheral sensory
neuropathy (7% each). 3 of 42 patients
(7%) reported ≥ 1 serious TEAEs:
decreased appetite, dehydration,
hemoptysis, peripheral neuropathy, and
pneumonia (2% each)

(63)

2 NCT03539536 88

ORR: 23%
(EGFR WT

cohort: 35.1%,
EGFR mutant
cohorts: 13.3%)

Grade 3 or higher AEs occurred in 50/113
(44%) patients, with most common (≥
2%) being malignant neoplasm
progression (6.2%), pneumonia (5.3%),
hyponatremia (4.4%), anemia (2.7%),
dyspnea (2.7%), fatigue (2.7%), increased
GGT (2.7%), peripheral sensory
neuropathy (2.7%), and pneumonitis
(2.7%). Grade 5 TEAEs were sudden
death, dyspnea, and pneumonitis (1
event each)

(64)

2 NCT05513703 – – – (66)

3 NCT04928846 – – – (67)

Terminated NCT03574753 – ORR: 9%
3 fatal grade 5 pulmonary TEAEs (two
instances of pneumonia and one of
bronchopulmonary hemorrhage)

(65)

RC108 1/2 NCT05821933 – – – –

REGN5093-
M114

1/2 NCT04982224 – – – (125)

MYTX-011 1 NCT05652868 – – – (127)

EGFR

MRG003
1 NCT04868344 – – – (71)

2 NCT04838548 – – – –

AVID100 1/2 NCT03094169 – – – –

CPO-301 1 NCT05948865 – – – –

AZD-9592 1 NCT05647122 – – – (128)

EGFR,
HER3

BL-B01D1 1 NCT05194982 76
ORR: 50%
(EGFR WT

cohorts: 40.5%,

The most common TEAEs (>10%, all
grade/≥3) were leukopenia (60%/30%),
neutropenia (51%/34%), anemia (45%/

(73)

(Continued)
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TABLE 1 Continued

Target Agent Phase
Clinical
trial ID

Patient
Efficacy Adverse events Reference

EGFR mutant
cohorts: 61.8%)

15%), thrombocytopenia (44%/19%),
alopecia (30%/0%), nausea (29%/<1%),
vomiting (28%/0%), asthenia (21%/<1%),
decreased appetite (22%/<1%), asthenia
(21%/<1%), hypophagia (16%/0%),
diarrhea (15%/2%), mouth ulceration
(15%/<1%), rash (13%/0%). No ILD
was observed.

1 NCT05983432 – – – –

2 NCT05880706 – – – –

2 NCT05956587 – – – –

EGFR,
MUC1

M-1231 1 NCT04695847 – – – (129)

PTK7
Cofetuzumab
pelidotin

1 NCT02222922 31
ORR: 19%
(PR: 6)

The most common TEAEs were nausea,
alopecia, fatigue, headache, neutropenia,
and vomiting (45%–25%); 25% of patients
had grade ≥ 3 neutropenia

(79)

1 NCT04189614 – – – –

MSLN
Anetumab
ravtansine

1 NCT01439152 2
1 patient

achieved SD
– (85)

Terminated NCT03455556 – – – –

Terminated NCT02839681 – – – –

B7-H3 MGC018 1/2 NCT03729596 16
ORR: 25%
(PR: 4)

– (90)

B7-H4 SGN-B7H4V 1 NCT05194072 – – – (130)

Tissue
factor

Tisotumab
vedotin

1/2 NCT02001623 15 ORR: 13.3%

The most frequent TEAEs (grade ≥ 3)
included fatigue (10%), anemia (5%),
abdominal pain (4%), and
hypokalemia (4%)

(93)

XB-002 1 NCT04925284 – – – (131)

AXL

Enapotamab
vedotin

1

NCT02988817

8
1 patient

achieved PR
– (99)

2 26 ORR: 19%

Grade ≥ 3 TEAEs occurred in 12 patients,
with the most common being
gastrointestinal disorders in eight patients
(constipation, n=1; colitis, diarrhea,
nausea, vomiting, n=2 each; abdominal
distension, n=1)

(100)

Mecbotamab
vedotin

2 NCT04681131 – – –

NaPi2b

Lifastuzumab
vedotin

1 NCT01363947 51
ORR: 8%
(PR: 4)

The most common AEs of any grade were
fatigue (59%), nausea (49%), decreased
appetite (37%), vomiting (32%), and
peripheral sensory neuropathy (29%). The
most common TEAEs (grade ≥ 3) were
neutropenia (10%), anemia (3%), and
pneumonia (3%).

(104)

1 NCT01995188 – – – –

XMT-1536
1/2 NCT03319628 – – – (106)

Terminated NCT04396340 – – – –

XMT-1592 1/2 NCT04396340 – – – –

(Continued)
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TABLE 1 Continued

Target Agent Phase
Clinical
trial ID

Patient
Efficacy Adverse events Reference

CEACAM5
Tusamitamab
ravtansine

2 NCT02187848 92
ORR: 16%
(PR: 15)

The most frequent TEAEs (all grades)
were asthenia (38.0%), keratopathy/
keratitis (38.0%), peripheral neuropathy
(26.1%), dyspnea (23.9%), and diarrhea
(22.8%). Grade ≥ 3 TEAEs occurred in
47.8% of patients and were assessed as
drug-related in 15.2%

(110)

2 NCT04394624 – – – (113)

2 NCT04524689 – – – (112)

2 NCT05245071 – – – (111)

3 NCT04154956 – – – (108)

ROR1
Zilovertamab

vedotin
2 NCT04504916 – – –

ROR2
Ozuriftamab

vedotin

2 NCT04681131 – – – (116)

2 NCT03504488 – – – –

ITGB6 SGN-B6A
1 NCT04389632 27

ORR: 33.3%,
CR: 2, PR: 7

TEAEs occurred in 88.5% of patients:
50.7% were grade ≥ 3 (21.6% related), and
37.2% were serious (8.1% related). The
most common TEAEs was fatigue
(35.1%). Moderate neutropenia (8.1%)
was the most frequently observed TEAEs
grade ≥ 3

(121)

3 NCT06012435 – – – –

FOLR1

Farletuzumab
ecteribulin

1 NCT03386942 4
ORR: 50%
(PR: 2)

– (132)

2 NCT05577715 – – – (133)

PRO-1184 1/2 NCT05579366 – – – (134)

TfR1 CX-2029 1/2 NCT03543813 9
ORR: 22.2%

(PR: 2)
– (135)

CD25
Camidanlumab

tesirine
1 NCT03621982 – – – –

CD166 CX-2009 1/2 NCT03149549 – – – (136)

CD228 SGN-CD228A 1 NCT04042480 – – – (137)

LIV-1
Ladiratuzumab

vedotin
2 NCT04032704 – – – –

EphA2 MM-310 1 NCT03076372 – – – (138)

ASCT2 MEDI-7247 1 NCT03811652 – – – –

5T4 PF-06263507 1 NCT01891669 – – – –

HER2,
TLR8

SBT6050
1 NCT04460456 – – – –

1/2 NCT05091528 – – – (139)

HER2,
STING

XMT-2056 1 NCT05514717 – – – –

CCR2,
STING

TAK-500 1 NCT05070247 – – – (140)
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linker. Preclinical data suggest targeting ROR2 may result in

antitumor activities in various tumor types, such as NSCLC.

Multiple clinical trials for NSCLC are currently underway for

ozuriftamab vedotin. The phase 2 clinical trial, NCT04681131,

aims to assess the clinical efficacy of ozuriftamab vedotin as a

single agent or in combination with nivolumab in patients with

advanced solid tumors, including NSCLC (116). NCT03504488 is a

phase 1/2 clinical trial evaluating the safety and efficacy of

ozuriftamab vedotin in patients with NSCLC, TNBC, head and

neck cancer, and melanoma.

15 ITGB6

Integrin subunit beta 6 (ITGB6) is an integrin protein

heterodimer composed of an av subunit and a b6 subunit.

Normally, the expression of ITGB6 is low or absent in the

epithelial cells of healthy tissues. However, its expression is

increased during tissue repair and embryogenesis (117).

Furthermore, studies have confirmed the overexpression of ITGB6

in various cancers, including NSCLC, which is associated with poor

prognosis (118). Failure of ITGB6-based signaling mechanisms can

result in abnormal cell division, adhesion, and migration,

consequently contributing to tumorigenesis and metastasis (119).
15.1 SGN-B6A

SGN-B6A is an ITGB6-targeted ADC with MMAE as the

payload. SGN-B6A exhibits anti-tumor activity through MMAE-
Frontiers in Immunology 14
mediated cytotoxicity, bystander effects, and immunogenic cell

death. In preclinical studies, the antibody component of SGN-

B6A specifically targets ITGB6, without binding to other members

of the alpha-V family, and exhibits in vivo activity in models of

NSCLC, pancreatic cancer, pharyngeal cancer, and bladder cancer

(120). FIH phase 1 clinical trial (NCT04389632) is assessing the

clinical activity of SGN-B6A in patients with advanced solid

tumors. Out of the 27 patients with NSCLC who received

treatment, 2 achieved CR and 7 achieved PR, resulting in an ORR

of 33.3%. TEAEs occurred in 88.5% of patients: 50.7% were grade ≥

3 (21.6% related), and 37.2% were serious (8.1% related). The most

common TEAEs was fatigue (35.1%). Moderate neutropenia (8.1%)

was the most frequently observed TEAEs grade ≥ 3 (121).

Furthermore, another phase 3 clinical trial (NCT06012435) to

evaluate the efficacy of SGN-B6A in patients with previously

treated NSCLC is ongoing.
16 Conclusions and perspectives

ADCs, that are able to combine targeted therapy and cytotoxic

chemotherapy, have demonstrated promising antitumor efficacy in

preclinical and clinical trials, introducing a new treatment modality

for advanced NSCLC patients (Table 1). Compared to conventional

molecular targeted agents, ADCs offer an improved therapeutic

index and have demonstrated more favorable clinical outcomes in

certain NSCLC clinical trials (NCT04152499) (24, 141, 142).

Despite the promising potential of ADCs in NSCLC therapy, the

issue of drug resistance poses a significant challenge. For instance,
FIGURE 1

The efficacy data (ORR) of different ADCs for the treatment of NSCLC (limited to ADCs with published clinical results). Trastuzumab deruxtecan, as a
monotherapy, has the highest ORR of 61.9%. Sacituzumab govitecan combined with pembrolizumab demonstrates an ORR of 56%. Bispecific ADC
serves as another promising therapeutic modality, with BL-B0D1 demonstrating an ORR of 50% in NSCLC patients. The fill color of the circle
represents different targets for NSCLC. The sizes of the circles represent the number of evaluable patients with NSCLC.
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telisotuzumab vedotin exhibits promising clinical activity for c-

MET-positive NSCLC patients yet it provides limited clinical

efficacy, with an ORR of merely 13.3%, in NSCLC patients with

mutant EGFR (62, 64). EGFR mutations may be a one way through

which cancer cells can escape the cytotoxic effects of telisotuzumab

vedotin. Resistance to ADC may occur via multiple mechanisms:

loss of internalization pathways preventing ADC internalization

and transport; reduced lysosomal proteolysis or loss of lysosomal

transporter function restraining linker cleavage and payload release

within tumor cells; the upregulation of ATP-binding cassette

transporter causing the direct transport and efflux of payload; the

inactivation of pro-apoptotic proteins (Bak and Bax) or

overexpression of anti-apoptotic proteins (Bcl-2 and Bcl-XL)

leading to dysregulation of apoptotic pathways (142, 143). The

mechanisms contr ibut ing res is tance in NSCLC need

further investigation.

Combinations with other antitumor agents or use of multi-

specific ADCs targeting different antigens may be alternative

approaches to overcome resistance in NSCLC treatments

(Figure 1). For example, the combination of telisotuzumab

vedotin with erlotinib resulted in an ORR of 32.1% among

NSCLC patients with EGFR mutation, significantly surpassing the

ORR observed with telisotuzumab vedotin monotherapy (63). The

combination of ADCs with immune checkpoint inhibitors (ICIs)

has also exhibited powerful tumor-killing activity. For instance, the

combination of sacituzumab govitecan and pembrolizumab showed

promising clinical activity as a first-line treatment for metastatic

NSCLC (Figure 1). The next aspect to consider for future research is

how to optimize the risk-benefit profiles of ADCs in NSCLC

patients. Some target antigens for NSCLC ADCs, such as Trop2,

are widely expressed in normal tissues, which potentially leads to

excessive exposure of normal tissues and can result in

unmanageable toxicity. Therefore, the ongoing quest to discover

more effective and safer ADCs that have advantageous tumor-

specificity in NSCLC remains a critical focus for future research.
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Glossary

ADCs antibody-drug conjugates

AEs adverse events

c-MET mesenchymal-epithelial transition factor

CR complete response

DCR disease control rate

EGFR epidermal growth factor receptor

FIH first-in-human

FDA Food and Drug Administration

HER2 human epidermal growth factor receptor 2

HER3 human epidermal growth factor receptor 3

ICI immune checkpoint inhibitor

ITGB6 Integrin subunit beta 6

ILD interstitial lung disease

LSCD limbal stem cell deficiency

MOAs mechanism of action

mDOR median duration of response

mOS median overall survival

PFS median progression-free survival

MSLN mesothelin

mTNBC metastatic triple-negative breast cancer

MMAE monomethyl auristatin E

NCCN National Comprehensive Cancer Network

NSCLC non-small cell lung cancer

NaPi2b sodium-dependent phosphate transport protein 2B

ORR objective response rate

PR partial response

PDX patient-derived xenografts

PROC platinum-resistant ovarian cancer

PTK7 protein tyrosine kinase 7

RP2D recommended phase 2 dose

SD stable disease

TEAEs treatment emergent adverse events

Trop2 trophoblast cell surface antigen 2

TKIs tyrosine kinase inhibitors

ROR2 Tyrosine-protein kinase transmembrane receptor
F
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