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Hospital of Zhengzhou University, Zhengzhou, Henan, China, 3Department of Medicine, Moores
Cancer Center, and Sanford Stem Cell Institute, University of California, San Diego, La Jolla,
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Receptor tyrosine kinases (RTKs) play a crucial role in cellular signaling and

oncogenic progression. Epidermal growth factor receptor tyrosine kinase

inhibitors (EGFR TKIs) have become the standard treatment for advanced non-

small cell lung cancer (NSCLC) patients with EGFR-sensitizing mutations, but

resistance frequently emerges between 10 to 14 months. A significant factor in

this resistance is the role of human EGFR 3 (HER3), an EGFR family member.

Despite its significance, effective targeting of HER3 is still developing. This review

aims to bridge this gap by deeply examining HER3’s pivotal contribution to EGFR

TKI resistance and spotlighting emerging HER3-centered therapeutic avenues,

including monoclonal antibodies (mAbs), TKIs, and antibody-drug conjugates

(ADCs). Preliminary results indicate combining HER3-specific treatments with

EGFR TKIs enhances antitumor effects, leading to an increased objective

response rate (ORR) and prolonged overall survival (OS) in resistant cases.

Embracing HER3-targeting therapies represents a transformative approach

against EGFR TKI resistance and emphasizes the importance of further research

to optimize patient stratification and understand resistance mechanisms.
KEYWORDS

non-small cell lung cancer (NSCLC), epidermal growth factor receptor (EGFR), tyrosine
kinase inhibitors (TKIs), receptor tyrosine kinases (RTKs), resistance, human EGFR3
(HER3), antibody-drug conjugates (ADCs), Patritumab Deruxtecan (HER3-DXd)
Abbreviations: ADC, Antibody-drug conjugate; ALK, Anaplastic lymphoma kinase; BsAb, Bispecific

antibody; CNS, Central nervous system; EAP, Early access program; EGFR, Epidermal growth factor

receptor; eNRGy, A Phase I/II Study of MCLA-128, a full length IgG1 Bispecific Antibody Targeting

HER2 and HER3, in Patients with Solid Tumors; ERBB, Erythroblastic oncogene B; HER2, Human epidermal

growth factor receptor 2; HER3, Human epidermal growth factor receptor 3; HER3-DXd, Patritumab

Deruxtican; HER4, Human epidermal growth factor receptor 4; HRG, Heregulin; mAb, Monoclonal

antibody; MET, Mesenchymal epithelial transition; NSCLC, Non-small cell lung cancer; NRG/NRG1,

Neuregulin; ORR, Objective response rate; OS, Overall survival; PFS, Progression-free survival; RFS,

Relapse-free survival; RTK, Receptor tyrosine kinase; T790M, Thr790Met; TKI, Tyrosine kinase inhibitor.
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1 Introduction

Lung cancer, particularly non-small cell lung cancer (NSCLC),

remains a pivotal global health challenge. In 2023, it is projected

that the United States will face an estimated 238,340 new NSCLC

cases, resulting in a staggering 127,070 deaths, as reported by the

Cancer.Net Editorial Board (www.cancer.net). NSCLC comprises

approximately 85% of all lung cancer cases and is primarily

categorized into adenocarcinoma, squamous cell carcinoma, or

large cell carcinoma (www.cancer.org).

The hallmark of NSCLC is uncontrolled cellular proliferation

within lung tissues, resulting in tumor formation (1–3). Surgical

intervention remains the gold standard for patients diagnosed at

early stages (stages I to II), however, the specter of recurrence

persists, with rates fluctuating between 30% to 55% within five years

post-surgery (4). Pignon et al. emphasized the enduring challenges

of recurrence and mortality across NSCLC stages (5).

Despite advancements in therapy, the overall survival (OS) metrics

for NSCLC have remained disappointingly stagnant. A study by

Goldstraw et al. in 2016 portrayed a bleak picture, illustrating

decreasing survival rates with disease progression (6). This

underscores the urgent need for innovative therapeutic strategies.

Emerging molecular insights have identified the epidermal

growth factor receptor (EGFR) gene as a pivotal player in the

pathological development of NSCLC (7, 8). Aberrations in EGFR

can trigger abnormal cellular growth (9–12). Distinct mutations,

associated with varying NSCLC progression, are more prevalent in

certain populations (13, 14). Key studies have revealed that a

significant proportion of NSCLC patients harbor EGFR mutations

(15, 16), with the common types including EGFR 19 deletions (17,

18), EGFR exon 21 L858R point mutations EGFR exon 20

insertions, T790M-like mutations and P-loop aC-helix
compression (PACC) mutations (17–19). A multicenter study by

the National Network Genomic Medicine in Germany grouped

these mutations into three major categories: uncommon mutations

(G719X, S7681, L861Q, and combinations), exon 20 insertions, and

very rare EGFR mutations (very rare single point mutations,

compound mutations, exon 18 deletions, exon 19 insertions) (18).

The prevalence of EGFR mutations in NSCLC patients varies by

region, with an overall rate of 17.2%. In Southeast Asia, it stands

within the range of 40% to 60%, while North Africa records a lower

prevalence at 18%. In Caucasian populations, the prevalence falls

between 10% and 20%, and in the Middle East, it is slightly higher

than that observed in Caucasian populations (20, 21). These

regional disparities underscore the importance of considering

genetic factors in NSCLC diagnosis and treatment strategies.

Patients whose tumors exhibit EGFR mutations initially

respond favorably to first-generation EGFR tyrosine kinase

inhibitors (TKIs) such as erlotinib and gefitinib (22, 23).

However, the development resistance, particularly through

secondary EGFR mutations like T790M, hampers long-term

therapeutic success (24–26). Osimertinib, a pioneering third-

generation EGFR-TKI, emerged as a response to the T790M

mutation in patients who developed resistance to the earlier TKIs,

providing a lifeline for those battling advanced NSCLC (25, 27).

Nonetheless, even these promising treatments are not entirely
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immune to resistance, underscoring the need for alternative

therapeutic modalities (28, 29).

An intriguing observation has been the elevated HER3 signaling

in NSCLC patients who develop resistance to EGFR TKIs,

suggesting HER3’s ancillary role in the resistance modulation (30,

31). This has shifted the research spotlight onto HER3, not just as

an EGFR family member, but as a potential linchpin in the

resistance mechanism.

Currently, the HER3 receptor, an EGFR family member, is

garnering significant attention. As research delves deeper, the role

of HER3 in EGFR TKI resistance becomes increasingly apparent,

presenting a tantalizing therapeutic target (32, 33). This review

delves into the promising realm of targeting HER3 against EGFR

TKI resistance in NSCLC. We aim to demystify the intricate EGFR-

HER3 relationship, evaluate HER3-focused therapeutic strategies,

and champion the potential of HER3 inhibition as a novel approach

against EGFR-driven NSCLC.
2 The significance of HER3 in the
EGFR family framework

The HER family, a subset of the erythroblastic oncogene B

(ERBB) category, plays a pivotal role in cellular regulation,

comprising receptors such as EGFR (ERBB1/HER1), HER2

(ERBB2), HER3 (ERBB3), and HER4 (ERBB4), orchestrate critical

cellular processes, including growth, survival, and differentiation

(34, 35). Within this family, HER3 has increasingly been recognized

for its distinct role in the pathogenesis of NSCLC and its

implications for patient prognosis.

Studies have consistently shown that high HER3 expression is

associated with advanced NSCLC and poorer outcomes, suggesting

its value as an independent prognostic indicator (36, 37). The

overexpression of HER3’s ligand, heregulin (HRG), further

contributes to the disease’s aggressiveness by enhancing tumor

proliferation and metastatic capacity (38). HRG-mediated

activation of HER3 leads to downstream PI3K/AKT pathway

signaling, promoting cell survival, and imparting resistance to

EGFR-targeted therapies, a cornerstone of the NSCLC treatment

(39, 40).

The clinical impact of HER3 is also exacerbated by its co-

expression with other EGFR family members, notably HER2 and

EGFR, which is linked to a more aggressive NSCLC phenotype and

therapeutic resistance (39, 41, 42). Current research into the

molecular mechanisms of HER3 has revealed its role in oncogenic

signaling cascades that underpin NSCLC progression, thereby

highlighting the potential of HER3 as a therapeutic target (42).

Despite its low intrinsic kinase activity, HER3’s capacity to

dimerize, particularly with HER2, is essential for signaling, which is

critical for cell growth and survival (40, 43–45). This dimerization

often intensified during EGFR TKI treatment, leads to therapy

resistance, emphasizing the complexity of targeting the EGFR/

HER3 axis (45, 46). The interplay between abnormal EGFR

mutations and increased HER3 activity underlines the necessity

for multi-receptor targeting strategies to overcome the resistance
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(47). These intricate relationships, especially the dynamic with

HER2 and the consequential signaling pathways they initiate, are

further elaborated, and visualized in Figure 1.

After understanding the fundamental ligand-receptor

interactions within the HER family as illustrated in Figure 1, it’s

essential to delve deeper into the specific dimerization dynamics

that play a pivotal role in cellular signaling. Figure 2 offers a more

focused look at these interactions, emphasizing the key roles of

HER3 in both its active and dormant states.
3 EGFR TKI resistance mechanisms

EGFR TKIs have significantly changed the treatment landscape

of NSCLC for patients with EGFR mutations by targeting the

critical tumorigenic EGFR pathway. However, the clinical efficacy

of these agents is often compromised by the emergence of resistance

mechanisms, presenting an ongoing and significant obstacle in

NSCLC management (48–50). The most well-characterized of

these resistance mechanisms is the acquisition of secondary

mutations in the EGFR gene, with the T790M mutation being

exemplary. This mutation changes the EGFR protein structure,

thereby increasing its affinity for ATP and diminishing the

effectiveness of first- and second-generation EGFR TKIs. This

alteration facilitates continued tumor cell proliferation and

survival by effectively bypassing the TKI’s inhibitory effects (29,

47, 51–55).

However, tumor cell adaptability extends beyond genetic

mutations. NSCLC cells can invoke bypass signaling pathways or

amplify other receptor tyrosine kinases, such as HER2, to sustain

proliferative signaling. The overexpression of HER2 leads to ligand-
Frontiers in Immunology 03
independent activation of downstream pathways, particularly the

PI3K/AKT and MAPK pathways, contributing to ongoing cell

growth and survival, thereby mitigating the effects of EGFR

inhibition (50, 56–58). These resistance mechanisms are diverse

and multifaceted, as summarized in Table 1.

The complexity of resistance is further exemplified by the role of

HER3. Unlike its more active family members, HER3 lacks intrinsic

kinase activity but becomes a potent signaling entity upon

heterodimerization with other receptors such as HER2, EGFR,

and MET. These heterodimers act as intricate molecular switches

that can engage various intracellular signaling cascades,

contributing to a robust and resilient network of proliferative

signals that enhance the cell’s ability to withstand targeted

therapy (39, 41). Recent research on ALK+ non-small cell lung

cancer sheds light on HER3’s significant role in resistance. In

contrast to other active receptors, HER3 becomes a powerful

signaling agent when paired with receptors like HER2, EGFR, and

MET, leading to resilient growth signals that resist targeted

therapies. A study on ALK inhibitors in ALK+ NSCLC unveiled

HER3’s involvement in resistance. Co-targeting ALK and HER3

with inhibitors hindered colony growth and reduced pAKT levels,

highlighting the potential of joint ALK and HER3 targeting as a

promising avenue in overcoming resistance (71).

Clinical investigations have started to illuminate the

significance of HER3 heterodimers as biomarkers for resistance.

Notably, the co-existence of HER3 with HER2 or MET has been

associated with poor therapeutic outcomes, indicating their

potential utility as predictive markers for drug resistance.

Furthermore, they present themselves as novel targets for the next

generation of targeted therapies (31, 38, 71). For instance, recent

clinical observations have highlighted the correlation between
FIGURE 1

Interactions and dimerization within the HER receptor family. The diagram displays the complex ligand-receptor engagements within the HER family.
Ligands including EGF, TGFa, HB-EGF, b-Cellulin, Amphiregulin, Epiregulin, and heregulin (HRG) bind to the HER receptors, inducing diverse dimeric
interactions. Specifically, HER1 associates with HER2, while HER2 can either create homodimers or bind to HER3 or HER4 upon HRG’s presence. The
significance of these dimers, particularly HER2-HER3 and HER2-HER4, in triggering crucial downstream signaling pathways such as PI3K-AKT, MAPK,
JAK-STAT, PLCg-PKC, and SRC, that regulate cellular processes like proliferation, differentiation, apoptosis, and movement, is emphasized.
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increased levels of HER3/HER2 heterodimers and a diminished

response to EGFR TKIs. Such correlations are opening new avenues

for the development of therapeutic strategies aimed at disrupting

these heterodimers (33, 72, 73).

The table presents a concise summary of the multifaceted

resistance mechanisms that have been characterized in NSCLC,

emphasizing the diverse strategies employed by cancer cells to evade

the effects of TKIs.

Addressing the multifaceted nature of EGFR TKI resistance

requires an integrated approach that combines molecular profiling

with an in-depth understanding of the cellular signaling landscape.

This approach is vital for the development of personalized treatments

that can adapt to the evolving genetic context of each patient’s cancer

(74–76). The recognition of HER3 heterodimerization’s role in

resistance mechanisms is a testament to the continued need for

innovation in the field of targeted therapy.

In conclusion, EGFR TKIs have marked a paradigm shift in

NSCLC treatment, yet the battle against resistance is ongoing. The

elucidation of complex resistance mechanisms, especially involving

HER3 and its heterodimers, is critical for the development of novel

therapeutic strategies. These strategies will not only need to

counteract existing resistance pathways but also preemptively

address potential future mechanisms of resistance to improve

long-term patient outcomes.
4 Strategies and methods of
targeting HER3

The introduction of EGFR TKIs has marked a significant

milestone in NSCLC treatment for patients with EGFR mutations.
FIGURE 2

The interplay of HER family members in cell signaling pathways. This graphic depicts the dimerization interactions between HER1 (EGFR) and HER3,
as well as between HER2 and HER3. The emphasis is on HER3’s significance in both its operational and dormant states. An operational HER3 forms
dimers with fellow members to convey signals through intermediaries like SHC, p85, and p110, whereas a dormant HER3 remains detached. Notably,
the interaction of HER2 and HER3, when the ligand NRG is present, results in the AKT pathway’s activation, promoting cell survival and proliferation.
The role of various molecular intermediaries in transmitting these signals is also portrayed.
TABLE 1 Summary of EGFR TKI Resistance Mechanisms in NSCLC.

Mechanism Description
Impact
on
Resistance

References

Secondary EGFR
Gene Mutations

T790M “gatekeeper”
mutation alters
EGFR protein
structure, enhancing
its ATP affinity

Reduces
efficacy of
EGFR TKIs,
promoting
tumor
proliferation

(55, 59, 60)

Bypass Signaling

Activation of
alternative pathways
(e.g., MET) and
amplification of
other receptors
(e.g., HER2)

Bypasses the
effects of EGFR
TKIs, ensuring
continued
growth and
survival of
cancer cells

(12, 57, 61, 62)

Epithelial-
Mesenchymal
Transition
(EMT)

Transition imbues
cells with stem-like
properties, increased
mobility, and
enhanced
resistance

Increases
resilience
against TKIs
and promotes
tumor
invasiveness

(63–65)

HER3 Activation

Upregulation and
interaction with
PI3K/AKT and
HER2 pathways

Strengthens
cell signaling,
fostering
cellular
adaptability
and resistance

(39, 66, 67)

Growth
Factors
Activation

Growth factors
(EGF, VEGF, PDGF,
FGF) binding and
activating tyrosine
kinase enzymes

Promotes
cellular
division and
growth,
counteracting
TKI effects

(68–70)
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However, resistance to these agents, notably from secondary

mutations such as T790M, has necessitated novel therapeutic

strategies. Within this context, the HER3 receptor has become a

focal point due to its involvement in resistance to EGFR TKIs (38,

75–77).

HER3, inherently lacking kinase activity, becomes a potent

mediator of cellular signaling upon dimerization with other HER

family receptors, especially HER2. This interaction is pivotal in cells

with amplified HER2, as it triggers the PI3K/AKT and MAPK

pathways, crucial for cancer cell survival and proliferation (41,

78–80).

The strategic disruption of these signaling cascades is the

cornerstone of targeted therapy against HER3. Figure 3 illustrates

several therapeutic approaches, including monoclonal antibodies

(mAbs) like Trastuzumab, which inhibit HER2 dimerization;

bispecific antibodies such as Zenocutuzumab (MCLA-128) that

bind to both HER2 and HER3; and antibody-drug conjugates

(ADCs) like Patritumab-DXd, which deliver cytotoxic drugs

directly to HER3-positive cells, leveraging the receptor’s

internalization to induce cell death (81).

Seribantumab, a monoclonal antibody that targets HRG-

mediated activation of HER3, is under extensive investigation.

Studies by Sequist et al. and Denlinger et al. have shown its

potential in NSCLC and other solid tumors, indicating their role

in overcoming resistance and improving patient outcomes (82, 83).

The phase II study of MCLA-128, a full-length IgG1 bispecific
Frontiers in Immunology 05
antibody targeting HER2 and HER3, in patients with solid tumors

(eNRGy) trial and early access program (EAP) are further

evaluating Zenocutuzumab for its efficacy in NRG1 fusion-

positive tumors, with pharmacokinetic analyses affirming the

appropriateness of flat dosing for various solid tumors. Recent

data from the eNRGy study and EAP have shown promising

results in patients with NRG1 fusion-positive solid tumors,

including NSCLC, pancreas cancer, breast cancer, and

cholangiocarcinoma. The investigator-assessed objective response

rate (ORR) was 34%, with responses observed in various tumor

types. Additionally, the duration of response (DOR) was reported to

be 9.1 months, indicating a robust and durable efficacy of

Zenocutuzumab. Notably, the safety profile of Zenocutuzumab

was well-tolerated, with grade ≥ 3 adverse events reported in less

than 5% of patients. These findings suggest that Zenocutuzumab

holds promise as a treatment option for advanced NRG1 fusion-

positive cancers, offering potential benefits across different tumor

histology. The ongoing phase II eNRGy trial and early access

program continue to investigate Zenocutuzumab’s effectiveness in

this patient population, providing hope for improved therapeutic

options in the future (44, 84, 85).

GSK2849330, a pioneering monoclonal antibody that binds to

HER3, preventing activation and subsequent downstream signaling,

has shown a promising safety profile and efficacy in preliminary

studies, including those with NRG1 expression, marking it as a

potential new therapy for HER3-dependent tumors (86–88).
A B DC

FIGURE 3

Overview of HER3 structure and targeting strategies. (A) Structure of HER3 Receptor. This detailed design of the HER3 receptor, including its
extracellular domain for ligand binding, transmembrane domain, intracellular kinase domain, and C-terminal tail, is pivotal for its function and the
development of targeted therapies. (B) mAb Blocks Dimerization. Trastuzumab, a mAb, inhibits HER2 dimerization, a necessary step for HER2/HER3
signaling, effectively blocking downstream oncogenic pathways. (C) BsAb against HER2/HER3. Zenocutuzumab (MCLA-128) demonstrates a dual-
action approach by binding to both HER2 and HER3, potentially overcoming resistance arising from HER3 involvement. (D) ADC Targeting HER3.
Patritumab-DXd’s targeted delivery of a cytotoxic payload to HER3-expressing cells offers a refined strategy for addressing tumors resistant to
standard EGFR TKIs.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1332057
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2023.1332057
Patritumab (U3-1287), a fully human monoclonal antibody

against HER3, competes with NRG for HER3 binding, hindering

the proliferation and survival of tumor cells. Clinical trials have

demonstrated its efficacy, particularly in NSCLC, with potential as a

predictive biomarker for patient response to treatment (89, 90).

Further research has validated its pharmacokinetics and safety in

combination with other treatments, highlighting its significant role

in the targeted cancer therapy (91–93).

Complementing these targeted therapies, ADCs like

Patritumab-DXd have shown promising efficacy in phase II

clinical trials, notably in NSCLC patients with resistance to EGFR

inhibitors, including those with CNS metastases (94, 95). In an

update on April 14, 2023, the ongoing phase III trial, HERTHENA-

Lung02 (NCT05338970), suggested that Patritumab-DXd may be

effective against various EGFR TKI resistance mechanisms,

providing a new option for drug-resistant cancers. The study

comprises approximately 560 patients with EGFR-activating

mutations (exon 19 deletion or L858R) who progressed after 1 or

2 lines of EGFR TKI treatment, including a third generation TKI.

Patients are randomly assigned to HER3-DXd or PBC treatment,

with the primary endpoint being progression-free survival and the

key secondary endpoint being overall survival. This trial has the

potential to expand treatment choices for EGFR-mutated NSCLC

patients confronting TKI resistance (https://doi.org/10.1158/1538-

7445.AM2023-CT066).

Innovative combination strategies, such as pairing Patritumab-

DXd with immune checkpoint inhibitors, are being explored to

potentially enhance the overall anti-tumor effect, while also

combining EGFR TKIs with HER3 inhibitors, as in the case of

Osimertinib with Patritumab and Erlotinibotinib with

Lumretuzumab, to achieve effective therapeutic outcomes and

delay resistance (96, 97).

In conclusion, the dynamic targeting of HER3 with monoclonal

antibodies, bispecific antibodies, and ADCs, as depicted in Figure 3,

symbolizes a groundbreaking chapter in cancer treatment.

Zenocutuzumab and Patritumab-DXd are at the vanguard of

expanding treatment options, with ongoing trials confirming their

potential to significantly enhance outcomes for patients facing

HER3-mediated resistance in NSCLC.
5 Advances in HER3 targeting: from
bench to bedside

The increasing acknowledgment of HER3’s role in oncogenesis

has spurred intensive research into its therapeutic potential,

spanning foundational preclinical studies to advanced clinical trials.

Preclinical studies highlight HER3’s significant impact on cell

growth when overexpressed in various cancers (98). Activation by

ligands such as HRG initiates vital cell survival pathways (42, 99).

Given HER3’s limited kinase activity, its relationship with counterparts

like HER2 becomes even more critical. The focus during the preclinical
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phase has been on devising strategies and developing compounds for

HER3. The utilization of gene-editing tools like siRNA (38) and

CRISPR (100), together with innovative HER3 inhibitors (44, 77, 84),

suggests promising future therapies. Therapies targeting HER3,

especially when paired with EGFR or HER2 treatments, demonstrate

increased efficacy against resilient tumors (41).

In vitro studies offer detailed insights into HER3’s cellular

behavior, with a notable correlation between higher HER3

expression and increased cell growth. Advanced molecular

techniques have further underlined HER3’s central role in cellular

signaling, particularly when interacting with HER2 (101).

Techniques such as surface plasmon resonance have been

instrumental in understanding HER3’s role in cancer progression.

Insights from animal models, especially xenografts, underscore

the efficacy of HER3-targeted treatments. Observations indicate

that inhibiting HER3 can lead to reduced tumor growth and

extended survival rates (38, 75, 102). Studies have also associated

heightened HER3 expression with aggressive tumor traits, including

a propensity for metastasis and increased angiogenesis (37, 41).

In the realm of clinical trials, various HER3-targeting agents,

including monoclonal antibodies like patritumab (81, 94, 95) and

seribantumab (82, 103) have shown promising results. However,

these agents are just a portion of the broader landscape. An

extensive exploration of other antibodies under clinical evaluation

can provide insights into their development, mechanisms, and

therapeutic potential. Given the challenge of drug resistance,

strategies combining EGFR TKIs with HER3 inhibitors are

gaining traction (23, 31, 104, 105).

Precision medicine’s rise emphasizes treatments tailored to

individual patient biomarkers, pushing for more personalized and

potent NSCLC therapies (106). For a comprehensive overview of

efforts and advancements in HER3-targeted treatments for NSCLC,

refer to Table 2, which lists relevant clinical trials.
6 Overcoming obstacles in
HER3 targeting

HER3 offers significant therapeutic potential in oncology, yet its

exploitation is riddled with challenges. The structural similarities

within the ErbB receptor family, which includes EGFR (HER1),

HER2, HER4, and HER3, lead to specificity issues. Drugs targeting

HER3 might inadvertently influence other receptors, posing risks of

reduced efficacy and unexpected complications. While monoclonal

antibodies offer heightened specificity, there remains a concern about

cross-binding within the ErbB family (107). Furthermore, even kinase

inhibitors tailored for HER3 could impact other proteins, given the

unique nature of HER3’s kinase domain. This highlights the

importance of proteomic arrays and biomarker evaluations (42, 108).

Another hurdle is the adaptability of tumors, especially their

propensity to develop secondary resistance. Such challenges are

evident in anaplastic lymphoma kinase (ALK)-rearranged lung
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cancers, where mutations, alternative activation pathways, and

epigenetic shifts are observed (109–112). Consequently, HER3-

targeted treatments might encounter similar resistance

mechanisms. It’s imperative to employ advanced genomic tools

for continuous patient monitoring and to develop therapies that can

preemptively counter resistance (113).

While combination therapies enhance potency, they may also

escalate toxicity (114). Unexpected synergistic impacts or

alterations in drug pharmacokinetics can lead to complications.

Striking a balance between treatment efficacy and patient safety is

crucial, necessitating regular health evaluations, adjusted dosing,

comprehensive patient education, and robust supportive care.

In conclusion, effective HER3 targeting requires a

comprehensive, patient-centric strategy to harness its therapeutic

benefits without compromising safety.
7 Evolving horizons in HER3 targeting

The progress in HER3 targeting highlights the critical role of

multidisciplinary collaboration. By amalgamating the insights of

researchers, clinicians, and pharmaceutical companies,

transformative strides in cancer care become possible. The

emphasis is on crafting next-generation HER3 agents, optimizing

specificity and efficacy.

One promising approach is coupling HER3 inhibitors with

other treatment modalities, notably immunotherapies. These

synergistic combinations enhance the immune system’s ability to

recognize and eliminate cancer cells. In the context of NSCLC, the

surge in HER3 inhibitor studies not only illuminates their

therapeutic potential but also aids in pinpointing ideal patient

candidates. These discoveries hold promise for reshaping

treatment protocols for NSCLC and beyond.

As we reflect on the strides made, the horizon for HER3-focused

treatments radiates with hope. This era is defined by

groundbreaking innovations, holistic treatment blueprints, and an
Frontiers in Immunology 07
unwavering commitment to research, signifying a transformative

phase in cancer care.
8 Conclusion

The advent of EGFR TKIs has been a game-changer for NSCLC

treatments. However, resistance remains a significant challenge,

particularly due to the upregulation of HER3. Combining HER3

targeting with EGFR TKIs emerges as a potent countermeasure

against such resistance.

As the repertoire of HER3-targeted agents grows and their

integration with therapies like immunotherapies becomes more

refined, optimism for the future intensifies. Realizing the

potential in this domain requires a multi-pronged approach:

rigorous research, precise patient selection via advanced

biomarkers, tactical treatment combinations, and a deepened

comprehension of resistance pathways. With ongoing

improvements in clinical trials and the development of

predictive biomarkers, the potential of HER3 targeting in

NSCLC shines brightly, fostering renewed optimism for

surmounting EGFR TKI resistance.
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