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Targeting Trop2 in solid
tumors: a look into structures
and novel epitopes
Xinlin Liu1,2, Jiyixuan Li1,2, Junwen Deng1,2, Jianan Zhao1,2,
Gaoxiang Zhao1,2, Tingting Zhang1,2, Hongfei Jiang1,2,
Bing Liang1,2, Dongming Xing1,2,3 and Jie Wang1,2*

1The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China, 2Qingdao
Cancer Institute, Qingdao, China, 3School of Life Sciences, Tsinghua University, Beijing, China
Trophoblast cell surface antigen 2 (Trop2) exhibits limited expression in

normal tissues but is over-expressed across various solid tumors. The

effectiveness of anti-Trop2 antibody-drug conjugate (ADC) in managing

breast cancer validates Trop2 as a promising therapeutic target for cancer

treatment. However, excessive toxicity and a low response rate of ADCs pose

ongoing challenges. Safer and more effective strategies should be developed

for Trop2-positive cancers. The dynamic structural attributes and the

oligomeric assembly of Trop2 present formidable obstacles to the

progression of innovative targeted therapeutics. In this review, we

summarize recent advancements in understanding Trop2’s structure and

provide an overview of the epitope characteristics of Trop2-targeted agents.

Furthermore, we discuss the correlation between anti-Trop2 agents’

epitopes and their respective functions, particularly emphasizing their

efficacy and specificity in targeted therapies.
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1 Introduction

Trop2, encoded by the TACSTD2 gene, is a type I surface glycoprotein (1, 2). It is

also referred to as pancreatic carcinoma marker protein GA733–1/GA733,

gastrointestinal tumor-associated antigen GA7331, epithelial glycoprotein-1 (EGP-1),

membrane component chromosome 1 surface marker 1 (M1S1), CAA1, and TTD2 (3).

Trop2 plays an essential role in the development of embryonic organs and shows

restricted expression levels in normal tissues (4). Conversely, overexpressed Trop2 has

been observed in various tumor types, including breast cancer (BC), non-small-cell

lung cancer (NSCLC), oral squamous cell carcinoma (OSCC), salivary gland

carcinomas (SGC), thyroid cancer (TC), gastric cancer (GC), pancreatic cancer (PC),

gallbladder cancer, colorectal cancer (CRC), prostate cancer, ovarian cancer, cervical
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cancer and urothelial cancer (UC). It’s found that overexpression of

Trop2 correlates with tumor invasion, metastasis, and poor

prognosis (5–10). Numerous binding partners for Trop2 have

been identified, including insulin-like growth factor 1 (IGF-1),

claudins 1 and 7, cyclin D1, tumor necrosis factor a-converting
enzyme (TACE), and protein kinase C (PKC). The anti-Trop2 ADC

(Trodelvy™, sacituzumab govitecan, SG), which has been approved

in metastatic BC and metastatic UC, proves Trop2 to be a valid

therapeutic target in tumor treatment (11–13). The positive results

encourage the clinical development of innovative Trop2-targeted

ADC (14, 15). However, the challenge remains due to their poor

response and unfavorable risk-benefit profiles. Hence, there is an

urgent need to develop safer and more effective strategies based on

the biological and structural characteristics of Trop2. This review

encapsulates recent advancements in Trop2 structural research,

critically supporting further developments and facilitating future

endeavors in the design of targeted therapeutics. Next, we proceed

to explore the characteristics of epitopes for Trop2-targeted agents,

highlighting the relationship between binding epitopes and

their efficacy.

2 Structure of Trop2

The Trop2 protein, with a full length of 323 amino acids (AA),

is composed of four domains, including a signal peptide (SP), an

extracellular domain (ECD), a single transmembrane helix (TMD)

and a cytoplasmic tail (ICD) (Figure 1A). These domains jointly

enable the complex functionalities of Trop2, encompassing

oligomerization, cell-cell communication and downstream

signaling regulation. We subsequently summarize the recent

advances in Trop2 structural studies, which will contribute to a

deeper comprehension of the mechanisms underlying its

oncogenic behaviors.
2.1 Extracellular domain (ECD)

As the largest part of the molecule, Trop2-ECD (H27-T274)

comprises three subdomains: a cysteine-rich domain (CRD), a

thyroglobulin type-1 domain (TY), and a cysteine-poor domain

(CPD). Trop2-ECD undergoes post-translational modification at

four N-glycosylation sites (N33Q, N120Q, N168Q, and N208Q).

Earlier studies employed conventional biochemical methods to

investigate the structure and functions of Trop2, but these

indirect approaches did not reveal the intricate molecular

mechanisms underlying Trop2 biology. Recent advances in

structural biology have enabled high-resolution structures of

Trop2-ECD, providing structural insights into the oligomeric

assembly of Trop2 (16, 17). Trop2-ECD shares 47.6% sequence

identity with the ECD of epithelial cell adhesion molecule

(EpCAM). Crystal analysis revealed that Trop2-ECD also presents

a similar conformation to EpCAM-ECD with a root-mean-square

deviation (RMSD) of 0.780 Å (Figure 1B). CRD’s stability is

achieved via the formation of three disulfide bonds (C34-C53,

C36-C66, and C44-C55), and another three disulfide bonds (C73-

C108, C119-C125, C127-C145) provide stability to the TY domain.
Frontiers in Immunology 02
Two a-helices (a2, a3) and a bC sheet comprising four b ribbons

(bC1-4) are observed in the C-termini of CPD. Notably, the

extended loop between a3 and bC4 of Trop2-CPD demonstrates

a conformation that is distinct from EpCAM (18, 19).

Utilizing two protein expression systems, Sun et al.

demonstrated that Trop2-ECD can self-assemble to cis- or trans-

dimers, and even tetramers (17). At the interface of cis-dimer, a

complicated hydrogen bond interaction network forms between

TY-loop of one monomer and the bC sheet of the other (Figure 1C).

Contrarily, in the case of Trop2-ECD trans-dimer, the interaction is

primarily mediated by the bC sheet of two monomers’ CPD, which

covers a comparatively smaller surface area than cis-dimer

(Figure 1D). The stability of trans-dimeric formation is facilitated

by three hydrogen bonds interaction (R206-H152’, D157-Y259’,

and D101-E197’). Superimposition of cis- and trans-dimers of

Trop2-ECD reveals a pronounced overlapped interacting surface,

indicating that these two formations could be mutually exclusive.

Interestingly, the tetrameric assembly of two cis- or trans-dimers

depends on the N-termini of CRD of Trop2-ECD, which has no

spatial steric hindrance with the interface of dimerization

(Figures 1E, F). This consequently provides a potential structural

model to explain the large clustering of Trop2 on the tumor cell

surface (5, 6, 20).

Tumor-specific proteolytic cleavage of Trop2, induced by

ADAM10 at R87-T88 of TY domain, demonstrated an activator

switch for tumor growth and metastasis (21, 22). These cleavage

sites are accessible in both cis- and trans-dimerization of Trop2-

ECD. Additionally, Trerotola et al. reported that this ADAM10-

mediated cleavage might trigger a profound rearrangement of

Trop2-ECD (22). Sun et al. used a truncated Trop2-△Q31-R88

protein to assess the cross-linking level of Trop2-ECD. The results

showed that Trop2-ECD retains the ability of dimeric assembly,

in which the free C108 of TY possibly forms disulfide bonds

to stabilize the dimer post Q31-R88 depletion. The detailed

assembly pattern of Trop2 following tumor-specific proteolytic

cleavage needs further investigation. Additionally, another

potential cleavage site between A193-V194 mediated by TACE/

ADAM17 also remains accessible in the dimeric formations

of Trop2-ECD (16, 23). Recently, Guerra et al. demonstrated

that Trop-2, Na+/K+ ATPase, CD9, PKCa, and cofilin assemble

a membrane signaling super-complex, driving CRC growth and

invasion (24). The formation of the complex can initiate proteolytic

cleavage of E-cadherin, remodel the b-actin cytoskeleton, and

activate the downstream signaling pathways of Akt and ERK.

Furthermore, the high expression level of Trop2-super-complex

determines a poor disease outcome in CRC patients. The researcher

speculated the assembly of this super-complex might be triggered

by clustering and proteolytic cleavage of Trop2-ECD or other yet

unidentified mechanisms.
2.2 Transmembrane domain (TMD) and
intracellular domain (ICD)

Trop2-ECD is anchored to the membrane via a transmembrane

helix domain (TMD), which links to the intracellular domain
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(ICD). However, the notable conformational flexibility poses

difficulty in resolving the high-resolution structure of Trop2-

TMD within the full-length Trop2. Pavs ̌ič et al. used the

molecular dynamics (MD) approach in examining the spatial

structural characteristics of Trop2-TMD as it is embedded in a

lipid bilayer (25) (Figure 1G). The MD simulation of two canonical

a-helices i l lustrated that Trop2-TM tends to form a

transmembrane dimer, with a “VVVVV” motif (V282-V286)

constituting the predominant interaction. This dimeric propensity
Frontiers in Immunology 03
of Trop2-TMD could bring the ICD of two Trop2 molecules closer,

potentially facilitating the downstream Trop2 signaling

activation (7).

Trop2-ICD, a cytoplasmic tail consisting of 26 amino acids

(T298-L323), serves as core transmitting signaling. It contains a

highly conserved phosphatidylinositol-4,5-bisphosphate (PIP2)

binding sequence and two serine phosphorylation sites (S303 and

S322), which can regulate the cell cycle progression and cell motility

(26, 27). The intramembrane hydrolysis mediated by ADAM10 or
B

C

D

E

F

G

H

A

FIGURE 1

Structures of Trop2. (A) Domain architecture of Trop2. (B) Structures of Trop2-ECD (PDB 7PEE) and EpCAM-ECD (PDB 4MZV). Superimposition of
Trop2-ECD and EpCAM-ECD illustrates their similar conformations. The enlarged part shows high structural similarity between Trop2-ECD-CPD and
EpCAM-ECD-CPD, with RMSD at 0.879 (Å) (C) Cis-dimer of Trop2-ECD (PDB 7E5N). (D) Trans-dimer of Trop2-ECD (PDB 7E5M). (E) Cis-tetramer of
Trop2-ECD (PDB 7E5N). (F) Trans-tetramer of Trop2-ECD. This tetramer formation could be obtained via a simple symmetrical operation on trans-
dimer. (G) Structure of Trop2-TMD from NMR and MD (PDB 2MAE). (H) Structures of non-phosphorylated (PDB 2MVL) and phosphorylated forms
(PDB 2MVK) of Trop2-ICD.
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TACE can induce the release of Trop2-ICD and then promote their

accumulation in the nucleus, resulting in the upregulation of cyclin

D1 and proto-oncogene c-myc (23). Nuclear magnetic resonance

(NMR) structures of Trop2-ICD illustrated that the central amino

acids (K305-L314) can form an a-helix. Through the comparison of

non-phosphorylated and phosphorylated forms of Trop2-ICD,

Pavsǐč et al. identified that phosphorylation (S303) of Trop2-ICD

mediates salt bridge reshuffling, leading to pronounced

conformational changes including ordering of the C-terminal tail

(25) (Figure 1H). Moreover, this phosphorylation-triggered

reorganization of Trop2-ICD could induce the formation of a

hydrophobic cluster (I311, E316, and S322), leading to their

association with membrane and providing accessibility for

Trop2’s binding partners.

3 Functions and binding epitopes of
Trop2-targeted agents

Despite Trop2’s identification as early as 1995, only in recent

years did breakthroughs occur in Trop2-targeted therapies (13, 28–

30). Various anti-Trop2 agents, including ADC, monoclonal

antibody (mAb), bispecific antibody (biAb), fusion protein, and
Frontiers in Immunology 04
chimeric antigen receptor (CAR) T-cell therapy, have been

developed to improve the clinical outcomes of patients with

Trop2-positive tumors (31, 32). The large ECD makes it the ideal

therapeutic target for anti-Trop2 agents that are engineered to

interfere with oncogenic functions. Therefore, the primary

direction of current Trop2-targeted therapeutics is agents based

on antibodies (Table 1). Below, the epitopes of Trop2-targeted

antibody-based agents are described and the efficacy and limitations

of each strategy are discussed.

3.1 Targeting CRD and TY domains
of Trop2

Trop2-CRD is located on the N-terminal region of Trop2-ECD

and is responsible for the tetrameric assembly of dimers. Thus,

targeting epitopes of CRD possesses the capacity to interfere with

the dynamic behavior of Trop2, leading to an interruption in Trop2

activation. In 2015, Ikeda et al. obtained an anti-Trop2 antibody,

named Pr1E11, via an adenovirus-based antibody screening (33).

The analysis of domain-deletion constructions of Trop2-ECD

revealed that Pr1E11 recognizes a unique epitope at the CRD

region. Although Pr1E11 demonstrated a weak internalization
TABLE 1 The Trop2-targeted antibodies in development.

Agent Institution/Company Classification
Binding
Epitope

Phase Reference

RS7 Immunomedics, Glead Science Antibody RCPD (Q237-Q252) Preclinical (17)

PrE11 Kyowa Hakko Kirin Antibody CRD (C34-K72) Preclinical (33, 34)

Trop2-IgG Nanjing Medical University Antibody – Preclinical (35)

AR47A6.4.2 ARIUS Research Antibody
CPD (L179-H187 and
Q252-Y260)

Preclinical (36)

77220, MOv16, MM0588-49D6, YY-
01, 162-46.2, T16, E1

Kyowa Hakko Kirin Antibody CPD (D146-R178) Preclinical (22, 33, 37)

7E6 Michigan State University Antibody
CPD (D171, R178,
and G241-P250)

Preclinical (38)

TrMab-6 Tohoku University Antibody – Preclinical (39)

TrMab-29 Tohoku University Antibody – Preclinical (40)

K5-70 Chiome Bioscience Antibody CRD (V43-D65) Preclinical –

hIMB1636
Chinese Academy of Medical Sciences &

Peking Union Medical College
Antibody – Preclinical (41)

2EF University of Messina Antibody CRD or TY Preclinical (42)

2G10 University of Messina Antibody CPD Preclinical (43)

Trop2-Fab Nanjing Medical University Fab – Preclinical (44)

(E1)-3s Immunomedics
Bispecific antibody

(Trop2/CD3)
RCPD (Q237-Q252) Preclinical (45)

F7AK3
Huazhong University of Science and
Technology Tongji Medical College

Bispecific antibody
(Trop2/CD3)

– Preclinical (46)

Anti-Trop2/CD3 bispecific antibody Sunshine Guojian Pharmaceutical
Bispecific antibody

(Trop2/CD3)
CRD, C34-K72 Preclinical (47)

TF12 Radboud University Medical Center
Bispecific antibody

(Trop2/HSG)
– Preclinical (48)
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activity and had no inhibitory effects on tumor cell proliferation in

vitro, it exhibited considerable antitumor activity due to better cell

surface retention and ADCC in vivo (34). Pr1E11 was subsequently

used to engineer a Trop2/CD3 biAb, comprising of the anti-CD3

mAb scFv inserting into Pr1E11 (47). This bispecific construct

demonstrated potent tumor-killing activity and resulted in reduced

induction of Th1 cytokines. These results indicate that Pr1E11,

when used as a naked mAb, is insufficient to obstruct the growth of

Trop2-positive tumor cells and its functionality depends on

immune effects. Further study is required to determine whether

the CRD-binding of Pr1E11 interferes with the oligomeric state of

Trop2 on the tumor cell surface, a critical factor for Trop2-mediated

tumor progression. K5-70, an anti-Trop2 mAb developed by

Chiome Bioscience (CN107236043B), demonstrated potent

antitumor efficacy in vivo in various tumor models, including

SW480, DU-145, and PK-59. Furthermore, it exhibits effective

suppression of a recurrent tumor model previously treated with

irinotecan hydrochloride. Chemically linked peptides on scaffolds

technology (CLIPS) indicated that K5-70 mainly targets the

polypeptide (V43-D65) within Trop2-CRD. Structural analysis

showed that the binding epitope of K5-70 is involved in the

tetramerization interface mediated by the N-terminal CRD,

suggesting its promising suppressive effects might be facilitated by

the disruption of Trop2 clustering on the tumor cell surface.

The TY domain plays a critical role in forming the stable Trop2-

ECD cis-dimer and contains conserved tumor-specific proteolytic

cleavage sites (R87-T88). Targeting the epitopes at the TY domain

seems a promising antagonist strategy to hinder the ordered

assembly of Trop2, potentially suppressing Trop2-associated

interactions and activation. Recently, Guerra et al. reported a

novel anti-Trop2 mAb 2EF that targets an N-terminal epitope of

Trop2-ECD (42). Analysis of recombinant Trop2 deletion mutants

revealed that 2EF recognizes either CRD or TY domain. 2EF

demonstrated the capability to bind to Trop2 at cell-cell junctions

in MCF-7 breast cancer cells, and at deeply located sites in prostate

cancer previously inaccessible to other anti-Trop-2 antibodies

(T16). It showed inhibitory effects on CRC cell growth in vitro,

particularly displaying increased activity at high cell densities. The

antitumor activity of 2EF was observed in multiple tumor models in

vivo, including SKOV3, COLO205, HT29, HCT116, and DU145.

Considering the non-overlapping recognition of 2EF and 2G10 (a

Trop2-targeted mAb selectively binding cleaved Trop2), the

researcher proposed that their combination could exert

synergistic antitumor efficacy. Predictably, 2EF significantly

enhanced the in vivo antitumor effects of 2G10 in Trop2-positive

tumor models.
3.2 Targeting Trop2-CPD

The CPD region, a stem part of Trop2-ECD, provides a

substantial accessible surface for the binding of anti-Trop2 agents.

The region plays a role in both cis-dimerization and trans-

dimerization of Trop2-ECD. Most existing literature on Trop2-

targeted drugs reports recognition of sites within the CPD region,

suggesting the presence of multiple immunodominant epitopes in
Frontiers in Immunology 05
this region (49). RS7 mAb, the antibody component of approved

anti-Trop2 ADC SG, was characterized by Stein and colleagues in

1990 (50, 51). While it shows potent internalization activity, this

mAb has no therapeutic activity in its unconjugated form (52, 53).

The analysis of domain-substituted Trop2 mutants demonstrated

that RS7 recognizes a linear epitope (Q237-Q252, also referred to as

RCPD) within the CPD region. The exposed loop is distant from the

interfaces of cis- and trans-dimerization, indicating RS7 is unable to

disrupt the self-assembly of Trop2-ECD (17). This could account

for why RS7 alone is ineffective in suppressing the growth of Trop2-

positive tumors in vivo. Thus, the tumor-killing activity of existing

RS7-based ADCs mainly relies on the toxicity of payloads following

specific binding to Trop2-expressed tumor cells (54). Additionally,

humanized RS7 has been used to construct biAbs, fusion proteins,

and CAR-T owing to its high affinity towards Trop2 (45, 55). It

remains unclear, though, whether these RS7-based anti-Trop2

therapeutics interfere with the biological functions of Trop2.

Much like RS7, another batch of mAbs, which includes 162-46.2,

T16, MOv-16 (37), 77220, MM0588-49D6, YY-01 (33), and E1 (22),

have limited therapeutic effects, partly because their binding

epitopes (D146-R178) are far from the key interaction surface of

Trop2 dimeric association.

AR47A6.4.2, produced through ARIUS’ FunctionFIRST™

platform, exhibited a significant tumor growth inhibition in

human models of breast (90%, p<0.00001), colon (60%, p<0.001),

and prostate (60.9%, p<0.001) cancer (36). This promising

antitumor activity is attributable to at least two mechanisms of

action (MOAs): complement-dependent cytotoxicity (CDC) and

downregulation of MAPK signaling pathway. Epitope mapping

experiments confirmed that AR47A6.4.2 recognized two liner

epitopes (L179-H187 and Q252-Y260) within Trop2-CPD.

Notably, the Q252-Y260 epitope overlaps with the interface of

both cis-dimer and trans-dimer, suggesting that AR47A6.4.2

might suppress tumor growth by the blockade of dimeric

formations of Trop2.

7E6, a mouse mAb primarily binding to the C-terminal of CPD,

showed significant inhibitory activity in the A431 xenograft model

(US8871908B2). A. Kowalsky and colleagues constructed single site

saturation mutagenesis (SSM) libraries to determine that D171,

R178, and G241-P250 contribute to the 7E6-Trop2 interaction (38).

Despite its antitumor effects in vivo, 7E6 did not inhibit tumor cell

proliferation in vitro but did mediate reduced migration. Confocal

images revealed that the nuclear expression and localization of

Trop2-ICD were retained in 7E6-treated cells. These findings

suggest that the inhibitory activity of 7E6 could be facilitated by

blocking the agonist binding or interfering with the downstream

signaling cascade.

Previous studies indicated that the immunodominant epitopes

appear to be equally accessible in both tumors and normal cells (5,

37, 56). Such poor tumor-specificity of anti-Trop2 agents might

result in the exposure of normal tissues, leading to potentially

unmanageable toxicity (57). Given that tumor-specific cleavage

induced by ADAM10 triggers the conformational rearrangement

of Trop2-ECD and might expose previously inaccessible sites,

Alberti and colleagues recently used deletion mutagenesis without

immunodominant epitopes to generate a cancer-specific CPD-
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targeted mAb 2G10 (58). It shows a higher affinity (Kd < 10−12 mol/

L) towards cleaved/activated Trop2 in tumor cells compared to

uncleaved/wtTrop2 in normal cells (43). Humanized 2G10

(Hu2G10) demonstrated in vivo inhibition of various tumor

types, including breast, colon, ovary, and prostate cancers. No

systemic toxicity was observed following Hu2G10 treatment. The

ACD setting of Hu2G10, namely LCB84, demonstrated potent

effectiveness against multiple Trop2-positive cell-line derived

xenograft (CDX) models, including triple-negative breast cancer

(TNBC), pancreatic ductal adenocarcinoma (PDAC), GC and

NSCLC (59). This novel 2G10-based strategy, which recognizes

tumor-specific Trop2, possesses the potential to improve the clinical

outcome of next-generation Trop2-targeted therapies.

4 Conclusions and perspectives

The considerable advancements in antibody-based anti-Trop2

therapies have reshaped the treatment landscape for Trop2-positive

solid tumors. Accumulated expertise on the mechanism of Trop2-

mediated oncogenic activity, together with an enriched

understanding of structural biology, has driven the progress of

next-generation therapies. However, it remains unresolved whether

patients with Trop2-positive cancers would benefit from alternative

agents targeting other available epitopes, specifically the safe and

tumor-specific sites. It’s worth noting that a significant number of

anti-Trop2 candidate drugs still have unclear epitope information

(39, 40, 46, 48, 60–63). Therefore, the pursuit to discover more

potent Trop2-targeted therapeutics based on novel druggable

epitopes and to further investigate the relationship between

epitopes and MOAs of anti-Trop2 agents continues to be a

crucial avenue for future research. The second aspect to consider

for future research is to elucidate the full-length structure of the

Trop2. Regrettably, currently, all available high-resolution

structural models of Trop2 are based on uncoupling domains,

resulting in a lack of a comprehensive view of the dynamics

involving intact receptor activation and antigen-antibody

interactions. Despite the identification of numerous anti-Trop2

agents and Trop2-binding partners, their detailed interaction

mechanisms remain ambiguous, partly due to the lack of

structures of Trop2-containing complexes. This incomplete

structural information constrains the structure-guided design of

optimum inhibitors, which could provide a more comprehensive

disruption of Trop2-centered signaling pathways.
Frontiers in Immunology 06
In conclusion, we must maintain our unceasing dedication to

deepening our understanding of Trop2’s structural biology.

Unraveling the complex mechanisms underlying the varied

therapeutic functions induced by distinct epitope binding would

aid in the rational design of Trop2-targeted strategies and increase

opportunities to maximize clinical benefits for Trop2-positive

tumor patients.
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