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Shifting the paradigm in RNA
virus detection: integrating
nucleic acid testing and
immunoassays through single-
molecule digital ELISA
Zhiyong Wang and Pei Wei*

Department of Immunology, Zunyi Medical University, Zhuhai, China
In this review article, we explore the characteristics of RNA viruses and their

potential threats to humanity. We also provide a brief overview of the primary

contemporary techniques used for the early detection of such viruses. After

thoroughly analyzing the strengths and limitations of these methods, we

highlight the importance of integrating nucleic acid testing with

immunological assays in RNA virus detection. Although notable

methodological differences between nucleic acid testing and immune

assays pose challenges, the emerging single-molecule immunoassay-

digital ELISA may be applied to technically integrate these techniques. We

emphasize that the greatest value of digital ELISA is its extensive

compatibility, which creates numerous opportunities for real-time, large-

scale testing of RNA viruses. Furthermore, we describe the possible

developmental trends of digital ELISA in various aspects, such as reaction

carriers, identification elements, signal amplification, and data reading, thus

revealing the remarkable potential of single-molecule digital ELISA in future

RNA virus detection.
KEYWORDS

RNA viruses, nucleic acid testing, immunoassays, digital ELISA, single
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Introduction

RNA viruses encompass a range of pathogens characterized by their use of RNA as a

genetic material (1, 2). They include different types such as influenza virus (3, 4), Ebola

virus (5, 6), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (7, 8).

Because of their high mutation rate and potential to cause severe diseases, they pose a

significant threat to global public health. For this reason, they must be detected early to

prevent disease transmission and facilitate effective treatments. Current detection
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methods include virus isolation and culture, viral sequencing,

nucleic acid-based detection, and immunological-based detection

(9, 10). Each method has unique advantages and challenges in terms

of sensitivity, specificity, time efficiency, and resource requirements.

Among them, nucleic acid- and immunological-based detection are

the main methods for the early diagnosis of RNA viruses. Our

viewpoint is that the integration of nucleic acid- and immunological-

based approaches based on digital ELISA may be the future trend in

RNA virus detection because it can minimize their respective

limitations and maximize their advantages; thus, such integration

can improve the accuracy and efficiency of RNA virus detection.

In this mini-review, we do not intend to provide an exhaustive

survey of the field of digital detection because it has been extensively

covered in the existing literature (11, 12). Instead, in the field of

digital assay research, we focus on the detection of RNA viruses,

specifically highlighting the convergence of nucleic acid testing

techniques and immunoassays in the context of digital ELISA.

We aim to offer an insightful yet succinct perspective on the

revolutionary impact of digital ELISA technologies on the

detection of RNA viruses.
RNA viruses: understanding their
characteristics and threats and the
necessity for early rapid detection

RNA viruses, including double-stranded RNA viruses, single-

stranded RNA viruses, and retroviruses, are a class of viruses that

utilize RNA as their genetic material (1, 2). These viruses are

characterized by their large size and short generation time;

because their RNA-dependent RNA polymerase (RdRp) lacks a

proofreading activity, they also have an extremely high mutation

rate (13, 14). With a high mutation rate, RNA viruses in a single

host can generate numerous genetic variations, which may result in

viral phenotypes, including virulence and pathogenicity, thereby

affecting the transmission and infection capacity of viruses (15, 16).

They are capable of human-to-human transmission through

various routes, including direct contact and inhalation; they can

also be transmitted from humans to animals (17, 18). Because of the

frequent recombination of genomes and the increased activity at the

human–animal interface, RNA viruses are highly prone to causing

new epidemics. In addition to their inherently high genetic diversity

and rapid evolution, their transmission characteristics depend on

their interaction with host immunity and the environment. The

“survival path” of a newly emerging virus largely depends on the

host’s immune response, and individuals with impaired adaptive

immune responses more likely favor virus production and

mutations (19, 20). During virus transmission, virus mutations

may help evade previously existing immune responses and even

change mechanisms that cross over with host cell pathways and are

beneficial to infection; consequently, the probability of the

emergence of new viral strains increases. This adaptive evolution,

combined with the complexity of host immune responses,

determines whether RNA viruses can cause localized, epidemic,

or pandemic outbreaks (21, 22). In the past century, RNA viruses
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caused several major pandemics, posing significant threats to global

health, and the COVID-19 pandemic in 2019 served as a stark

reminder of this fact. Given the high frequency and widespread

dissemination of RNA viruses, the detection and identification of

these viruses are crucial for preventing potential pandemics and

mitigating their societal impact. The clinical diagnosis of diseases

caused by RNA virus infection primarily involves an integration of

clinical symptoms, history of exposure to viruses, and virus

detection. Because clinical manifestations and signs in infected

patients are not entirely consistent, especially considering

potential asymptomatic or mildly symptomatic infections, early

viral detection is imperative for handling and controlling the large-

scale transmission of RNA viruses.
Advancements and limitations of RNA
virus detection

Currently, detection or quantification methods for RNA viruses

mainly include virus isolation and culture, nucleic acid-based detection

methods, and immunological-based detection methods (9, 10). Among

them, virus isolation and culture are the most reliable because they

contribute to further analysis and characterization of the target virus

(23, 24). However, most RNA viruses can be isolated only in

laboratories with biosafety level 3 facilities. Additionally, virus

isolation and culture are relatively time consuming, often requiring

several days or even weeks (23, 24); therefore, they are unable to meet

the demands for rapid diagnosis in most cases.

Nucleic acid-based RNA virus detection methods include

sequencing, such as next-generation sequencing (NGS) (25, 26), and

nucleic acid amplification-based detection technologies, such as

isothermal and non-isothermal nucleic acid amplification (27–30).

Sequencing technologies utilize extensive reference databases to

explore new mutations and evolution of isolated RNA virus strains;

determine the mutation rate of viruses and other related

recombinants; and evaluate potential contact tracing, virus evolution

research, and molecular epidemiology (25, 26). However, sequencing

analyses require highly skilled personnel to operate expensive

instruments under strict laboratory conditions. They are time-

consuming and relatively costly, severely limiting their widespread

application in RNA virus detection (31). By comparison, detection

technologies based on nucleic acid amplification feature high

sensitivity, specificity, speed, quantifiable results, and automation;

therefore, they are suitable for large-scale screening in the early

stages of an epidemic and have become the most widely accepted

RNA virus diagnostic method (25–28). However, they are also limited

in terms of experimental conditions, equipment costs, personnel costs,

and detection cycles. For instance, sample contamination caused by

factors such as aerosols during nucleic acid amplification negatively

affects detection accuracy (32). These limitations, combined with the

inherent instability of RNA molecules, further restricts the application

of such detection technologies in large-scale screening for early-stage

RNA virus infections.

Immunological detection strategies utilize antibody–antigen

reactions to detect target viral proteins (antigens) in samples or
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antibodies against viruses in serum (33, 34). An example of such

strategies is enzyme-linked immunosorbent assay (ELISA) (35, 36).

Immunoassay-based detection methods are cost effective, rapid, and

simple, making them suitable for wide screening. However, their

widespread application in early stages is restricted because of some

inherent limitations. First, immunological detection has lower

sensitivity than nucleic acid amplification techniques and may

produce false-negative results in cases of low viral loads or

limited serum antibody concentrations. Second, for viral antigen

detection, the preparation and production of corresponding

detecting antibodies require time, impeding the urgent demand

for large-scale early screening. Third, the occurrence of cross-

reactivity in antigen–antibody reactions may lead to false-positive

results, thus limiting the accuracy of results to some extent (37).

Nucleic acid and immune detection techniques are the two

main methods for the early screening of RNA virus infections, each

with their own unique advantages and inherent limitations. As

such, these methods should be integrated into a unified approach to

form a more comprehensive and effective diagnostic system.

Because of the fundamental methodological differences between

nucleic acid testing and immune testing, they have a considerable

gap. By comparison, ELISA exhibits strong compatibility, in

addition to its numerous advantages, such as simplicity,

practicality, speed, and reasonable cost; thus, it offers the potential

for achieving technical integration between nucleic acid testing and

immune testing.

Digital ELISA: a bridge integrating
nucleic acid testing and immune
detection methods

Immunological assays have evolved over years of development,

leveraging their exceptional compatibility to be integrated with

various interdisciplinary fields; as a result, a series of noteworthy

technological innovations has been developed. These advancements

are evident in several aspects of immunological assays, including

reaction carriers, recognition elements, signal amplification, and
Frontiers in Immunology 03
reading methods. Of particular importance is the fusion of single-

molecule detection technology and immunological assays, resulting

in single-molecule counting immunity, which is also known as

digital ELISA (38, 39). This revolutionary technique has overcome

the sensitivity limitations of traditional immunological assays, thus

offering an extraordinary level of sensitivity and high resolution that

macroscopic measurements have failed to achieve.

The pursuit of improving the detection limit of biomolecules

has given rise to the trend of digital measurement. The term

“digital” in computing refers to the binary code of 0 s and 1 s.

Similarly, in detection systems, the switching of specific signals of

biomolecules between discrete states (such as presence or absence,

occurrence or non-occurrence, and binding or non-binding) is also

a binary event. Unlike traditional bioassays typically conducted in a

single reactor, in digital assays, individual target molecules are

randomized into microchambers (11, 12). Once the signal

separation is established between positive microchambers with a

single target molecule and negative microchambers without the

target molecule (reaction microchambers display binary discrete

signals representing “1” or “0”), the absolute quantity of target

molecules can be determined by counting positive reactors after

digitizing signals with sufficient thresholds (11, 12). Figure 1

provides a schematic diagram comparing digital bioassays and

traditional bioassays. In digital bioassays, the reaction in each

microchamber displays a positive or negative signal, meeting the

prerequisite conditions for a binomial trial. Therefore, digital

bioassays should use the Poisson distribution, which is a limiting

case of the binomial distribution (11, 12). Unlike the continuous

signal recording noted in traditional ELISA, analysis is performed

by recording discrete signals in digital ELISA. This strategic

deviation circumvents the inaccuracies introduced by macro-level

signal fluctuations, thereby providing an overwhelming advantage

for detecting target molecules at low concentrations. In fact, for the

same target molecule, the detection limit of digital assays is

generally at least 1/1000 that of conventional assays (39, 40).

Digital biodetection systems consist of three main components:

microchamber reactors for microsegmentation, markers for studying

or labeling target molecules, and substrates or chemical probes for
FIGURE 1

Comparative schematic of traditional versus digital bioassays. In the traditional (analog) assay depicted in the upper panel, rapid diffusion of reaction
products is suboptimal for detecting highly diluted target molecules. Conversely, in the digital bioassay shown in the lower panel, reaction products
are compartmentalized within microchambers, enabling detection at the single-molecule level.
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providing detectable signals (11, 12). Depending on the type of signal

amplification in the microreactor, digital assays for RNA viruses can

be divided into two categories. The first category includes digital PCR

and other digital nucleic acid amplification assays, which rely on the

exponential amplification of viral RNA transcribed into cDNA.

However, the non-linear enzyme-catalyzed reverse transcription

process introduces quantitative bias (41, 42). Moreover, the

contamination of samples during the nucleic acid amplification

process greatly affects the accuracy of quantitative results (32).

Therefore, digital detection methods based on non-reverse

transcription and non-nucleic acid amplification can be more

effective for the quantification of RNA viruses. Unlike the first

category involving digital PCR, which relies on the amplification of

the target molecule, the other category of digital detection of RNA

viruses relies on the amplification of detection signals (such as

enzymes and fluorescent probes); one such example is digital ELISA.

The principal methodology of digital ELISA involves a four-step

process: the formation of immune complexes to capture target

molecules (formation), spatial or temporal partition of these

complexes to make them distinguishable and quantifiable

(partition), recognition of signals generated by the target

molecules through optical or electrical methods (recognition), and

absolute quantification using the Poisson distribution

(quantification) (12, 43). Advances in the development of RNA

antibody mimetics (44, 45), nucleic acid aptamers (46, 47), and

molecularly imprinted polymers (48, 49) have made it feasible to

directly detect trace amounts of viral RNA using digital ELISA; this

is a significant breakthrough. This capability implies that high-

sensitivity RNA virus detection can be performed even without the

need for a nucleic acid amplification step, thereby reducing the

assay time and completely bypassing issues related to sample

contamination that can occur during amplification. This

ultimately reduces the stringent environmental controls required

for nucleic acid assays and has profound implications for the real-

time detection of RNA viruses. Figure 2 provides a schematic

representation of the use of digital ELISA for the direct detection

of viral RNA. Currently, successful commercial digital ELISA

detection platforms, such as Simoa (50) and Erenna (its upgraded

version is called SMCxPro) (51), are widely used for practical

applications. With these commercial digital ELISA technology

platforms, quantitative analysis of antibodies (IgG, IgM, and IgA)

in the blood of SARS-CoV-2 infected individuals can be performed

on the same day when the symptoms first appear and the nucleic

acid test yields positive results, with a sample volume of less than

1 mL (52). Most excitingly, research utilizing the Simoa platform has
Frontiers in Immunology 04
demonstrated the capability to detect SARS-CoV-2 RNA in saliva,

achieving a remarkable detection limit of 3.4 fM (53).

Currently, digital ELISA is undergoing rapid development; for

example, the widespread application of droplet discretization method

has achieved the full loading of immunocomplexes (54, 55). Scholars

such as Akama proposed a soft discretization method using enzyme-

catalyzed deposition, which is expected to avoid the dependence on

complex droplet generation equipment (56). Other researchers

developed a particle diffusion recognition method, which allows

particles to exhibit characteristic Brownian motion in a limited space;

in this way, uniform immunoanalysis can be digitized without washing

(57, 58). Chen and others visualized single immunocomplexes by using

microbubbles produced through hydrogen peroxide catalysis with

platinum nanoparticles (59). Zhang and others used the enhancement

effect of microsphere lenses to visualize single target labels successfully

under a 20× objective (60). Furthermore, emerging evidence suggests

that digital ELISA will make further breakthroughs in portability,

readiness, simplicity, high throughput, and ultrasensitivity (61, 62).

Navigating the future of RNA virus
detection: the potential of
digital ELISA

Because of factors such as testing costs, efficiency, reagent stability,

and maintenance costs, the large-scale application of digital ELISA for

early RNA virus detection remains impractical. However, looking back

at the entire history of diagnostic technology development, the

improvement of any detection technique requires a long period of

exploration. The significance of digital ELISA in RNA virus detection

lies in its ability to integrate nucleic acid and immune detection, rather

than just improving existing detection techniques. Equally important is

the powerful compatibility of ELISA, which provides a wide range of

options for further expanding RNA virus detection.

For example, in the optimization of reaction carriers, digital

ELISA can be combined with paper-based biosensors (63, 64) to

develop shorter, lower-cost, and field-deployable paper-based

detection systems that meet the needs of large-scale, real-time RNA

virus detection. With the development of low-cost data reading

devices, such as desktop scanners or mobile cameras (65), RNA

viruses can be detected early in resource-limited areas on a large scale.

In terms of recognition element optimization, given that antibodies as

recognition molecules have limitations, such as poor stability, high

costs, and difficulty in large-scale production, digital ELISA can be

combined with nucleic acid aptamers (46, 47) or molecularly
FIGURE 2

Schematic outline of the digital ELISA process for detecting viral RNA. Viral RNA is captured by specific antibodies (or nucleic acid aptamers or
molecular polymers) to form an immune complex, which is then compartmentalized into discrete, countable units. Quantification of individual
immunocomplex molecules is achieved by recognizing the signal generated by the marker molecules conjugated to the antibodies.
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imprinted polymers (48, 49) to eliminate dependence on antibodies.

For RNA viruses, these alternatives further remove barriers to the

integration of nucleic acid and immunoassays. In the aspect of signal

amplification optimization, various nanomaterials, such as

nanospheres (60, 66), nanopores (67), upconversion nanoparticles

(68, 69), and quantum dots (70, 71), when combined with digital

ELISA, can greatly enhance the amplification of collected signals.

Additionally, the combination of CRISPR-Cas system with

traditional ELISA can greatly enhance the detection sensitivity of

the latter (72). Therefore, the effect produced by the combination of

CRISPR-Cas system with digital ELISA is worth anticipating. The

development of these methods ensures the sensitivity of digital

ELISA, compensating for the loss of sensitivity because of avoiding

nucleic acid amplification in the unification of nucleic acid and

immunoassays. In terms of reading methods, neither fluorescence

scanning after enzyme-catalyzed signal amplification in the Simoa

detection system (50) nor device-dependent single-molecule signal

scanning in the Erenna (SMCxPro) system (51) is suitable for early

large-scale screening of RNA viruses. However, through explorations

such as bright-field or dark-field imaging, digital ELISA is expected to

achieve smartphone-based reading methods (65). Particularly, it can

be applied to potentially integrate digital reading content with

cutting-edge technologies, such as artificial intelligence (AI),

machine learning (ML), the Internet, and the Internet of Things

(IoT). By integrating AI and ML into diagnostics, we can achieve

unprecedented analysis speed and accuracy. For example, these

technologies can screen large amounts of patient data, identify

patterns and trends that may indicate an outbreak, and even

predict epidemics before they reach pandemic levels. In addition,

the integration of digital ELISA with the Internet and IoT can

revolutionize remote healthcare. Virus detection can be performed

in real time, and data can be transmitted immediately to healthcare

providers regardless of their geographical location. Thus, response

times can be remarkably accelerated, and more targeted interventions

can be implemented, especially in rural or underserved areas.

However, these processes must be built on robust privacy and

cybersecurity measures to protect sensitive health data.
Conclusion

Although the development of digital ELISA faces numerous

challenges, its potential advantages are remarkable. This technology
Frontiers in Immunology 05
may be used to technically integrate nucleic acid testing and

immunoassay, thereby transforming the paradigm of RNA virus

detection and improving speed, accuracy, and diagnostic range

relative to those of current methods. The exceptional sensitivity

and specificity of digital ELISA can enhance the early detection of

viruses; consequently, therapeutic responses will be faster and more

targeted, considerably mitigating the spread and severity of diseases.

Addressing the high mutation rates of RNA viruses, digital ELISA

has a rapid detection capability and can serve as an efficient and

effective tool, thereby identifying and possibly preventing the spread

of emergent and recurrent infections. Therefore, the advancement

of digital ELISA technology promises to revolutionize RNA

virus detection.
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