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Mechanism-guided fine-tuned
microbiome potentiates anti-
tumor immunity in HCC
Tao Liu †, Ya Guo †, Yanxia Liao and Jinping Liu*

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research
Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
Microbiome, including bacteria, fungi, and viruses, plays a crucial role in

shaping distal and proximal anti-tumor immunity. Mounting evidence

showed tha t commensa l m ic rob iome cr i t i ca l l y modu la te s

immunophenotyping of hepatocellular carcinoma (HCC), a leading cause

of cancer-related death. However, their role in anti-tumor surveillance of

HCC is still poorly understood. Herein, we spotlighted growing interests in

how the microbiome influences the progression and immunotherapeutic

responses of HCC via changing local tumor microenvironment (TME) upon

translocating to the sites of HCC through different “cell-type niches”.

Moreover, we summarized not only the associations but also the deep

insight into the mechanisms of how the extrinsic microbiomes interplay

with hosts to shape immune surveillance and regulate TME and

immunotherapeutic responses. Collectively, we provided a rationale for a

mechanism-guided fine-tuned microbiome to be neoadjuvant

immunotherapy in the near future.
KEYWORDS

HCC TME, immunotherapy, microbiome, bacteria, fungi, viruses, cell-type niche,
microbe-host interplay
1 Introduction

Liver cancer is a substantial global health issue, ranking fourth in cancer-related

deaths and sixth in incident cases worldwide (1). Primary liver cancer, specifically

hepatocellular carcinoma (HCC), is the most common type, accounting for numerous

cancer-related deaths globally. The 5-year relative survival rate for HCC is only 18%

worldwide, which is even lower in China (12.5%) (2, 3). HCC often develops from

chronic liver diseases, such as hepatitis B and C virus infections, alcohol abuse, and fatty

liver disease (2, 4). These factors can lead to hepatitis, which may irreversibly progress to

HCC (5). In recent years, there have been advancements in the early diagnosis of HCC,

which is crucial in preventing mortality (3). Currently, most liver cancer patients are
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diagnosed at an advanced stage, resulting in a high mortality rate.

Traditionally, ultrasonographic (US) surveillance and serological

assessment of alpha-fetoprotein (AFP) have been used for early-

stage diagnosis of HCC (6). However, the specificity and sensitivity of

US/AFP are inadequate for detecting HCC in its early stages.

Nevertheless, a breakthrough study by Liu et al. utilized the

VirScan method to identify a novel virus exposure signature that

serves as an effective cancer biomarker for early-onset HCC (7).

Notably, this new biomarker outperformed AFP significantly.

Therefore, these recent technological advancements offer promising

prospects for early detection of HCC, which is essential for improving

patient outcomes.

As we all know, human skin and mucosal tissue are colonized

by numerous microbiome, which can be functionally divided into

three categories: symbiotic, probiotic, and pathogenic microbiome.

Approximately 4 × 1013 microbial cells spanning ~3 × 103 species

inhabit the human body. Most (97%) of them are bacteria in the

colon, and the fungi only represent 0.1%–1% (8). This microbiome

maintains a dynamic balance with human tissues and has various

functions, including metabolism (9), biological barrier maintenance

(10), and immune regulation (11). Furthermore, commensal

microbiome can influence the development of several diseases,

such as obesity (12), diabetes (13), hypertension (14),

inflammatory bowel disease (15), liver disease (16), cancer (8, 17),

neurological disease (18), and autoimmune disease (19). Some

studies suggest that microbiome can affect the host’s biological

clock and are considered vital immune organs (20, 21).

Recent pan-cancer studies have demonstrated a close

association between bacteria, fungi, and cancer (22–25).

Researchers analyzed genomic and transcriptomic data from The

Cancer Genome Atlas of 33 cancer types and identified unique

microbial signatures in tissues and blood samples (22). Another

study employed bacterial 16s rRNA gene PCR technology and

visualization techniques to characterize the bacterial presence in

tumor tissues. They found distinct microbiome compositions in

each cancer type, and the intratumoral bacteria are mostly

intracellular and are present in both cancer and immune cells

(23). Similarly, the study analyzed the cancer mycobiome across

35 cancer types and observed differences in fungal composition. The

presence of fungi within tumors were confirmed by histological

staining, often in proximity to cancer cells and macrophages (24).

Specifically, gastrointestinal tumors were associated with Candida

species, Saccharomyces cerevisiae, and Cyberlindnera jadinii, while

lung and breast tumors showed abundant Blastomyces and

Malassezia species, respectively. Gastric cancer exhibited

increased expression of pro-inflammatory immune pathways

linked to Candida presence (25). Tumor-associated microbiome

can be found in various locations, including blood vessels,

intestines, and tumor tissues. Collectively, the intracellular

microbiomes were most likely found in the different cell type

niches, such as localized within tumor cells and macrophages.

Moreover, commensal microbiome can affect the effectiveness of

cancer immunotherapy and chemotherapy (26). For instance, in

patients who received immune checkpoint inhibitor anti-

programmed cell death 1 protein (PD-1) immunotherapy, there

were significant differences in the intestinal microbiome of
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composition (27). At the same time, fecal bacterial transplantation

(FMT) combining immune checkpoint inhibitors has been clinically

used in the treatment of refractory melanoma patients. Further studies

have found that FMT changes the tumor microenvironment and

enhances immune cell infiltration in melanoma patients. In short,

FMT overcomes resistance to anti-PD-1 immunotherapy in advanced

melanoma patients (28, 29). Recent, a mouse melanoma study

identified a bacterium, C. cateniformis, that enhances anti-tumor

immunity by downregulating PD-L2 expression and its binding

partner, RGMb (30).

This review encompasses microbial alterations in liver cancer

patients, the impact of commensal microbiome on liver cancer

development, and their role in cancer immunotherapy. Based on

these findings, potential recommendations are proposed for

microbiome intervention in HCC immunotherapy.
2 Microbial characteristics of HCC

2.1 Bacteria reshape anti-tumor immunity
in HCC

From the summary of existing studies (Table 1), it is evident

that there is a close relationship between the commensal

microbiome of the host and the occurrence and development of

HCC. Most of the research has focused on fecal samples. Data on

serum samples and liver tumor tissue samples also exist.

In a study comparing the gut microbiome of elderly HCC patients

and healthy individuals using next-generation sequencing of fecal

samples, both a diversity and b diversity were statistically different.

At the genus level, several bacterial groups, including A.Blautia,

Fusicatenibacter, Anaerostipes, Lachnospiraceae_ND3007_group,

CAG-56, Eggerthella, Lachnospiraceae_FCS020_group, and Olsenella

were significantly decreased in the HCC group compared to the

control group. Conversely, the abundance of E. coli-Shigella,

Fusobacterium, Megalococcus, Veillonella, Tyzzerella_4, Prevotella_2,

and Cronobacter was significantly increased in the HCC group (31).

Furthermore, the composition of bacteria in the serum of liver cancer

patients differs from that of cirrhosis patients (32). Pseudomonas was

found to be significantly reduced in HCC, whereas Staphylococcus,

Acinetobacter, Klebsiella, and Trabulsiella were significantly enriched.

The presence of intratumoral microbiome in HCC tumor tissues is of

increasing concern (33), and significant differences in microbial

composition have been observed between liver cancer tissues and

para-cancerous tissues. Notably, the microbial diversity in liver

tumor tissues is significantly higher than in para-cancerous tissues.

The abundance of Enterobacteriaceae, Fusobacteria, Neisseria, and

other microbiome in HCC tissues is considerably higher, while

certain anti-tumor bacteria, such as Pseudomonas spp., is decreased.

Ninety percent of HCC cases arise from cirrhosis, during which

liver cells undergo chronic cycles of necrosis and regeneration (42).

Compared with patients with cirrhosis (34), those with early-stage

liver cancer caused by cirrhosis showed increased intestinal

microbiome diversity. Specifically, phylum Actinobacteria was

significantly increased in early HCC. Correspondingly, 13 genera,
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TABLE 1 Bacterial and fungal dysbiosis in HCC patients.

Category Up Down Sample Reference

HCC/HC

Escherichia-Shigella
Fusobacterium
Megasphaera
Veillonella
Tyzzerella_4
Prevotella_2
Cronobacter

A Blautia
Fusicatenibacter
Anaerostipes

Lachnospieaceae_ND3007_group
CAG-56,Eggerthella

Lachnospiraceae_FCS020_group
Olsenella

Feces (31)

HCC/HC

Staphylococcus
Acinetobacter
Trabulsiella
Klebsiella

Pseudomonas Serum (32)

HCC/para-carcinoma-tissue
Enterobacteriaceae
Fusobacterium

Neisseria
Pseudomonas HCC tissue (33)

HCC/cirrhosis

Gemmiger
Parabacteroides
Paraprevotella
Klebsiella

Haemophilus

Ruminococcus
Oscillibacter

Faecalibacterium
Clostridium IV
Coprococcus
Akkermansia

Feces (34)

HCC/without-HCC
Erysipelotrichaceae

Odoribacter
Butyricimonas

Leuconostocaceae
Fusobacterium

Lachnospiraceae family
genus Dorea

Feces (35)

HCC/LC&HC Enterobacter ludwigii Feces (36)

HCC stage I/HC

Actinomyces, Atopobium,
Desulfococcus, Enterobacter,

Paraprevotella, Planctomycetes,
Prevotella, Veillonella

Acidaminococcus,
Cetobacterium,
Coprobacillus,
Pyramidobacter,
Turicibacter

Feces (37)

HCC stage II/HC

Desulfococcus,Enterobacter,
Lactococcus, Leptotrichia,

Paraprevotella,
Planctomycetes,

Prevotella, Veillonella

Anaerotruncus
Cetobacterium

HCC stage III/HC

Actinomyces, Atopobium,
Desulfococcus, Enterobacter,
Haemophilus, Lactococcus,
Leptotrichia, Neisseria,
Oribacterium, Prevotella,

Rothia,
Selenomonas, Veillonella

Acidaminococcus,
Anaerostipes, Anaerotruncus,
Butyricimonas, Cetobacterium,
Cloacibacillus, Coprobacillus,

Holdemania,
Methanobrevibacter,

Odoribacter, Pyramidobacter,
Turicibacter

Early-stage HCC
Clostridiales,

Firmicutes Streptococcus
NA

Feces (38)
Intermediate-stage HCC

Ruminococcaceae,
Pasteurellaceae,
Tanticharoenia,
and Vagococcus

NA

Advanced-stage HCC

Bifidobacteriales,
Actinobacteria, Barnesiella,

Porphyromonadaceae,
and Pseudomonadales

NA

NBNC-HCC/HBV-HCC
Escherichia-Shigella

Enterococcus

Faecalibacterium
Ruminococcus

Ruminoclostridium
Feces (39)

(Continued)
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including Gemmiger, Parabacteroides, and Paraprevotella, were

enriched in early HCC compared to liver cirrhosis. On the other

hand, phylum Verrucomicrobia was decreased in early HCC. At the

genus level, 12 genera, including Alistipes, Phascolarctobacterium,

and Ruminococcus, were significantly reduced, while six genera,

including Klebsiella and Haemophilus, were increased in early HCC

compared to controls. Notably, a reduction in butyrate-producing

bacteria (Ruminococcus, Oscillibacter, Faecalibacterium,

Clostridium IV , and Coprococcus) and an increase in

l ipopolysaccharide-producing bacteria (Klebsie l la and

Haemophilus) were observed. Butyrate is the primary energy

source of the intestinal mucosa, playing a pivotal role in bacterial

energy metabolism and intestinal health (43). Therefore, reducing

butyrate-producing bacteria may contribute to intestinal mucosal

destruction and the development of liver cancer (44). Increased LPS

levels can activate the NF-kB pathway and produce pro-

inflammatory cytokines, leading to liver inflammation and

oxidative damage, promoting the development of HCC (45).

Furthermore, research in Argentina found specific changes in the

Firmicutes members and identified potential biomarkers of HCC,

including Odoribacter, Butyricomonas, and Lachnospiraceae family

genus Dorea (35).

In another study comparing primary liver cancer patients with

cirrhosis patients and healthy individuals, the diversity of

Firmicutes showed a downward trend from the healthy group to

the liver cirrhosis group to the primary liver cancer group.

Enterobacter ludwigii increased in the primary liver cancer group.

Further analysis revealed correlations between clinical indicators

and intestinal microbiome, such as a positive correlation between

Veillonella and AFP in the primary liver cancer group and a

negative correlation between Subdolicapsulum and AFP (36).

To administrate the best-fit treatment, it is indispensable for

cancer stages. Usually, cancer staging is based on the size of the

tumor, whether it has metastasized to lymph nodes, and whether it

has metastasized to other organs. Different cancers have their

unique staging system. Various staging systems used in HCC

include the European systems [French staging system, Barcelona

Clinic Liver Cancer (BCLC) staging system, and the Cancer of the

Liver Italian Program (CLIP)] and Asian systems [Okuda staging

system, Japan integrated Staging (JIS), Tokyo score and Chinese

University Prognostic Index (CUPI)] (46). There were significant

differences in the intestinal microbiome of patients at different

stages of HCC (37). In 86 stool samples, 604 bacterial genera were

identified. Compared with healthy controls, patients with stage I

HCC showed enhancement of Actinomyces, Atopobium,

Desulfococcus, Enterobacter, Paraprevotella, Planctomycetes,

Prevotella, Veillonella, and many unidentified genera. Patients
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Enterobacter, Lactococcus, Leptotrichia, Paraprevotella,

Planctomycetes, Prevotella, Veillonella, and many unknown

genera. Patients with stage III HCC demonstrated multiplication

of Actinomyces, Atopobium, Desulfococcus, Enterobacter,

Haemophilus, Lactococcus, Leptotrichia, Neisseria, Oribacterium,

Prevotella, Rothia, Selenomonas, Veillonella , and many

unidentified genera. Moreover, Desulfococcus, Enterobacter,

Prevotella, and Veillonella were increased in all stages of HCC.

However, patients with stage I HCC showed a reduction in

Acidaminococcus, Cetobacterium, Coprobacillus, Pyramidobacter,

Turicibacter, and two unidentified genera; patients with stage II

HCC exhibited a decrease in Anaerotruncus, Cetobacterium, and an

unknown genus. Additionally, patients with stage III HCC showed a

reduction in Acidaminococcus, Anaerostipes, Anaerotruncus,

Butyricimonas, Cetobacterium, Cloacibacillus, Coprobacillus,

Holdemania, Methanobrevibacter, Odoribacter, Pyramidobacter,

Turicibacter, and four unidentified genera. Cetobacterium was

reduced in all stages of primary HCC.

Another study tested 45 patients’ feces with early, intermediate,

and late stages and found that the intestines of the early-stage liver

cancer group had a higher abundance of Clostridium, Firmicutes, and

Streptococcus (38). The mid-stage liver cancer group presented more

intestinal Ruminococcaceae, Pasteurellaceae, Tanticharoenia, and

Vagococcus genera. The advanced liver cancer group displayed

more Bifidobacteria, Actinobacteria, Barnella, Porphyromonas, and

Pseudomonas. In summary, during the development of liver cancer,

there are significant differences in the composition of the intestinal

flora of patients, in addition to changes in relevant clinical indicators.

HBV is one of the most critical factors causing HCC, accounting

for approximately 50% of cases (47). Studies have compared the

differences in intestinal microbiome between HBV-HCC and non-

HBV non-HCV related HCC (NBNC-HCC) patients (39). Fecal

samples from 90 patients were analyzed, revealing significant

differences in the diversity and composition of the intestinal

microbiome. Specifically, HBV-HCC patients had higher species

richness, while NBNC-HCC patients had decreased Firmicutes and

increased Proteobacteria at the phylum level. NBNC-HCC patients

had fewer potential anti-inflammatory and pro-inflammatory

bacteria, whereas HBV-HCC patients had more potentially anti-

inflammatory bacteria. Overall, HBV-HCC and NBNC-HCC

patients exhibited variations in the abundance of bacteria

involved in different functions or biological pathways, suggesting

that alterations in specific gut microbiome could have therapeutic

benefits for both types of HCC. Another study compared gut

microbiome differences between HBV-HCC patients and healthy

individuals (40). The researchers found that HCC patients with
TABLE 1 Continued

Category Up Down Sample Reference

HBV-HCC/HC
Bacteroides

Lachnospiracea incertae sedis
Clostridium XIVa

NA Feces (40)

HCC/cirrhosis&HC
Malassezia spp.
Candida spp.

NA Feces (41)
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high tumor burden had an enrichment of Bacteroides ,

Lachnospiracea incertae sedis , and Clostridium XIVa .

Furthermore, a strong correlation was observed between the

expression of these three genera of bacteria and the host tumor

microenvironment genes. Based on further clinical characterization

and database analysis, serum bile acids were identified as potential

communication mediators between these bacteria and the host

transcriptome. This study suggests that changes in the tumor

immune microenvironment associated with intest inal

microbiome, mediated by serum bile acids, might be crucial in

tumor burden and adverse clinical outcomes in HBV-related HCC.
2.2 Fungi alters HCC
immune microenvirnment

Numerous recent studies have investigated the contribution of

fungi to the onset and progression of various tumors, such as those

found in colorectal (48–55), pancreatic (56), skin (57), bladder (58),

lung (59) cancers, and more. Meanwhile, Fungal colonization in

cancer patients manifests in different tissue and cell type niches.

One of the most recent pan-cancer study has detected fungi in 35

types of tumors, indicating that they may exist in tumor cells or

immune cells, similar to intracellular bacteria (24). However, the

mechanisms by which fungi enter these cells in tumor models and

how they survive within them are still unknown.

As opportunistic pathogens, fungi pose a severe threat to

people’s health, particularly those with compromised immune

function, such as AIDS patients, tissue transplant recipients, or

cancer patients (60), additionally, individuals with mutated

antifungal immunity-related genes are prone to frequent mycoses

(61). To evade the innate immune surveillance, fungi employ

similar strategies in different diseases (62). Such as Cryptococcus

neoformans has been reported to cross the blood-brain barrier by

concealing itself within macrophages, leading to meningitis (63).

And another example is Candida albicans, which can survive within

macrophages by undergoing morphological transformation,

forming hyphae, and compromising the integrity of the

phagosomal membrane (64).

Stool samples from HCC and liver cirrhosis patients

demonstrated decreased fungal diversity in the HCC group, with

a higher abundance of Candida genus and Candida albicans (65).

Similarly, patients with liver cancer showed reduced fungal diversity

compared to the healthy group, with significantly higher

abundances of Candida albicans and Malassezia in the feces of

liver cancer patients. Studies on animals have verified that unusual

growth of Candida albicans and Malassezia furfur in the gut can

contribute to the onset of HCC (41).
2.3 Virome profiling reveals the pivotal
virus-host interactions in HCC and other
cancer types

Recent research that employs metagenomic sequencing and

other techniques has given us a deeper understanding of the
Frontiers in Immunology 05
diversity of the human virome in various parts of the body, its

connection to diseases, and how it forms during the early stages of

life (66). This human virome is made up of bacteriophages, which

are viruses that infect bacteria, as well as viruses that target other

cellular microorganisms such as archaea, those that invade human

cells, and those that are temporary components of food (67–73).

Notably, the virome can elicit a broad range of immune

responses (74).

Various types of cancer have been linked to viral infections

(Figure 1C). For example, human papillomavirus (HPV) is

recognized as a requisite component in the formation of both

pre-invasive and invasive lower genital tract cancers, with the

most common being cervical cancer (75), and Malignant

transformation of HPV can also cause head and neck squamous

cell carcinoma (HNSCC) (76). Likewise, the Epstein-Barr virus

(EBV) is viewed as a primary causal agent in the occurrence of

nasopharyngeal cancer (77). HBV is identified as a partially double-

stranded DNA virus, in contrast to HCV, a positive-sense single-

stranded RNA virus. These viruses are known as the primary causal

factors of HCC. Furthermore, other liver viruses, like hepatitis G

virus, are also possible causative factors for HCC, even though their

correlation has not been conclusively proven (78). Adeno-

associated virus 2 has been reported to cause HCC (79), and

next-generation sequencing technologies have uncovered

associations of other viruses with HCC, suggesting that a range of

viruses could be involved in its pathogenesis (80).

HCC virome study mapped 93,904 viral epitopes and identified

the most variable viruses in tumor patients versus controls, utilizing

large-scale screening of thousands of serological samples and

machine learning approaches (7). It elucidated a viral exposure

signature to define the early onset of HCC through the large-scale

screening of thousands of human samples and applying pan-viral-

epitope screening of human virome in HCC. This viral exposure

signature (VES) was defined by comparing population controls and

HCC patients, comprising unique epitopes from 61 viral strains (18

high-risk associated strains and 43 low-risk associated strains).

Notably, 11 of the 18 high-risk associated strains were HCV, a

well-established trigger of HCC, and were more prevalent in cases

than in controls. The VES also included previously unknown

viruses associated with HCC, with an enrichment of

cytomegalovirus (CMV), hepatitis delta virus (HDV), and

influenza strains H1N1 and H3N2. Emerging infectious diseases

significantly burden national public health and may substantially

influence tumor progression and therapeutic efficacy. Therefore, the

virome profile can be the key biomarker for clinical characteristics

and outcomes.
3 Microbiome contribute
immunotherapy efficacy

In liver cancer and other cancers, the expression of

corresponding ligands in tumor and stromal cells allows them to

evade anti-tumor immune responses by exploiting the physiological

mechanism of immune checkpoints, which include co-inhibitory
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https://doi.org/10.3389/fimmu.2023.1333864
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1333864
molecules expressed by effector lymphocytes to prevent their

overactivation (81). These co-inhibitory receptors, such as

CTLA4, PD1, TIM3, and LAG3, are expressed by various cells,

including T cells, natural killer cells, myeloid cells, and dendritic

cells (82). CTLA4 is expressed by activated T cells and primarily by

Treg cells. It blocks the activation of effector T cells and acts as an

effector molecule for T cells (83). PD1 is expressed by activated T

cells, natural killer (NK) cells, Treg cells, MDSCs, monocytes, and

dendritic cells (DC). In contrast, its ligand PDL1 is expressed by

stromal cells, tumor cells, and myeloid cells (such as DCs). PD1

inhibits effector function and leads to effector T-cell exhaustion or

dysfunction. Immune checkpoint inhibitors (ICIs) are monoclonal

antibodies that block the interaction of checkpoint proteins with

their ligands, thereby preventing T-cell inactivation. Immune

checkpoint inhibitors (e.g.,anti-PD1 or anti-CTLA4 antibodies)

have revolutionized the treatment of many cancers (84, 85).

In the case of hepatocellular carcinoma (HCC) patients, anti-

PD-1, anti-PD-L1, and anti-CTLA-4 monoclonal antibodies are

commonly used ICIs in clinical practice. Combination strategies

involving immunotherapy, such as anti-PD-1/PD-L1 mAbs plus

anti-VEGF mAbs, TKIs, or anti-CTLA-4 mAbs, have also been

widely used to overcome drug resistance and improve efficacy (86).

However, there are challenges in HCC ICI treatment. The

heterogeneity of HCC and its complex immunological

microenvironment can influence variable responses to ICIs (87,

88). Biomarker discovery is crucial for identifying patients most

likely to benefit from ICIs (89). Moreover, resistance to ICIs is a

significant challenge in HCC treatment, and various resistance

mechanisms have been identified (90). Overcoming the challenges

requires a deep understanding of the mechanisms underlining how

the pathophysiology of HCC interplay with the tumor

microenvironment to fine-tune the responses to ICIs (91). Future
Frontiers in Immunology 06
research should focus on developing strategies to improve patient

outcomes and increase the response rate to ICIs in HCC.

The gut microbiome also plays a significant role in modulating

the efficacy of immunotherapy for cancer (92). Modulating the gut

microbiome through techniques such as fecal transplantation,

probiotics, consortia, and diet can enhance the clinical response

rates to immunotherapy (93). Favorable modulation of the

microbiome is associated with increased infiltration of CD8+

effector T cells into the tumor, leading to enhanced intratumoral

activity of T-helper type 1 cells, dendritic cells, and a lower density of

immunosuppressive cells (94). Disruptions in the gut microbiome

can promote hepatocellular carcinoma development and influence

the response to immunotherapy in the context of liver cancer (95).

The gut microbiome may regulate the responses to immune

checkpoint inhibitors in HCC patients (96). As a result, the gut

microbiome has emerged as a prognostic biomarker and a potential

therapeutic target to enhance the efficacy of immunotherapy.
3.1 Gut microbiome influencing the
efficacy of HCC immunotherapy

Studies have focused on investigating the role of commensal

microbiome in ICI treatment of HCC (97). Metagenomic

sequencing has been used to detect the dynamic characteristics

and specificity of the intestinal microbiome during anti-PD-1

immunotherapy in HCC. Stool samples from patients who

responded to immunotherapy showed higher tax on richness and

more gene counts than non-responders. The microbial composition

of responders remained relatively stable at the phylum level and was

enriched in Myxobacteria and Ruminococcus species, whereas

Proteobacteria increased in non-responders (98).
BCA

FIGURE 1

Deep mechanistic insights of microbes’ roles in different tumor types. (A) Mechanisms by which bacteria promote carcinogenesis. (B) Mechanisms by
which fungi promote carcinogenesis. (C) Oncolytic viruses and ERVs contribute to cancers immunotherapy.
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Another study found that several specific taxa were significantly

enriched in the clinical benefit response (CBR) group compared to

the non-clinical benefit group (NCB). For example, patients with a

higher abundance of Lachnospiraceae bacteria - GAM79 and

Alistipes sp Marseille - P5997 had longer progression-free and

overall survival times. On the other hand, patients with higher

Veillonellaceae abundance had poorer progression-free and overall

survival (99).

In a prospective analysis of fecal samples from unresectable

HCC patients before immunotherapy, significant differences in fecal

bacteria were observed between patients who responded to therapy

and those who did not. Prevotella 9 was enriched in non-

responders, while Clostridium, Lachnospiraceae, and Veillonella

were dominant in responders. Furthermore, specific metabolites

such as ursodeoxycholic acid and urscholic acid were significantly

enriched in responders and closely related to Clostridium

trichophyton’s abundance (100).

These findings suggest that the diversity and specific

composition of intestinal microorganisms and changes in

particular metabolites can be practical biomarkers to predict the

clinical response and survival benefit of HCC immunotherapy.

Moreover, certain microorganisms or metabolites enriched in

non-responders or responders may become potential targets to

improve the efficacy of immunotherapy for HCC. For example,

combining acetate with a PD-1/PDL-1 blocker has significantly

enhanced the anti-tumor effect (101).

In the intestines of healthy individuals, bacteria and fungi

maintain homeostasis. Unfortunately, compared with bacteria,

there is a lack of research on the role of commensal fungi in the

ICIs immunotherapy of cancer. Studies that use bacteria to enhance

the therapeutic efficacy of immune checkpoint inhibitors may

disrupt the original bacterial-fungal homeostasis, and these

studies have almost without exception ignored commensal fungi.

Therefore, the symbiotic fungi group will be a very promising area

in subsequent research.
3.2 Emerging viral-based immunotherapy

Oncolytic viruses (OVs) are an emerging class of cancer

therapeutics with several advantages in cancer treatment

(Figure 1C). Selectively infecting and destroying cancer cells while

sparing normal cells, OVs result in minimal damage to healthy

tissues (102, 103). This targeted approach stimulates an antitumor

immune response by presenting tumor-associated antigens to the

immune system (104). Additionally, OVs induce the expression of

inflammatory and immunomodulatory cytokines in the tumor

microenvironment, further enhancing the immune response

(105). Efficacious against various malignant neoplasms, including

drug-resistant lymphoproliferative diseases (106), OVs have shown

promise in clinical trials with well-tolerated outcomes for cancer

patients (107). Furthermore, OVs offer the potential for delivering

multiple eukaryotic transgene payloads, inducing immunogenic cell

death, and promoting antitumor immunity (108). Overall, this

evolving approach in cancer therapy represents a promising

avenue to provide added patients benefits.
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Oncolytic viruses (OVs) have been extensively studied as

promising cancer therapeutics. They were found to inhibit HCC

growth, including directly dissolving tumor cells, exposing

neoantigens, sequentially activating anti-tumor immunity (109).

The most studied OVs are a vaccinia virus, JX-594 (110, 111). This

engineered OVs, JX-594, have two genes inserted at TK gene region.

One gene encodes human granulocyte-macrophage colony-

stimulating factor (hGM-CSF) and the other gene encodes lac-Z

(112, 113) to form this functional vaccinia virus. JX-594 can induce

anti-tumor immunity and inhibit tumor blood vessels by promoting

the maturation of myeloid cells and dendritic cells. Additionally,

other appealing oncolytic vectors have been developed for the

treatment of HCC, such as a new chimeric vector called

recombinant VSV-NDV (rVSV-NDV) (114), and Ld0-GFP, based

on herpes simplex virus type 1 (HSV-1) (115). Both vectors have

shown excellent cancer cell killing ability and significantly improved

the survival in the HCCmouse model from both in vivo and in vitro

studies. Notably, the combination of oncolytic viruses with other

immunotherapies like immune checkpoint blockade (ICB) and

chimeric antigen receptors (CAR) has shown promising tumor

treatment efficacy (116). Hence, the approach of combining the

oncolytic viruses with ICB or CAR will bring new hope to

HCC treatment.

Endogenous retroviruses (ERVs) are retroviral sequences that

have become integrated into the genome of a host species. They are

remnants of ancient retroviral infections that have been passed

down through generations (117). ERVs can be found in the

genomes of various organisms, including humans (118). The host

has co-opted ERVs over time, and some ERV genes have been

repurposed for host functions (119). ERVs are regulated by various

mechanisms, including epigenetic modulation, and their

dysregulation has been associated with neurological diseases,

cancer, and inflammatory processes (120).

Endogenous retroviruses (ERVs) have several advantages in

cancer immunotherapy (Figure 1C). First, ERV reactivation can

induce an interferon response, known as viral mimicry, which

sensitizes tumor cells to immunological recognition (121, 122).

This viral mimicry state can be triggered by drugs or cellular

changes in tumor cells (123). Second, ERV expression can lead to

the production of tumor-specific antigens (TSAs). These TSAs,

derived from translated Human ERV elements, contribute to the

landscape of antigens recognized by the immune system (124, 125).

They have been recognized by cytotoxic CD8+ T cells, resulting in

cancer cell recognition. Third, the combination of viral mimicry and

T-cell recognition can enhance the effectiveness of existing immune

stimulatory therapies, such as checkpoint inhibition. In summary, the

reactivation of ERVs in cancer cells has the potential to sensitize

tumors to immunotherapy and improve treatment outcomes.

Recent advances have been made in the use of ERVs for cancer

immunotherapy. Human ERVs represent 8% of the human genome

and have been identified as potential tumor antigens for

immunotherapy. Bioinformatic approaches have been developed

to identify shared CD8+ T cell epitopes derived from cancer-

associated HERVs in solid tumors. In vitro priming assays have

confirmed the immunogenicity of these epitopes, leading to the

induction of high-avidity CD8+ T cell clones. HERV-specific T
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cells, which have been shown to specifically recognize and kill

tumor cells presenting HERV epitopes on HLAmolecules, have also

been identified among tumor-infiltrating lymphocytes from

patients with breast cancer (126). Recent studies have shown that

anti-ERV antibodies play a role in the effectiveness of ICB

immunotherapy in mouse and human lung cancer, and nearly

half of the LUAD patient samples showed antibody activity against

the human endogenous retrovirus HERV-K. Among the 7 LUAD

patients who received ICB, all had increased HERV-K envelope-

reactive antibodies. Additionally, it was found that this increase in

antibodies was positively correlated with survival after

discontinuation of ICB (127).
4 The mechanistic studies of
carcinogenic microbiome

The relationship between intestinal microbiome and liver

disease is reciprocal, in which the changes can contribute to liver

disease (128). For instance, dysbiosis of gut microbiome and gut

leakage can cause bacterial products to reach the liver through the

portal vein, causing an inflammatory response and promote liver

disease. Conversely, cirrhosis and portal hypertension can alter the

composition of the intestinal microbiome, leading to the increased

translocation to liver. Once translocated to liver, the microbiome

can, in turn, alter the tissue immune microenvironment, resulting

in more inflammation, which may finally lead to liver cancer.

Notably, to advance our understanding by uncovering the

underlying mechanisms and to identify potential therapeutic

targets is imperative (Figure 2).
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4.1 The core sets of bacterial components
play vital roles in HCC carcinogenesis

The innate immune system plays a vital role in the host’s

resistance to pathogenic bacterial infections as the second line of

defense. Innate immune cells recognize Pathogenic Molecule-

related Patterns (PAMPS) on the surface of pathogenic bacteria

through pattern recognition receptors. This theory, proposed by

Janeway in 1989 (129), is based on the idea that pathogenic

molecule-related patterns on the cell wall of pathogenic bacteria,

such as lipopolysaccharide, muramyl dipeptide, lipoteichoic acid,

and peptidoglycan, or intracellular nucleic acid molecules. And the

pattern recognition receptors are the receptors present on the

innate immune cells, such as Toll-like receptors (TLR) and

NOD-like receptors (NLR), which can recognize exogenous or

endogenous dangerous molecules. Once relevant danger signals

are recognized, a series of inflammatory responses are initiated,

leading to the production of inflammatory cytokines and mediation

of immune cell phagocytosis to eliminate corresponding

pathogenic bacteria or abnormal cells. The above important

findings lead to an intriguing note that the phagocytosis, which

can be exploited as a cargo for the pathogenic bacteria to evade

immune surveillance.

Intracellular bacteria are bacteria that live inside the cells of

their host organisms. They can be found in various types of hosts,

including corals, protists, arthropods, marine invertebrates,

mammals, immune cells and cancer cells. These bacteria have

developed many strategies to survive and travel within the host

cells (130, 131). The presence of intracellular bacteria can be found

in immune cells and other cell types in tumor (132). In addition,
FIGURE 2

The core sets of bacterial components play key roles in HCC carcinogenesis. Bacterial cell wall components (LPS, MDP, LTA), bacterial-related
metabolin, and bacterial-induced cytokines translocated to the liver through the portal vein regulate the liver cancer immune microenvironment by
interacting with liver cells, tumor cells, and immune cells, thereby promote HCC tumorigenesis.
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intracellular bacteria have been found to promote tumor

metastasis (133).

Intracellular bacteria have developed multiple mechanisms to

evade the host immune system (134). Moreover, bacteria can

interfere signaling of immune cells to suppress the host’s immune

response. Mycobacterium tuberculosis evades the immune response

by inhibiting the NF-kB signaling pathway through the secretion of

Rv0222 after being engulfed in immune cells (135). Taken together

the interaction of intracellular bacteria with the host immune

system can impact tumor progression.
4.1.1 Lipopolysaccharide (Gram-
negative bacteria)

LPS is a potent antigen and a Gram-negative bacteria cell wall

component that can activate the host’s immune response, including

sepsis. Additionally, LPS has been shown to promote tumor

proliferation, angiogenesis, tumor invasion, and metastasis (136,

137). In mice, LPS stimulation significantly increases the expression

of inflammatory genes and promotes the development of HCC (45).

Moreover, high levels of circulating LPS in patients with chronic

liver disease predispose them to HCC (138).

In the context of primary sclerosing cholangitis (PSC) and

colitis-promoted cholangiocarcinoma (CCA) mouse models (139),

LPS becomes a crucial promoting factor. Colitis induced by PSC

and dextran sulfate sodium (DSS) disrupts intestinal homeostasis,

leading to changes in intestinal permeability. Consequently, LPS, a

bacterial cell wall component, enters the liver through the portal

vein and binds to TLR4 receptors on hepatocytes. This binding

stimulates liver cells to secrete CXCL1, which recruits CXCR2+

PMN-MDSCs and facilitates CCA progression. Inhibition of PMN-

MDSCs impairs the tumor cell-killing function of NK cells,

resulting in uncontrolled tumor growth. Conversely, inhibiting

the LPS-TLR4 and CXCL1-CXCR2 pathways reduces PMN-

MDSCs in liver tissue and significantly decreases tumor size.

These findings highlight the role of intestinal imbalance, LPS

production by gut microbiome, and PMN-MDSC recruitment in

CCA development. Another study on CCA immunotherapy

focused on improving anti-PD-L1 treatment efficacy against CCA

using an orthotopic mouse CCA tumor model (140). CCA patients

and orthotopic CCA mouse models respond poorly to immune

checkpoint blockade. However, the simultaneous depletion of

PMN-MDSCs and macrophages made CCA more responsive to

anti-PDL1 treatment. These findings suggest that PMN-MDSCs

could be potential targets for CCA immunotherapy. Further

research is required to investigate whether regulating bacteria-

induced PMN-MDSC production and reducing LPS components

can enhance the effectiveness of anti-PD-L1 immunotherapy.

Tumor angiogenesis plays a crucial role in tumor proliferation

and metastasis. HCC is a hypervascular tumor characterized by rich

and tortuous blood vessels (141). Another way for LPS to promote

the development of hepatocellular carcinoma is to promote tumor

angiogenesis (136). LPS promotes HCC development by activating

STAT3 in liver cancer cells through TLR4 receptors. This activation

leads to increased expression of VEGF, which acts on neighboring

epithelial cells and promotes angiogenesis. Moreover, VEGF can
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bind to VEGFR on tumor cells, activating STAT3 and facilitating

tumor cell proliferation and migration. The complex

microenvironment of hepatocellular carcinoma (HCC) is

characterized by chronic inflammation. Abnormal cholesterol

metabolism has been implicated in the physiology of liver cancer

cells. In vitro co-incubation of LPS with liver cancer cells results in

cholesterol accumulation (142). Mechanistically, LPS upregulates

the expression of HMGCR, LDLR, and SREBF2 through the LPS/

TLR4/TAB3/IKKa/NF-kB pathway. Cholesterol accumulation in

cells can also enhance LPS/NF-kB-mediated inflammatory

responses, potentially affecting the immune microenvironment of

liver cancer.

4.1.2 Muramyl dipeptide (both Gram-positive and
Gram-negative bacteria)

MDP is an essential molecular pattern of pathogenic

microbiome in both Gram-positive and Gram-negative bacteria.

NOD2, known for recognizing MDP and activating inflammatory

responses, plays a crucial role in this process (143). MDP was

injected intraperitoneally in the mouse liver cancer model induced

by DEN/CCL4. The results showed that MDP significantly

increased the tumor incidence, burden, and size compared to the

control group. These effects were found to be dependent on the

NOD2 receptor. Mechanistically, MDP promotes the development

of liver cancer through two pathways. The first pathway involves the

activation of RIP2 downstream of NOD2, which activates the

MAPK, NF-kB, and STAT3 signaling pathways, leading to

increased liver inflammation. The second pathway is independent

of RIP2 and involves the activation of the nucleus of cells by NOD2.

This activation triggers autophagy, which promotes the degradation

of lamin A/C. Reductions in lamin A/C impair the hepatocytes’

ability to repair damaged DNA, leading to increased genomic

instability and tumorigenesis.

4.1.3 Lipoteichoic acid (Gram-positive bacteria)
In a recent study, Naoko Ohtani and colleagues explored the

role of lipoteichoic acid (LTA), a Gram-positive bacteria cell wall

component, in developing liver cancer in mice fed a high-fat diet.

They found that LTA, which can be translocated and accumulated

in liver tissue, synergizes with the gut microbial metabolite

deoxycholic acid to enhance the senescence-associated secretory

phenotype (SASP) of hepatic stellate cells (HSCs). Toll-like receptor

2 (TLR2) plays a crucial role by upregulating the expression of SASP

factors and COX2. COX2-mediated prostaglandin E2 (PGE2)

production suppresses anti-tumor immunity through the

PTGER4 receptor, promoting HCC progression (144).

Furthermore, the team discovered a novel pathway through

which LTA promotes HCC (145). In the mouse model of obesity-

induced HCC, aged hepatic stellate cells produce a significant

amount of SASP, including IL-1b and IL-1b-dependent IL-33.

The secretion of active IL-33 and IL-1b is mediated by LTA,

which leaks from the intestine into the liver and is recognized by

the TLR2 receptor on liver cells. This recognition activates

caspase11, leading to the cleavage of gasdermin D (GSDMD) and

the subsequent formation of GSDMD amino-terminal–mediated
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pores on the cell membrane. These pores promote the release of IL-

33 and IL-1b. IL-33, once released by HSCs, activates ST2-positive

Treg cells in the liver tumor microenvironment, thereby facilitating

the development of HCC. Based on these findings, targeting the

interaction between PGE2 and the PTGER4 receptor and inhibiting

the formation of GSDMD-mediated pores could be potential

therapeutic strategies for HCC.
4.1.4 Bacterial metabolism
A significant amount of metabolites that act as crucial signaling

factors and energy substrates are mutually produced by the host and

the microbiome. Bile acids like deoxycholic acid (DCA) and

lithocholic acid (LCA) are included in these metabolites, playing

critical roles in digestion and mediating both health-promoting and

disease-causing processes (146, 147). Also included are Short-chain

fatty acids (SCFA) such as acetate and butyrate, which influence the

intestinal microbiome’s composition, impact colonic function, and

provide an energy source for both host cells and intestinal

microorganisms (148, 149). The interaction between the host and

this fluctuating group of tiny molecule metabolites, otherwise

known as the metabolome, can influence the immune system, as

well as different metabolic phenotypes, and could even affect factors

of disease risk and responses to treatment (150, 151).

Liver cells produce bile acids that can be secreted into the

intestine to aid lipid digestion, and bacteria in the intestine

metabolize bile acids into secondary bile acids. Dysbiosis can

change normal intestinal microbial metabolism, leading to the

occurrence and development of liver cancer and the hepatic

translocation of bacterial cell wall components. In a high-fat diet

mouse model, the liver is susceptible to deoxycholic acid, causing

DNA damage to liver stellate cells and promoting their aging. Liver

cells produce bile acids that can be secreted into the intestine to aid

lipid digestion. Bacteria in the intestine metabolize bile acids into

secondary bile acids. An imbalance of the intestinal flora destroys

the balance between primary and secondary bile acids. Antibiotics

(ABX) can clear the intestinal microbiome, and in various mouse

liver cancer models, mice treated with ABX had fewer and smaller

tumors than the control group. Furthermore, ABX’s elimination of

microbiome in tumor-bearing mice reduces the accumulation of

secondary bile acids in the liver, increasing the amount of primary

bile acids. The primary bile acids stimulate liver sinusoidal

endothelial cells (LSEC) to secrete the chemokine CXCL16,

recruiting CXCR6+ NKT cells to the liver to kill tumor cells.

Additionally, a specific bacterium, C.scindens, was found to

reduce the number of NKT cells in the liver, leading to an

increase in liver tumors (152).

In a high-fat diet mouse model, antibiotic treatment also

alleviates liver disease and inhibits tumor development while

reducing secondary bile acids (153). The activation of the mTOR

signaling pathway by secondary bile acids is associated with cancer,

but further research is needed to determine its role in the

occurrence of HCC (154).

The accumulation of primary bile acid TCA in the liver creates

an immunosuppressive tumor microenvironment controlled by the

metabolic regulatory gene Sirt5. Low expression of Sirt5 is
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associated with a poor overall survival rate of HCC patients.

Knockdown of sirt5 increases the accumulation of TCA,

promoting M2 macrophage polarization and the development of

an immunosuppressive tumor microenvironment. Bile acid

sequestrants can reverse the effects of Sirt5 deficiency in

promoting M2-like polarized TAMs and liver tumor growth (155).

SCFA are produced by bacteria metabolizing dietary soluble

fiber and are considered beneficial to health. However, diets rich in

inulin, converted to butyrate by bacteria, may induce icteric HCC

by causing cholestasis, hepatocyte death, and neutrophil

inflammatory response. This process depends on intestinal

microbiome. Using cholestyramine to block bile acids can inhibit

the promotion of liver cancer by short-chain fatty acids (156).

4.1.5 Bacterial microbes induced cytokines
and chemokines

IL-25 levels are significantly elevated in HCC patients and are

negatively correlated with survival rate after liver resection (157).

Experimental mouse models have shown that IL-25 in the liver

originates from epithelial tufted cells in the intestine. Dysbiosis of

the intestinal flora, induced by vancomycin stimulation, leads to the

proliferation of colon epithelial tufted cells, along with an increase

in the expression of IL-25. Subsequently, IL-25 enters the liver

through the portal vein and activates M2 macrophages,

contributing to an immunosuppressive microenvironment within

the liver. Additionally, the activated M2 macrophage and the

secretion of the chemokine CXCL10 facilitate the occurrence,

migration, and invasion of HCC.
4.2 Bacterial microbes in other types
of carcinogenesis

Bacteria have been found to contribute to the advanced stages of

HCC. Moreover, the role of bacteria in immune checkpoint blockade

(ICB) is increasingly recognized. Hence, it is of utmost importance to

examine the correlation between specific bacteria and the evolution of

cancer. In light of this, we provide an overview of groundbreaking

studies that probe the linkage between particular bacteria and cancer

and further delve into the consequences of bacteria in the domain of

ICB treatment. These reports serve as valuable references for future

HCC translational research (Figure 1A).

4.2.1 Bacteria in gastric cancer
Approximately half of the global population’s stomachs are

colonized by a gram-negative, spiral-shaped bacterium known as

Helicobacter pylori (158). In 1982, Helicobacter pylori has been

discovered as the cause of gastric and duodenal ulcers (159).

additionally, its presence in the stomach elevates the risk of

gastric adenocarcinoma and peptic ulcer disease (160), making it

the most potent known risk factor for gastric cancer, the world’s

third highest cause of cancer-related fatality (161). An essential

element in the carcinogenesis process is the cytotoxin-associated

gene A (CagA) protein produced by Helicobacter pylori. The

bacterial type IV secretion system transports this protein into
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gastric epithelial cells. Once delivered, CagA acts as an extrinsic

scaffold or hub protein, disrupting multiple host signaling pathways

that induce mammalian malignancies (162). Some of the specific

mechanisms involve the stimulation of cell proliferation through

mitotic signaling pathways, such as PI3K-AKT, SHP2, MAPK, and

b-catenin-Wnt pathways (163–169). In addition, CagA stimulates

the NF-kB signaling pathway (170, 171), which aids in attracting

inflammatory cells, triggers damage through reactive oxygen

species, and contributes to wound-healing responses. These effects

collectively contribute to the development of cancer.

Current research has pinpointed nine gene mutations that

elevate the likelihood of developing gastric cancer. The

observations indicate that a Helicobacter pylori infection can

amplify this cancer risk linked with these mutations.

Consequently, it is of utmost importance to detect and eliminate

Helicobacter pylori infections in individuals who carry these gene

mutations related to an increased susceptibility to gastric cancer

(172). Similarly, a study analyzing 1,043 Helicobacter pylori

genomes found that the 171S-171L mutation of the serine

protease HtrA is significantly associated with gastric cancer. This

mutation increases the activity of proteolytic enzymes and the

splitting of proteins in epithelial junctions, results in severe

damage to the epithelial tissues, and aids in the delivery of the

CagA oncoprotein into the epithelial cells. These events result in

NF-kB-mediated inflammation, increased cell proliferation, and

host DNA double-strand breaks, collectively triggering gastric

carcinogenesis (173).

Additionally, research has also explored the involvement of

other microorganisms in the development of gastric cancer,

including Lactobacillus, Lachnospiraceae, and Nitrospira, among

others (174–176).

4.2.2 Bacteria in oral squamous cell carcinoma
Plaque accumulation in the oral cavity leads to the secretion of

toxins by bacteria, causing gum inflammation and potentially

progressing into periodontitis. Porphyromonas gingivalis,

Tannerella forsythia, and Fusobacterium nucleatum are the

primary bacteria involved in this process. These bacteria have also

been linked to oral squamous cell carcinoma (177), with

Porphyromonas gingivalis showing the strongest correlation (178).

Porphyromonas gingivalis notably encourages cell growth, inhibits

cellular self-destruction, stimulates the formation of new blood

vessels, and aids in the spread and propagation of cancer cells,

thereby playing a crucial role in the progression of oral squamous

cell carcinoma (178, 179). Furthermore, the presence of

Porphyromonas gingivalis in the oral cavity is also linked to a

heightened risk of developing pancreatic cancer (180).

4.2.3 Bacteria in colorectal cancer
Colorectal cancer (CRC), a prevalent digestive system

malignancy, is noted for its high incidence and fatality rates. Its

emergence and progression are intimately linked to the intestinal

microbiome, in particular, the bacterial group, given the vast

diversity of microbiomes like bacteria, fungi, and viruses that

inhabit the gut. Bacteria such as Fusobacterium nucleatum,
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Bacteroides fragilis, and pks+E. coli found in the intestine are

involved in promoting CRC, while others like Streptococcus

thermophilus, Streptococcus salivarius, Clostridium butyricum,

Lactobacillus gallinarum, and Lactobacillus paracasei are

considered to inhibit CRC (181–183).

Fusobacterium nucleatum, a Gram-negative anaerobic

bacterium, is prevalent in the human mouth (184), but appears

less frequently in a healthy colorectal region (182). In colorectal

patients, the abundance of Fusobacterium nucleatum is significantly

increased (49, 185, 186). Research indicates that Fusobacterium

nucleatum, which is associated with CRC, is transferred from the

oral cavity to tumor tissues through the gastrointestinal tract (182,

187). Additional studies also demonstrate the crucial role of Fap2, a

protein expressed by Fusobacterium nucleatum, in its localization to

colorectal cancer tumor tissues (188). Questions arise about the

entry pathways and liver colonization, particularly in tumor and

immune cells, as commensal microorganisms may migrate and

penetrate the liver via the portal vein during HCC development.

Mechanistically, Fusobacterium nucleatum promotes the

occurrence and development of CRC through various pathways.

It regulates CRC glucose metabolism by activating lncRNA ENO1-

IT1 transcription, enhancing the glucose metabolism of tumor cells,

and exerting a cancer-promoting effect (189).

The FadA adhesin in Fusobacterium nucleatum triggers the

Wnt/b-catenin signaling pathway, which results in b-catenin
entering the nucleus. This then enhances the expression of

cancer-causing genes c-Myc and Cyclin D1, subsequently

promoting the growth of tumor cells. Additionally, FadA

upregulates annexin A1, which further enhances the effect of

FadA on activating the Wnt/b-catenin signaling pathway. The

combination of FadA and E-cadherin affects the immune

microenvironment of CRC by promoting the expression of

inflammatory genes (190, 191).

The latest research has identified ALPK1 as a pattern

recognition receptor that recognizes Fusobacterium nucleatum

and upregulates the expression of ICAM1 through the ALPK1/

NF-kB signaling pathway, thus promoting the adhesion,

extravasation, and metastasis of tumor cells (192).

Furthermore, Fusobacterium nucleatum is significantly associated

with non-response to anti-PD-1 therapy in CRC patients. Higher

abundance of Fusobacterium nucleatum and higher succinic acid

content were observed in patients with metastatic colorectal cancer

who did not respond to immunotherapy. Mechanistically,

Fusobacterium nucleatum-derived succinic acid inhibits the cGAS-

interferon-b pathway, limiting the trafficking of CD8+ T cells to the

tumor microenvironment (TME) in vivo and inhibiting anti-tumor

responses. However, the antibiotic metronidazole has been found to

reduce the content of Fusobacterium nucleatum in the patient’s

intestines, enhancing the re-sensitivity of tumors to in vivo

immunotherapy (193).
4.2.4 Bacteria in lung cancer
As the technologies of next-generation sequencing evolve, the

microbiome analysis is becoming more routine. Research on the

correlation between commensal microorganisms and lung cancer
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has focused on the diverse microbiome in the human lower

respiratory tract (194). Certain research has examined the

disparities in gut bacteria between non-small cell lung cancer

(NSCLC) patients and healthy people. These studies have found

that patients with NSCLC exhibit dysbiosis in their intestinal flora,

with significant upregulation of Prevotella, Gemmiger, and

Roseburia at the genus level (195). Airway brushing samples were

gathered in advance from patients undergoing bronchoscopy in a

separate study. Among the samples, 39 were confirmed to have lung

cancer, 36 did not have lung cancer, and 10 airway brushings from a

healthy control group were included. A detailed examination of the

microbial makeup in these samples unveiled a substantial presence

of Streptococcus and Veillonella in the lower respiratory system of

patients with lung cancer. Additionally, these bacteria were found to

be associated with the upregulation of ERK and PI3K signaling

pathways (196). Subsequent studies further discovered that

Veillonella is linked to the upregulation of IL17, PI3K, MAPK,

and ERK pathways (197). Furthermore, Streptococcus and

Veillonella species were significantly enriched in the intestines of

patients with pancreatic cancer (198).

A Japanese research team also conducted clinical research on

applying probiotics in treating NSCLC. They found that a

significant extension in progression-free survival (PFS) and

overall survival (OS) rates could be achieved in advanced NSCLC

patients receiving ICB treatment by utilizing Clostridium butyricum

MIYAIRI 588 (199). In the Lewis lung cancer mouse model,

intragastric administration of Akkermansia muciniphila was

observed to inhibit tumor occurrence significantly. Metabolome

analysis revealed that the possible mechanism behind this inhibition

is the reprogramming of tumor metabolism by Akkermansia

muciniphila (200).
4.3 Emerging mechanistic studies highlight
the role of fungi in the following
tumor types

Fungi, such as Candida, Saccharomyces, and Malassezia, are

essential components of human commensal microbiome,

colonizing various niches within the human body. The gut and

other mucosal surfaces are typical habitats for these fungi (17, 201,

202). Candida species predominantly colonize the oral cavity, while

Malassezia dominates the skin (203, 204). Despite accounting for

only 1% of the human commensal microbiome, fungi significantly

impact the host’s health and disease (17). They can act as

opportunistic pathogens and infect immunocompromised

patients, including those with cancer (24). Notably, their effects

should not be overlooked (Figure 1B). The host’s natural immune

system identifies fungi through their microbe-related molecular

patterns, notably the carbohydrate components of the fungal cell

wall. The detection of these patterns are carried out by pattern

recognition receptors, such as C-type lectin receptors, found on

epithelial and myeloid cells. Receptors such as Dectin, Lectin,

Mincle, Toll-like receptors, and Nod-like receptors (NLR) activate

signaling mechanisms involving SYK/CARD9, SYK/PLCy2,

MYD88, and TRIF when they bind (205). Consequently, this
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triggers the production of signaling molecules, including

interleukin 1b(IL-1b), IL-6, IL-12, IL-23, TGF-b, and interferon g,
which stimulate the immune response of T helper 1(Th1) and Th17

cells (206).
4.3.1 Fungi in HCC progression
There has been less research on the mechanism of fungi in the

occurrence and development of liver cancer than bacteria. However,

as early as the last century, it was proven that aflatoxin, a toxin

produced by fungi of the Aspergillus genus, can cause liver cancer.

In simple terms, aflatoxin promotes the mutation of codon 249 of

the P53 gene (207). Recent studies have also identified AhR as the

critical factor that mediates the cytotoxicity of aflatoxin (208).

Additionally, Candida albicans and Malassezia have been

reported to regulate the progression of HCC (41, 65).

Mechanistically, abnormal colonization of Candida albicans

reprograms the metabolism of HCC and promotes its

advancement in an NLRP6-dependent manner.

Fungi’s role in HCC is still poorly understood. However, the

study of the relationship between fungi and cancer is inevitable.

Therefore, we pay more attention to the underlying mechanisms

between fungi and different cancer types, and try to get the

inspirations from these mechanisms, which can be applicable in

the HCC field.
4.3.2 Fungi in oral cancer
Candida species are normal commensals of the oral cavity in

almost 100% of the healthy population (209). Candidiasis, the most

frequent opportunistic fungal infection, is caused by Candida

albicans. This fungal species can catalyze the oxidation of ethanol

into acetaldehyde, a class of carcinogens. Moreover, Candida

albicans isolated from oral cancer patients exhibit a more vital

ability to catalyze acetaldehyde production (210). Another

carcinogenic metabolite produced by C. albicans is N-

nitrosobenzylmethylamine. In an oral cancer model ,

supplementation of rats with a nitrosamine-producing strain of C.

albicans resulted in a robust carcinogenic effect (211). Candida

albicans is a dimorphic fungus that can exist in two forms: yeast or

hyphae (212). The tip of the hyphae releases a cytolytic peptide

toxin called Candidalysin, which activates the mitogen-activated

protein kinases (MAPK) pathway and damages the oral epithelium.

This process triggers the release of pro-inflammatory cytokines and

is believed to play a role in tumorigenesis (213, 214).
4.3.3 Fungi and colorectal cancer
CARD9 is a signaling adaptor protein involved in the

transduction of signals from various innate pattern recognition

receptors, including the C-type lectin receptors, intracellular NOD

receptors, and nucleic acid sensors. It is also a critical molecule in

the host immune response against fungal infections (215). In 2018,

two studies reported that CARD9-deficient mice had increased

tumor burden in the AOM/DSS-induced CRC mouse model (48,

55), but the underlying mechanisms differed. Malik et al. reported a

fungal signaling cascade in myeloid cells mediated through SYK and

CARD9 signaling that drives inflammasome activation and IL-18
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maturation, promoting epithelial barrier repair, activating intestinal

CD8+ T cells, and producing IFN-g. This study found that myeloid

cell-specific deletion of CARD9 or SYK reduces inflammasome

activation and interleukin (IL)-18 maturation, increasing

susceptibility to colitis and colorectal cancer in wild-type mice. In

a model of enteritis induced by AOM-DSS, more severe colitis and

more tumors were also observed using amphotericin B or

itraconazole to eliminate commensal fungi, indicating that

commensal fungi exert a protective effect.

On the other hand, Wang et al. found that the mycobiome of

CARD9−/− mice was altered and expanded and showed that C.

tropicalis was the predominant fungus responsible for the increased

tumor burden in this model. Candida tropicalis proliferates in

CARD9-deficient mice, thereby inducing the differentiation and

activation of MDSC cells, mainly G-MDSC, which is conducive to

tumor immune evasion. Treatment with Ly6G antibodies or the

anti-fungal drug fluconazole can significantly improve tumor

incidence in CARD9-deficient mice. In follow-up studies, Wang

et al. found that Dectin-3-deficient mice resulted in tumorigenesis

and increased Candida albicans load after chemical induction. The

proposed mechanism involves Candida albicans promoting the

enhancement of glycolysis in macrophages, which leads to

increased IL-7 secretion, thereby triggering aryl hydrocarbon

receptors and STAT3 to induce RORgt+ innate lymphoid cells

ILC3 to produce IL-22, promoting tumor progression.

Interestingly, Dectin-3 also plays a vital role in Candida

tropicalis, promoting colorectal carcinogenesis. Candida tropicalis

can significantly enhance the glycolysis level of MDSC cells.

Mechanistically, C.tropicalis enhances the interaction between Syk

and PKM2 in MDSCs, which results in the phosphorylation of

PKM2 at Tyr105. PKM2 Tyr105 phosphorylation is essential for

PKM2 nuclear translocation. Subsequently, atomic PKM2 functions

as a coactivator of HIF-1a to promote HIF-1a-dependent
expression of glycolytic enzymes, such as GLUT1, HK2, PKM2,

LDHA, and PDK1, which in turn promotes aerobic glycolysis and

the expression of iNOS, COX2, and NOX2, as well as the secretion

of nitric oxide (NO) and reactive oxygen species (ROS), promoting

the immunosuppressive function of MDSCs and thereby promoting

the occurrence of colorectal cancer. Blocking PKM2 nuclear

translocation can weaken Candida tropicalis-mediated colorectal

cancer (216). Notably, inhibition of PKM2 via gene silencing or the

drug shikonin renders HCC and patient-derived cell lines (PDC)

responsive to chemotherapy-sensitive (217). At the same time,

Dectin-3 also mediates Candida tropicalis to activate the NLRP3

inflammasome in MDSCs (218). The activation of NLRP3 depends

on the mitochondrial reactive oxygen species generated by

enhanced glycolysis and the JAK/STAT1 signaling pathway,

which plays a role in AOM/DSS CRC. Pharmacological inhibition

of the NLRP3 inflammasome rescues C. tropicalis-induced

increased tumor burden in mouse models.

4.3.4 Fungi and pancreatic cancer
Aykut et al. demonstrated that in patients with pancreatic

cancer, the content of intratumoral fungi was significantly

increased. They also found that Malassezia globosa was enriched
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in the mouse pancreatic cancer model. The elimination of the fungal

biome resulted in reduced tumor growth, while Malassezia globosa

was found to be enriched in tumors. Additionally, recolonization by

chromobacteria accelerated tumor growth. The promotion of

tumorigenesis by fungi was mediated through the activation of

the complement cascade by binding mannose-binding lectins to

glycans in the fungal cell wall (219). The presence of fungi was

confirmed in a mouse model of PDAC using 18S ribosomal RNA

(rRNA) sequencing and fluorescence in situ hybridization (56).

Fungi were found in the PDAC mouse model, Malassezia, and

another fungus, Alternaria, was detected. Treating mice with the

anti-fungal agent amphotericin B significantly reduced tumor

burden, while administration of M. globosa or A. Alternaria

promoted tumor growth. Mechanistically, the KRAS G12D

mutation increased the expression of IL-33, a damage-related

molecule known as a danger-associated molecular pattern

(DAMP) protein. The secretion of IL-33 is tightly regulated by

cells to avoid immune responses (220). Intratumoral fungi can

induce the secretion of IL-33 from tumor cells. Once secreted, IL-33

interacts with the cognate receptor ST2 to recruit TH2 and ILC2

cells, producing cytokines such as IL-4, IL-5, IL-13, and others,

promoting pancreatic cancer progression. Genetic deletion of IL-33

or anti-fungal treatment resulted in robust PDAC tumor regression.

The potential mechanism by which fungi induce IL-33 secretion

involves the Dectin-1/CARD9 pathway.

4.3.5 Fungi and the progression of lung cancer
Abnormal colonization of the lungs by Aspergillus due to

CARD9S12N mutations causes allergic bronchopulmonary

aspergillosis (221). Furthermore, Aspergillus sydowii has been

detected in tumor tissues of patients with lung cancer (59). In

human samples analysis, it has been found that abnormal

colonization of Aspergillus sydowii is associated with poor patient

prognosis. In mouse experiments, researchers observed abnormal

colonization of Aspergillus sydowii in the tumor microenvironment

and an accumulation of MDSC cells and PDL-1+ CD8+ T cells. This

process is mediated by the b-glucan found on the surface of

Aspergillus sydowii, which promotes the production of IL-1b by

macrophages. The specific pathway involved is the b-glucan/
Dectin-1/CARD9 pathway, and the accumulation of MDSC cells

and PDL-1+ CD8+ T cells contributes to the progression of

lung cancer.
4.4 The mechanistic studies of viral
infections in HCC carcinogenesis

The Hepatitis B Virus (HBV) contributes to HCC through

several processes. The HBV X protein (HBx) is instrumental in the

propagation and spread of HCC (222). HBx interacts with a protein

called the suppressor of cytokine signaling 1 (SOCS1), which

inhibits the breakdown of p65, a component of NF-kB. This
interaction activates factors associated with the epithelial-

mesenchymal transition (EMT), a significant process in the

migration and invasiveness of cancer cells (223). HBV infection
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also promotes disease progression through mechanisms such as

HBV gene integration, genomic instability, activation of cancer-

promoting signaling pathways, and alteration of hepatocellular

physiology (224, 225). Additionally, miR-142-3p, highly expressed

in HBV-infected HCC patients, promotes HBV-infected M1-type

macrophage ferroptosis, affecting the production of reactive oxygen

species and accelerating HCC development. The complexities of

HBV-induced HCC mechanisms are illuminated by these findings,

which also suggest possible therapeutic targets for intervention

HCV infection induces HCC also through a variety of

mechanisms. Chronic inflammation, oxidative stress, insulin

resistance, endoplasmic reticulum stress, hepatic steatosis, and

liver fibrosis are all included in this category (226). HCV-related

proteins, such as HCV core, E1, E2, NS3, and NS5A, dysregulate cell

cycle and metabolism by modulating signal pathways (227). HCV

infection also leads to genetic and epigenetic modifications,

including host genetic factors, dysregulation of signaling

pathways, and histone and DNA modifications (228, 229). In

addition to causing genetic and epigenetic changes, such as

alterations in host genetic elements, disruption in signaling

pathways, and changes in histones and DNA, HCV infection also

results in excessive production of reactive oxygen species (ROS) and

diminished function of natural antioxidants. This may cause

damage to the DNA, lipids, and proteins (230). ROS activates

signaling cascades, and the activity of transcription factors are

modulated, which leads to changes in gene expression associated

with cell survival, proliferation, angiogenesis, invasion, and

metastasis. These processes play a role in the advancement and

evolution of HCV-related HCC.
5 Perspective and discussion

Liver cancer is one of the most lethal cancer types due to lack of

effective early diagnosis. There are several steps, we may take to

improve the survival of HCC. First urgent step is to improve the

early diagnosis of HCC (3). Second is more effective classification of

responders and non-responders are needed to HCC

immunotherapy (90). In addition, tumor barrier obstructs the

infiltration of immune cells (231). To address the above issues in

HCC and microbiome may provide a key translational

breakthrough, as a bulk of data from melanoma study supports

this inference.

Current research on the relationship between cancer and

microbiome has some limitations. Firstly, there needs to be

standardized parameters to describe microbial composition,

making it difficult to compare and harmonize different studies for

meta-analysis (232). Secondly, many findings require validation in

high-quality, preferably prospective, epidemiologic studies (233).

Thirdly, the complexity and diversity of the microbiome make it

challenging to establish causal relationships between specific

microorganisms and cancer development (234). Additionally, the

microbiome is highly individualized, and there is a need to consider

inter-individual variation when studying its association with cancer

(235). Furthermore, the microbiome is influenced by various factors
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such as diet, lifestyle, and environmental exposures, which can

confound research findings (236). Lastly, there is a need for

increased accuracy and reproducibility of data linking the

microbiome to cancer.

Similarly, in preclinical research, the collection and processing

of patient samples also face challenges. The most serious problem is

“genomic contamination”, which will affect the results’ authenticity

and the conclusions’ reliability. The latest report focuses on 2019

studies that have raised questions (219). Furthermore, the results of

the re-analysis showed that there were very few sequencing reads

belonging to fungi in pancreatic tissue, and there were no significant

differences in the pancreatic or intestinal microbiome between

healthy people and PDAC patients (237). At the same time,

articles published in 2023 (238, 239) questioned the report

published by Rob Knight’s team in Nature magazine in 2020 (22).

The main questioning point is that it may be due to sequencing

errors and low quality, genetic mutations, and so on, causing some

human genome reads to fail to be successfully compared and thus

mistakenly identified as microbial reads. Therefore, when

processing and analyzing trace microbial samples, special

attention should be paid to sample contamination issues, and

multiple control groups should be set up to ensure the

authenticity of the data.

In the process of combining clinical samples, it is also necessary

to pay attention to the polymorphisms of genes related to the host’s

immune response to pathogens (240), For example, CARD9 is a

crucial adapter protein for host recognition and elimination of

fungi. Changes in its function will make the host more susceptible to

infection with fungi (241), In the Aspergillus fumigatus infection

model, the CARD9S12N mutation will be connected to CLR to

activate the non-canonical NF-kB pathway, thereby producing a

type 2 immune response (221), At the same time, CARD9S12N is

also related to the intestinal microbial composition of IBD patients,

with a strong correlation, particularly in patients with homozygous

mutations in CARD9S12N, where almost no Pichia is present in the

sigmoid colon (242). It can be speculated that in cancer patients,

gene mutations related to the immune response to pathogens seem

to make patients more susceptible to related microorganisms, and

microbial homeostasis will also be altered, leading to a

worse prognosis.

High levels of variability both within tumors and between

patients are distinguishing features of HCC (243). The

intertumoral and intratumoral heterogeneity is notably seen in

the differences in the genetic constitution (244, 245) and the

distinct microenvironments within the tumor (246, 247). As

previously mentioned, the commensal microbiome in HCC

patients differs significantly from that of healthy individuals.

Furthermore, various research groups have reported disparities in

the composition of the commensal microbiome in HCC patients.

Hence, the heterogeneity observed in HCC may also manifest in the

diversity of commensal microbiome within patients. Past research

has shown that if there is a disruption in the balance and

permeability of the intestines, it may allow microorganisms or

metabolites from the gut to penetrate the liver. Considering the

anatomical and physiological connections between the liver and
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gastrointestinal tract, microorganisms and metabolites translocated

to the liver activate the hepatic immune response, causing changes

in the hepatic immune microenvironment. As a result, it could

affect the development of HCC. Hence, along with traditional

tumor markers like AFP and GPC3 (3), it is recommended that

colonoscopy should be incorporated into the clinical assessment of

HCC patients for the evaluation of the intestinal barrier’s integrity.

Furthermore, when administering immunotherapy, it is crucial to

monitor commensal microorganisms in patients. Patient saliva,

tissue biopsies, blood, and stool samples should be collected

before and after treatment. These samples should then be

subjected to analyses, including metagenomics, viral profiling, and

metabolite detection, to analyze the patient’s commensal microbial

profile systematically. This analysis will help to establish a signature

that can predict host tumor progression and enable accurate
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treatment planning based on the patient’s unique commensal

microbiome profile. Precisely prediction is significantly important

in administering ICB combined with the commensal microbiome or

components. To enhance treatment effectiveness, characteristics,

antifungals, antibiotics, bile acid sequestrants, probiotics, and

prebiotics may be considered. Furthermore, prioritizing the

maintenance of intestinal mucosa health is crucial.

To conclude, we propose to perform state-of-art assays to

identify the phenotypic core set of microbiomes (bacteria, fungi,

viruses) as robust biomarkers for HCC early diagnosis and

treatment and to obtain a deep insight into the interaction

mechanism between microbiome and intrinsic factors using

precision mouse models (Figure 3). These understandings and

precision immunotherapy cycling can be further translated into

new forms of synthetic interventions for HCC immunotherapy.
FIGURE 3

The proposed state-of-art assays to identify the phenotypic core set of microbiomes (bacteria, fungi, viruses) as robust biomarkers for HCC early
diagnosis and treatment. The start of the precision immunotherapy starts from sampling, which includes saliva samples, blood samples, stool
samples, and biopsy tissue samples. Then Microbiome profiling includes the high-throughput sequencing and the mass spectrometry to detect
metabolism and proteomics. Further analysis will classify the microbe as beneficial, harmful and bystander microorganisms to indicating their
association with the responder and non-responder patients. Moreover, the causality of beneficial and harmful microbe is further characterized in
anti-tumor immunity in response to ICB. Based on the association and causal evidence, the optimized neoadjuvant strategies of ICB will be
administrated to responders and non-responders. The precision immunotherapy cycle help to repeat the optimization in the cycling way from
patients sampling to patient treatment. It continues to motivate and enlarge our deep understanding the microbe-host interplay, which ultimately
optimizing the translational research of HCC immunotherapy.
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